Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = glazing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3015 KB  
Article
Comparative Study on Surface Heating Systems with and Without External Shading: Effects on Indoor Thermal Environment
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Anna Romańska and Anna Dudzińska
Energies 2026, 19(1), 223; https://doi.org/10.3390/en19010223 - 31 Dec 2025
Abstract
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, [...] Read more.
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, and productivity. As energy-efficiency requirements become more demanding, the appropriate selection of heating systems, their automated control, and the management of solar heat gains are becoming increasingly important. This study investigates the influence of two low-temperature radiant heating systems—underfloor and wall-mounted—and the use of Venetian blinds on perceived thermal comfort in a highly glazed public nZEB building located in a densely built urban area within a temperate climate zone. The assessment was based on the PMV (Predicted Mean Vote) index, commonly used in IEQ research. The results show that both heating systems maintained indoor conditions corresponding to comfort or slight thermal stress under steady state operation. However, during periods of strong solar exposure in the room without blinds, PMV values exceeded 2.0, indicating substantial heat stress. In contrast, external Venetian blinds significantly stabilized the indoor microclimate—reducing PMV peaks by an average of 50.2% and lowering the number of discomfort hours by 94.9%—demonstrating the crucial role of solar protection in highly glazed spaces. No significant whole-body PMV differences were found between underfloor and wall heating. Overall, the findings provide practical insights into the control of thermal conditions in radiant-heated spaces and highlight the importance of solar shading in mitigating heat stress. These results may support the optimization of HVAC design, control, and operation in both residential and non-residential nZEB buildings, contributing to improved occupant comfort and enhanced energy efficiency. Full article
Show Figures

Figure 1

28 pages, 10519 KB  
Article
Performance Comparison of STPV and Split Louvers in Hot Arid Climates
by Abdelhakim Mesloub, Mohamed Ahmed Said Mohamed and Lambros T. Doulos
Buildings 2026, 16(1), 117; https://doi.org/10.3390/buildings16010117 - 26 Dec 2025
Viewed by 102
Abstract
Façade systems in hot, high-insolation climates are required to simultaneously mitigate cooling loads, ensure high-quality daylight, and, where feasible, harvest on-site electricity demands that are often in tension. This study assesses and compares two efficient façade strategies for a fully glazed office prototype [...] Read more.
Façade systems in hot, high-insolation climates are required to simultaneously mitigate cooling loads, ensure high-quality daylight, and, where feasible, harvest on-site electricity demands that are often in tension. This study assesses and compares two efficient façade strategies for a fully glazed office prototype in Hail, Saudi Arabia: semi-transparent photovoltaic glazing (STPV10–30%VLT) and parametrically tuned split louvers (18 depth–spacing–tilt configurations). Using a unified parametric workflow (Rhino/Grasshopper), Radiance/honeybee for daylight metrics, ASHRAE-55 heat-balance metrics for thermal comfort, and EnergyPlus for end-use and PV yield, to evaluate annual and solstice performance across cardinal orientations. Optimized split louvers maintained UDI300–1000lx and effectively suppress glare, but incur substantial lighting-energy penalties. In contrast, STPV with 10–20% VLT broadly meets daylight targets while strongly reducing cooling and lighting demand, delivering whole-façade energy savings of up to 50–94% depending on orientation, but could be net-neutral to slightly adverse north 3% when daylight penalties dominate. Thermal comfort responses mirrored these trends: summer PMV was near 0 to +0.5 for both systems, with winter under-heating evident when solar gains are strongly suppressed. Overall, in hot-arid, highly glazed offices, STPV of 10–20%VLT provides the most balanced triad of daylight quality, cooling reduction, and net energy benefit, while optimized louvers excel where glare control is paramount but require careful daylight-control integration. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 6737 KB  
Article
Precast Industrial Buildings with Vault or Shed Roof Subject to Simulated Cellulosic Fire
by Bruno Dal Lago, Francesco Rizzo and Paride Tucci
Fire 2026, 9(1), 11; https://doi.org/10.3390/fire9010011 - 24 Dec 2025
Viewed by 231
Abstract
Precast concrete industrial buildings are typically characterised by high fire risk due to the production or storage of materials/products having high combustion potential and the specific activities carried out in the facility. Due to the large dimensions of these buildings, common simplified and [...] Read more.
Precast concrete industrial buildings are typically characterised by high fire risk due to the production or storage of materials/products having high combustion potential and the specific activities carried out in the facility. Due to the large dimensions of these buildings, common simplified and ordinary advanced methods for the determination of the fire-induced demand, both in terms of structural performance and the safety of occupants and firefighters, may be far from accurate. Most large industrial buildings rely on translucid surfaces installed on the roof to let zenithal natural light enter the building. These are typically made with polycarbonate, and lateral windows may eventually be installed. Due to the low glass transition temperature of polycarbonate, these openings can efficiently act as evacuators of smoke and heat, although they are currently neglected by most practitioners, leading to the installation of mechanical evacuators. Moreover, the shape of the roof system of such buildings, especially if wing-shaped elements coupled with either vault or shed elements are used, can naturally ease the smoke and heat evacuation process. This paper aims to provide a contribution to the characterisation of fire development in such buildings, presenting the results of both zone and computational-fluid-dynamic analyses carried out on archetypal precast industrial buildings with a typical arrangement of either vault or shed roof subjected to cellulosic fire. For this purpose, several parameters were investigated, including roof shape (vault and shed) and the effect of short or tall columns. Concerning zone models, other relevant parameters, such as the type of glazing, the installation of smoke and heat evacuators on the roof, and larger window areas, were analysed. Full article
Show Figures

