Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,479)

Search Parameters:
Keywords = global standards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2103 KiB  
Article
Federated Multi-Stage Attention Neural Network for Multi-Label Electricity Scene Classification
by Lei Zhong, Xuejiao Jiang, Jialong Xu, Kaihong Zheng, Min Wu, Lei Gao, Chao Ma, Dewen Zhu and Yuan Ai
J. Low Power Electron. Appl. 2025, 15(3), 46; https://doi.org/10.3390/jlpea15030046 - 5 Aug 2025
Abstract
Privacy-sensitive electricity scene classification requires robust models under data localization constraints, making federated learning (FL) a suitable framework. Existing FL frameworks face two critical challenges in multi-label electricity scene classification: (1) Label correlations and their strengths significantly impact classification performance. (2) Electricity scene [...] Read more.
Privacy-sensitive electricity scene classification requires robust models under data localization constraints, making federated learning (FL) a suitable framework. Existing FL frameworks face two critical challenges in multi-label electricity scene classification: (1) Label correlations and their strengths significantly impact classification performance. (2) Electricity scene data and labels show distributional inconsistencies across regions. However, current FL frameworks lack explicit modeling of label correlation strengths, and locally trained regional models naturally capture these differences, leading to regional differences in their model parameters. In this scenario, the server’s standard single-stage aggregation often over-averages the global model’s parameters, reducing its discriminative ability. To address these issues, we propose FMMAN, a federated multi-stage attention neural network for multi-label electricity scene classification. The main contributions of this FMMAN lie in label correlation learning and the stepwise model aggregation. It splits the client–server interaction into multiple stages: (1) Clients train models locally to encode features and label correlation strengths after receiving the server’s initial model. (2) The server clusters these locally trained models into K groups to ensure that models within a group have more consistent parameters and generates K prototype models via intra-group aggregation to reduce over-averaging. The K models are then distributed back to the clients. (3) Clients refine their models using the K prototypes with contrastive group-specific consistency regularization to further mitigate over-averaging, and sends the refined model back to the server. (4) Finally, the server aggregates the models into a global model. Experiments on multi-label benchmarks verify that FMMAN outperforms baseline methods. Full article
Show Figures

Figure 1

26 pages, 1697 KiB  
Review
Integrating Climate Risk in Cultural Heritage: A Critical Review of Assessment Frameworks
by Julius John Dimabayao, Javier L. Lara, Laro González Canoura and Steinar Solheim
Heritage 2025, 8(8), 312; https://doi.org/10.3390/heritage8080312 - 4 Aug 2025
Abstract
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art [...] Read more.
Climate change poses an escalating threat to cultural heritage (CH), driven by intensifying climate-related hazards and systemic vulnerabilities. In response, risk assessment frameworks and methodologies (RAFMs) have emerged to evaluate and guide adaptation strategies for safeguarding heritage assets. This study conducts a state-of-the-art (SotA) review of 86 unique RAFMs using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-guided systematic approach to assess their scope, methodological rigor, alignment with global climate and disaster risk reduction (DRR) frameworks, and consistency in conceptual definitions of hazard, exposure, and vulnerability. Results reveal a growing integration of Intergovernmental Panel on Climate Change (IPCC)-based climate projections and alignment with international policy instruments such as the Sendai Framework and United Nations Sustainable Development Goals (UN SDGs). However, notable gaps persist, including definitional inconsistencies, particularly in the misapplication of vulnerability concepts; fragmented and case-specific methodologies that challenge comparability; and limited integration of intangible heritage. Best practices include participatory stakeholder engagement, scenario-based modeling, and incorporation of multi-scale risk typologies. This review advocates for more standardized, interdisciplinary, and policy-aligned frameworks that enable scalable, culturally sensitive, and action-oriented risk assessments, ultimately strengthening the resilience of cultural heritage in a changing climate. Full article
Show Figures