Figure 1

32 pages, 2680 KB  
Article
Multi-Criteria Analysis of Different Renovation Scenarios Applying Energy, Economic, and Thermal Comfort Criteria
by Evangelos Bellos and Dimitra Gonidaki
Appl. Sci. 2026, 16(1), 95; https://doi.org/10.3390/app16010095 - 21 Dec 2025
Viewed by 179
Abstract
Sustainable renovation is a critical aspect for designing energy-efficient buildings with reasonable cost and high indoor living standards. The objective of this paper is to investigate various renovation scenarios for an old, uninsulated building with a floor area of 100 m2 located [...] Read more.
Sustainable renovation is a critical aspect for designing energy-efficient buildings with reasonable cost and high indoor living standards. The objective of this paper is to investigate various renovation scenarios for an old, uninsulated building with a floor area of 100 m2 located in Athens, aiming to determine the global optimal solution through a multi-criteria analysis. The multi-criteria analysis considers energy, economic, and thermal comfort criteria to perform a multi-lateral approach. Specifically, the criteria are: (i) maximization of the energy savings, (ii) minimization of the life cycle cost (LCC), and (iii) minimization of the mean annual predicted percentage of dissatisfied (PPD). These criteria are combined within a multi-criteria evaluation procedure that employs a global objective function for determining a global optimum solution. The examined retrofitting actions are the addition of external insulation, the replacement of the existing windows with triple-glazed windows, the addition of shading in the openings in the summer, the application of cool roof dyes, the use of a mechanical ventilation system with a heat recovery unit, and the installation of a highly efficient heat pump system. The interventions were examined separately, and the combined renovation scenarios were studied by including them in the external insulation because of their high importance. The present study encompassed the investigation of a baseline scenario and 26 different renovation scenarios, conducted through dynamic simulation on an annual basis. The results of the present analysis indicated that the global optimal renovation scenario, including the addition of external insulation, the installation of highly efficient heat pumps, and the use of shading in the openings in the summer, saved energy by 74% compared to the baseline scenario. The LCC was approximately EUR 33,000, the simple payback period of the renovation process was around 6 years, the annual CO2 emissions avoidance reached 4.6 tnCO2, and the PPD was at 9.7%. An additional sensitivity analysis for determining the optimal choice under varying weights assigned to the criteria revealed that this renovation design is the most favorable option in most cases. These results prove that the suggested renovation scenario is a feasible and viable solution that leads to a sustainable design from multiple perspectives. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Figure 1