Figure 1

31 pages, 3455 KiB  
Review
Recent Advances in Nanoparticle and Nanocomposite-Based Photodynamic Therapy for Cervical Cancer: A Review
by Dorota Bartusik-Aebisher, Mohammad A. Saad, Agnieszka Przygórzewska and David Aebisher
Cancers 2025, 17(15), 2572; https://doi.org/10.3390/cancers17152572 - 4 Aug 2025
Abstract
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in [...] Read more.
Cervical cancer represents a significant global health challenge. Photodynamic therapy (PDT) appears to be a promising, minimally invasive alternative to standard treatments. However, the clinical efficacy of PDT is sometimes limited by the low solubility and aggregation of photosensitizers, their non-selective distribution in the body, hypoxia in the tumor microenvironment, and limited light penetration. Recent advances in nanoparticle and nanocomposite platforms have addressed these challenges by integrating multiple functional components into a single delivery system. By encapsulating or conjugating photosensitizers in biodegradable matrices, such as mesoporous silica, organometallic structures and core–shell construct nanocarriers increase stability in water and extend circulation time, enabling both passive and active targeting through ligand decoration. Up-conversion and dual-wavelength responsive cores facilitate deep light conversion in tissues, while simultaneous delivery of hypoxia-modulating agents alleviates oxygen deprivation to sustain reactive oxygen species generation. Controllable “motor-cargo” constructs and surface modifications improve intratumoral diffusion, while aggregation-induced emission dyes and plasmonic elements support real-time imaging and quantitative monitoring of therapeutic response. Together, these multifunctional nanosystems have demonstrated potent cytotoxicity in vitro and significant tumor suppression in vivo in mouse models of cervical cancer. Combining targeted delivery, controlled release, hypoxia mitigation, and image guidance, engineered nanoparticles provide a versatile and powerful platform to overcome the current limitations of PDT and pave the way toward more effective, patient-specific treatments for cervical malignancies. Our review of the literature summarizes studies on nanoparticles and nanocomposites used in PDT monotherapy for cervical cancer, published between 2023 and July 2025. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

12 pages, 472 KiB  
Communication
LAMPOX: A Portable and Rapid Molecular Diagnostic Assay for the Epidemic Clade IIb Mpox Virus Detection
by Anna Rosa Garbuglia, Mallory Draye, Silvia Pauciullo, Daniele Lapa, Eliana Specchiarello, Florence Nazé and Pascal Mertens
Diagnostics 2025, 15(15), 1959; https://doi.org/10.3390/diagnostics15151959 - 4 Aug 2025
Abstract
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions [...] Read more.
The global spread of Mpox virus (MPXV) underscores the urgent need for rapid, field-deployable diagnostic tools, especially in low-resource settings. We evaluated a loop-mediated isothermal amplification (LAMP) assay, termed LAMPOX, developed by Coris BioConcept. The assay was tested in three formats—two liquid versions and a dried, ready-to-use version—targeting only the ORF F3L (Liquid V1) or both the ORF F3L and N4R (Liquid V2 and dried) genomic regions. Analytical sensitivity and specificity were assessed using 60 clinical samples from confirmed MPXV-positive patients. Sensitivity on clinical samples was 81.7% for Liquid V1 and 88.3% for Liquid V2. The dried LAMPOX assay demonstrated a sensitivity of 88.3% and a specificity of 100% in a panel of 112 negative controls, with most positive samples detected in under 7 min. Additionally, a simplified sample lysis protocol was developed to facilitate point-of-care use. While this method showed slightly reduced sensitivity compared to standard DNA extraction, it proved effective for samples with higher viral loads. The dried format offers key advantages, including ambient-temperature stability and minimal equipment needs, making it suitable for point-of-care testing. These findings support LAMPOX as a promising tool for rapid MPXV detection during outbreaks, especially in resource-limited settings where traditional PCR is impractical. Full article
Show Figures

Figure 1

26 pages, 6698 KiB  
Article
Cumulative and Lagged Effects of Drought on the Phenology of Different Vegetation Types in East Asia, 2001–2020
by Kexin Deng, Mark Henderson, Binhui Liu, Weiwei Huang, Mingyang Chen, Pingping Zheng and Ruiting Gu
Remote Sens. 2025, 17(15), 2700; https://doi.org/10.3390/rs17152700 - 4 Aug 2025
Abstract
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on [...] Read more.
Drought disturbances are becoming more frequent with global warming. Accurately assessing the regulatory effect of drought on vegetation phenology is key to understanding terrestrial ecosystem response mechanisms in the context of climate change. Previous studies on cumulative and lagged effects of drought on vegetation growth have mostly focused on a single vegetation type or the overall vegetation NDVI, overlooking the possible influence of different adaptation strategies of different vegetation types and differences in drought effects on different phenological nodes. This study investigates the cumulative and lagged effects of drought on vegetation phenology across a region of East Asia from 2001 to 2020 using NDVI data and the Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the start of growing season (SOS) and end of growing season (EOS) responses to drought across four vegetation types: deciduous needleleaf forests (DNFs), deciduous broadleaf forests (DBFs), shrublands, and grasslands. Results reveal contrasting phenological responses: drought delayed SOS in grasslands through a “drought escape” strategy but advanced SOS in forests and shrublands. All vegetation types showed earlier EOS under drought stress. Cumulative drought effects were strongest on DNFs, SOS, and shrubland SOS, while lagged effects dominated DBFs and grassland SOS. Drought impacts varied with moisture conditions: they were stronger in dry regions for SOS but more pronounced in humid areas for EOS. By confirming that drought effects vary by vegetation type and phenology node, these findings enhance our understanding of vegetation adaptation strategies and ecosystem responses to climate stress. Full article
Show Figures

Figure 1

14 pages, 1805 KiB  
Data Descriptor
Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Trial: Genetic Resource for Precision Nutrition
by Yuxi Liu, Hailie Fowler, Dong D. Wang, Lisa L. Barnes and Marilyn C. Cornelis
Nutrients 2025, 17(15), 2548; https://doi.org/10.3390/nu17152548 - 4 Aug 2025
Abstract
Background: The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) was a 3-year, multicenter, randomized controlled trial to test the effects of the MIND diet on cognitive decline in 604 individuals at risk for Alzheimer’s dementia. Here, we describe the genotyping, imputation, and quality control [...] Read more.
Background: The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) was a 3-year, multicenter, randomized controlled trial to test the effects of the MIND diet on cognitive decline in 604 individuals at risk for Alzheimer’s dementia. Here, we describe the genotyping, imputation, and quality control (QC) procedures for the genetic data of trial participants. Methods: DNA was extracted from either whole blood or serum, and genotyping was performed using the Infinium Global Diversity Array. Established sample and SNP QC procedures were applied to the genotyping data, followed by imputation using the 1000 Genomes Phase 3 v5 reference panel. Results: Significant study-site, specimen type, and batch effects were observed. A total of 494 individuals of inferred European ancestry and 58 individuals of inferred African ancestry were included in the final imputed dataset. Evaluation of the imputed APOE genotype against gold-standard sequencing data showed high concordance (98.2%). We replicated several known genetic associations identified from previous genome-wide association studies, including SNPs previously linked to adiponectin (rs16861209, p = 1.5 × 10−5), alpha-linolenic acid (rs174547, p = 1.3 × 10−7), and alpha-tocopherol (rs964184, p = 0.003). Conclusions: This dataset represents the first genetic resource derived from a dietary intervention trial focused on cognitive outcomes. It enables investigation of genetic contributions to variability in cognitive response to the MIND diet and supports integrative analyses with other omics data types to elucidate the biological mechanisms underlying cognitive decline. These efforts may ultimately inform precision nutrition strategies to promote cognitive health. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