18 pages, 8349 KB  
Article
Interfacial Gradient Optimization and Friction-Wear Response of Three Architectures of Ni-Based Cold Metal Transfer Overlays on L415QS Pipeline Steel
by Bowen Li, Min Zhang, Mi Zhou, Keren Zhang and Xiaoyong Zhang
Coatings 2025, 15(12), 1492; https://doi.org/10.3390/coatings15121492 - 18 Dec 2025
Viewed by 223
Abstract
Pipeline steels under cyclic loading in corrosive environments are prone to wear and corrosion–wear synergy. Low-dilution, high-reliability Ni-based Cold Metal Transfer (CMT) overlays are therefore required to ensure structural integrity. In this work, three overlay architectures were deposited on L415QS pipeline steel: a [...] Read more.
Pipeline steels under cyclic loading in corrosive environments are prone to wear and corrosion–wear synergy. Low-dilution, high-reliability Ni-based Cold Metal Transfer (CMT) overlays are therefore required to ensure structural integrity. In this work, three overlay architectures were deposited on L415QS pipeline steel: a single-layer ERNiFeCr-1 coating, a double-layer ERNiFeCr-1/ERNiFeCr-1 coating, and an ERNiCrMo-3 interlayer plus ERNiFeCr-1 working layer. The microstructure, interfacial composition gradients, and dry sliding wear behavior were systematically characterized to clarify the role of interlayer design. The single-layer ERNiFeCr-1 coating shows a graded transition from epitaxial columnar grains to cellular/dendritic and fine equiaxed grains, with smooth Fe dilution, Ni–Cr enrichment, and a high fraction of high-angle grain boundaries, resulting in sound metallurgical bonding and good crack resistance. The double-layer ERNiFeCr-1 coating contains coarse, strongly textured columnar grains and pronounced interdendritic segregation in the upper layer, which promotes adhesive fatigue and brittle spalling and degrades wear resistance and friction stability. The ERNiCrMo-3 interlayer introduces continuous Fe-decreasing and Ni-Cr/Mo-increasing gradients, refines grains, suppresses continuous brittle phases, and generates dispersed second phases that assist crack deflection and load redistribution. Under dry sliding, the tribological performance ranks as follows: interlayer + overlay > single-layer > double-layer. The ERNiCrMo-3 interlayer system maintains the lowest and most stable friction coefficient due to the formation of a dense tribo-oxidative glaze layer. These results demonstrate an effective hierarchical alloy-process design strategy for optimizing Ni-based CMT overlays on pipeline steels. Full article
Show Figures

Figure 1

19 pages, 1724 KB  
Article
Smart IoT-Based Temperature-Sensing Device for Energy-Efficient Glass Window Monitoring
by Vaclav Mach, Jiri Vojtesek, Milan Adamek, Pavel Drabek, Pavel Stoklasek, Stepan Dlabaja, Lukas Kopecek and Ales Mizera
Future Internet 2025, 17(12), 576; https://doi.org/10.3390/fi17120576 - 15 Dec 2025
Viewed by 270
Abstract
This paper presents the development and validation of an IoT-enabled temperature-sensing device for real-time monitoring of the thermal insulation properties of glass windows. The system integrates contact and non-contact temperature sensors into a compact PCB platform equipped with WiFi connectivity, enabling seamless integration [...] Read more.
This paper presents the development and validation of an IoT-enabled temperature-sensing device for real-time monitoring of the thermal insulation properties of glass windows. The system integrates contact and non-contact temperature sensors into a compact PCB platform equipped with WiFi connectivity, enabling seamless integration into smart home and building management frameworks. By continuously assessing window insulation performance, the device addresses the challenge of energy loss in buildings, where glazing efficiency often degrades over time. The collected data can be transmitted to cloud-based services or local IoT infrastructures, allowing for advanced analytics, remote access, and adaptive control of heating, ventilation, and air-conditioning (HVAC) systems. Experimental results demonstrate the accuracy and reliability of the proposed system, confirming its potential to contribute to energy conservation and sustainable living practices. Beyond energy efficiency, the device provides a scalable approach to environmental monitoring within the broader future internet ecosystem, supporting the evolution of intelligent, connected, and human-centered living environments. Full article
(This article belongs to the Special Issue Artificial Intelligence and Control Systems for Industry 4.0 and 5.0)
Show Figures