8 pages, 844 KiB  
Opinion
Flawed Metrics, Damaging Outcomes: A Rebuttal to the RI2 Integrity Index Targeting Top Indonesian Universities
by Muhammad Iqhrammullah, Derren D. C. H. Rampengan, Muhammad Fadhlal Maula and Ikhwan Amri
Publications 2025, 13(3), 36; https://doi.org/10.3390/publications13030036 - 4 Aug 2025
Abstract
The Research Integrity Risk Index (RI2), introduced as a tool to identify universities at risk of compromised research integrity, adopts an overly reductive methodology by combining retraction rates and delisted journal proportions into a single, equally weighted composite score. While its [...] Read more.
The Research Integrity Risk Index (RI2), introduced as a tool to identify universities at risk of compromised research integrity, adopts an overly reductive methodology by combining retraction rates and delisted journal proportions into a single, equally weighted composite score. While its stated aim is to promote accountability, this commentary critiques the RI2 index for its flawed assumptions, lack of empirical validation, and disproportionate penalization of institutions in low- and middle-income countries. We examine how RI2 misinterprets retractions, misuses delisting data, and fails to account for diverse academic publishing environments, particularly in Indonesia, where many high-performing universities are unfairly categorized as “high risk” or “red flag.” The index’s uncritical reliance on opaque delisting decisions, combined with its fixed equal-weighting formula, produces volatile and context-insensitive scores that do not accurately reflect the presence or severity of research misconduct. Moreover, RI2 has gained significant media attention and policy influence despite being based on an unreviewed preprint, with no transparent mechanism for institutional rebuttal or contextual adjustment. By comparing RI2 classifications with established benchmarks such as the Scimago Institution Rankings and drawing from lessons in global development metrics, we argue that RI2, although conceptually innovative, should remain an exploratory framework. It requires rigorous scientific validation before being adopted as a global standard. We also propose flexible weighting schemes, regional calibration, and transparent engagement processes to improve the fairness and reliability of institutional research integrity assessments. Full article
Show Figures

Figure 1

16 pages, 2212 KiB  
Article
Entity Recognition Method for Fire Safety Standards Based on FT-FLAT
by Zhihao Yu, Chao Liu, Shunxiu Yang, Jiwei Tian, Qunming Hu and Weidong Kang
Fire 2025, 8(8), 306; https://doi.org/10.3390/fire8080306 - 4 Aug 2025
Abstract
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard [...] Read more.
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard information. In addition, the lack of effective integration and knowledge organization concerning fire safety standard entities has led to the severe fragmentation of fire safety standard information and the absence of a comprehensive “one map”. To address this challenge, we introduce FT-FLAT, an innovative CNN–Transformer fusion architecture designed specifically for fire safety standard entity extraction. Unlike traditional methods that rely on rules or single-modality deep learning, our approach integrates TextCNN for local feature extraction and combines it with the Flat-Lattice Transformer for global dependency modeling. The key innovations include the following. (1) Relative Position Embedding (RPE) dynamically encodes the positional relationships between spans in fire safety texts, addressing the limitations of absolute positional encoding in hierarchical structures. (2) The Multi-Branch Prediction Head (MBPH) aggregates the outputs of TextCNN and the Transformer using Einstein summation, enhancing the feature learning capabilities and improving the robustness for domain-specific terminology. (3) Experiments conducted on the newly annotated Fire Safety Standard Entity Recognition Dataset (FSSERD) demonstrate state-of-the-art performance (94.24% accuracy, 83.20% precision). This work provides a scalable solution for constructing fire safety knowledge graphs and supports intelligent information retrieval in emergency situations. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

21 pages, 1260 KiB  
Review
Comprehensive Overview Assessment on Legal Guarantee System of Wetland Carbon Sink Trading for One Belt and One Road Initiative
by Jingjing Min, Wanwu Yuan, Wei He, Pingping Luo, Hanming Zhang and Yang Zhao
Land 2025, 14(8), 1583; https://doi.org/10.3390/land14081583 - 3 Aug 2025
Viewed by 76
Abstract
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks [...] Read more.
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks in these countries. It explores the necessity of legal system construction for their carbon sink trading. This study finds that smooth trading requires clear property rights definition rules, efficient market trading entities, definite carbon sink trading price rules, financial support aligned with the Equator Principles, and support from biodiversity-compatible environmental regulatory principles. Currently, there are still obstacles in wetland carbon sink trading in the Belt and Road, such as property rights confirmation, an accounting system, an imperfect market trading mechanism, and the coexistence of multiple trading risks. Therefore, this paper first proposes to clarify the goal of the legal guarantee mechanism. Efforts should focus on promoting a consensus on wetland carbon sink ownership and establishing a unified accounting standard system; simultaneously, the relevant departments should conduct field investigations and monitoring, standardize the market order, and strengthen government financial support and funding guarantees. Full article
Show Figures