Figure 1

17 pages, 2173 KB  
Article
Life Cycle Perspectives of Fixed and Operable Wooden Windows
by Dominika Búryová, Rozália Vaňová, Michal Gregor, Róbert Uhrín and Pavol Sedlák
Buildings 2025, 15(24), 4490; https://doi.org/10.3390/buildings15244490 - 11 Dec 2025
Viewed by 200
Abstract
Windows represent a critical component of a building’s envelope, influencing not only thermal performance and natural interior lighting but also the overall environmental impact of the structure. This study applies life cycle assessment to evaluate the impacts of operable and fixed wood-based windows [...] Read more.
Windows represent a critical component of a building’s envelope, influencing not only thermal performance and natural interior lighting but also the overall environmental impact of the structure. This study applies life cycle assessment to evaluate the impacts of operable and fixed wood-based windows covering the system boundaries of the product stage and maintenance. Scenarios are modelled for different frame surface treatments, regarding varnish layers, paint presence, and aluminium cladding. The impact categories assessed include elements, fossils, and ozone layer depletion; potentials of global warming, acidification, eutrophication; photochemical ozone creation; and toxicity to humans, freshwater and marine water, as well as terrestrial ecotoxicity. The results indicate that the embodied environmental impact of the wood material alone remains relatively small while glazing and aluminium cladding dominate. Regarding the surface treatment, the varnish quantity as well as the presence of paint do not significantly influence the environmental impact. Differences between operable and fixed windows also reflect additional materials and hardware requirements, resulting in operable windows exhibiting higher environmental impacts across all assessed categories. The findings of this study highlight the important role of structural elements and additional components on the overall environmental impact regarding the complexity of a window. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

32 pages, 5802 KB  
Article
Research on a Comprehensive Performance Analysis Method for Building-Integrated Photovoltaics Considering Global Climate Change
by Ran Wang, Caibo Tang, Yuge Ma, Shilei Lu and Quanyi Lin
Buildings 2025, 15(24), 4463; https://doi.org/10.3390/buildings15244463 - 10 Dec 2025
Viewed by 346
Abstract
Building-integrated photovoltaics (BIPVs) represent a pivotal technology for enhancing the utilization of renewable energy in buildings. However, challenges persist, including the lack of integrated design models, limited analytical dimensions, and insufficient consideration of climate change impacts. This study proposes a comprehensive performance assessment [...] Read more.
Building-integrated photovoltaics (BIPVs) represent a pivotal technology for enhancing the utilization of renewable energy in buildings. However, challenges persist, including the lack of integrated design models, limited analytical dimensions, and insufficient consideration of climate change impacts. This study proposes a comprehensive performance assessment framework for BIPV that incorporates global climate change factors. An integrated simulation model is developed using EnergyPlus8.9.0, Optics6, and WINDOW7.7 to evaluate BIPV configurations such as photovoltaic facades, shading systems, and roofs. A multi-criteria evaluation system is established, encompassing global warming potential (GWP), power generation, energy flexibility, and economic cost. Future hourly weather data for the 2050s and 2080s are generated using CCWorldWeatherGen under representative climate scenarios. Monte Carlo simulations are conducted to assess performance across variable combinations, supplemented by sensitivity and uncertainty analyses to identify key influencing factors. Results indicate (1) critical design parameters—including building orientation, wall thermal absorptance, window-to-wall ratios, PV shading angle, glazing optical properties, equipment and lighting power density, and occupancy—significantly affect overall performance. Equipment and lighting densities most influence carbon emissions and flexibility, whereas envelope thermal properties dominate cost impacts. PV shading outperforms other forms in power generation. (2) Under intensified climate change, GWP and life cycle costs increase, while energy flexibility declines, imposing growing pressure on system performance. However, under certain mid-century climate conditions, BIPV power generation potential improves due to altered solar radiation. The study recommends integrating climate-adaptive design strategies with energy systems such as PEDF (photovoltaic, energy storage, direct current, and flexibility), refining policy mechanisms, and advancing BIPV deployment with climate-resilient approaches to support building decarbonization and enhance adaptive capacity. Full article
Show Figures