Figure 1

18 pages, 4799 KiB  
Article
An Adaptive CNN-Based Approach for Improving SWOT-Derived Sea-Level Observations Using Drifter Velocities
by Sarah Asdar and Bruno Buongiorno Nardelli
Remote Sens. 2025, 17(15), 2681; https://doi.org/10.3390/rs17152681 - 3 Aug 2025
Viewed by 60
Abstract
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. [...] Read more.
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. To address these limitations, we developed an adaptive convolutional neural network (CNN)-based filtering technique that refines SWOT-derived sea-level observations. The network includes multi-head attention layers to exploit information on concurrent wind fields and standard altimetry interpolation errors. We train the model with a custom loss function that accounts for the differences between geostrophic velocities computed from SWOT sea-surface topography and simultaneous in-situ drifter velocities. We compare our method to existing filtering techniques, including a U-Net-based model and a variational noise-reduction filter. Our adaptive-filtering CNN produces accurate velocity estimates while preserving small-scale features and achieving a substantial noise reduction in the spectral domain. By combining satellite and in-situ data with machine learning, this work demonstrates the potential of an adaptive CNN-based filtering approach to enhance the accuracy and reliability of SWOT-derived sea-level and velocity estimates, providing a valuable tool for global oceanographic applications. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 64
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 144
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 - 1 Aug 2025
Viewed by 186
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Exploring the Implementation of Gamification as a Treatment Modality for Adults with Depression in Malaysia
by Muhammad Akmal bin Zakaria, Koh Ong Hui, Hema Subramaniam, Maziah Binti Mat Rosly, Jesjeet Singh Gill, Lim Yee En, Yong Zhi Sheng, Julian Wong Joon Ip, Hemavathi Shanmugam, Chow Soon Ken and Benedict Francis
Medicina 2025, 61(8), 1404; https://doi.org/10.3390/medicina61081404 - 1 Aug 2025
Viewed by 145
Abstract
Background and Objectives: Depression is a leading cause of disability globally, with treatment challenges including limited access, stigma, and poor adherence. Gamification, which applies game elements such as points, levels, and storytelling into non-game contexts, offers a promising strategy to enhance engagement [...] Read more.
Background and Objectives: Depression is a leading cause of disability globally, with treatment challenges including limited access, stigma, and poor adherence. Gamification, which applies game elements such as points, levels, and storytelling into non-game contexts, offers a promising strategy to enhance engagement and augment traditional treatments. Our research is the first study designed to explore the implementation of gamification within the Malaysian context. The objective was to explore the feasibility of implementation of gamification as an adjunctive treatment for adults with depression. Materials and Methods: Focus group discussions were held with five mental health professionals and ten patients diagnosed with moderate depression. The qualitative component assessed perceptions of gamified interventions, while quantitative measures evaluated participants’ depressive and anxiety symptomatology. Results: Three key themes were identified: (1) understanding of gamification as a treatment option, (2) factors influencing its acceptance, and (3) characteristics of a practical and feasible intervention. Clinicians saw potential in gamification to boost motivation, support psychoeducation, and encourage self-paced learning, but they expressed concerns about possible addiction, stigma, and the complexity of gameplay for some patients. Patients spoke of gaming as a source of comfort, escapism, and social connection. Acceptance was shaped by engaging storylines, intuitive design, balanced difficulty, therapist guidance, and clear safety measures. Both groups agreed that gamification should be used in conjunction with standard treatments, be culturally sensitive, and be presented as a meaningful therapeutic approach rather than merely as entertainment. Conclusions: Gamification emerges as an acceptable and feasible supplementary approach for managing depression in Malaysia. Its success depends on culturally sensitive design, robust clinical oversight, and seamless integration with existing care pathways. Future studies should investigate long-term outcomes and establish guidelines for the safe and effective implementation of this approach. We recommend targeted investment into culturally adapted gamified tools, including training, policy development, and collaboration with key stakeholders to realistically implement gamification as a mental health intervention in Malaysia. Full article
(This article belongs to the Section Psychiatry)
22 pages, 4248 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 - 1 Aug 2025
Viewed by 145
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

Back to TopTop