Figure 1

35 pages, 5505 KB  
Article
Assessing Positive Energy District Potential: A Case Study in Central Italy
by Giuseppina Ciulla, Mario Miranna, Francesco Guarino, Maurizio Cellura, Sonia Longo, Paolo Civiero, Ilaria Montella and Paola Marrone
Energies 2025, 18(24), 6431; https://doi.org/10.3390/en18246431 - 9 Dec 2025
Viewed by 325
Abstract
This study investigates the application of the Positive Energy District paradigm to two existing and morphologically diverse urban districts in Rome: Testaccio and Valco San Paolo. The research aims to evaluate the feasibility and effectiveness of district-scale energy retrofitting strategies, integrating dynamic simulation [...] Read more.
This study investigates the application of the Positive Energy District paradigm to two existing and morphologically diverse urban districts in Rome: Testaccio and Valco San Paolo. The research aims to evaluate the feasibility and effectiveness of district-scale energy retrofitting strategies, integrating dynamic simulation tools to model current energy behavior and assess future scenarios. The methodology combines a range of interventions including envelope insulation, high-performance glazing, HVAC system upgrades, efficient lighting solutions, and large-scale photovoltaic deployment. Additionally, the study explores the potential benefits of energy storage systems, with particular focus on the optimal sizing of lithium-ion battery solutions to enhance local self-consumption and reduce grid dependency. Key performance indicators are used to analyze the alignment between renewable energy generation and district demand, as well as the interaction with the electrical grid. By calibrating simulation models with real thermophysical and consumption data, the research ensures methodological robustness and enables the replicability of the proposed approach in other urban contexts. The study offers a comprehensive framework for planners and policymakers seeking to support the decarbonization and resilience of urban districts through the implementation of PEDs. Future developments will focus on optimizing storage management, assessing the environmental impact of battery life cycles, and integrating PEDs within broader urban energy ecosystems. Full article
Show Figures

Figure 1

24 pages, 4065 KB  
Article
Evaluating the Energy and Carbon Performance of Advanced Glazing Systems for Hot–Arid Climates: An Integrated Simulation and LCA Approach
by Sultan Alfraidi, Amr Sayed Hassan Abdallah, Ali Aldersoni, Mohamed Hssan Hassan Abdelhafez, Amer Abdulaziz Aldamady and Ayman Ragab
Buildings 2025, 15(23), 4283; https://doi.org/10.3390/buildings15234283 - 26 Nov 2025
Viewed by 378
Abstract
This study integrates dynamic energy simulation with lifecycle assessment (LCA) to evaluate the energy and carbon performance of advanced glazing systems suitable for hot–arid climates. Using Design Builder software coupled with OpenLCA, six glazing configurations were analyzed under identical building and climatic conditions. [...] Read more.
This study integrates dynamic energy simulation with lifecycle assessment (LCA) to evaluate the energy and carbon performance of advanced glazing systems suitable for hot–arid climates. Using Design Builder software coupled with OpenLCA, six glazing configurations were analyzed under identical building and climatic conditions. The configurations included a conventional single 3 mm float glass pane (C0) as the reference case, a single 3 mm polycarbonate sheet (C1) representing common local construction practice, and four advanced multi-layer systems (C2–C5) incorporating air, argon, and nanogel insulation layers. The inclusion of C0 enabled direct comparison between typical glass construction and emerging polycarbonate-based systems, thereby enhancing the contextual relevance of the analysis. Results demonstrated that thermal and optical properties of glazing systems strongly influence both operational and embodied carbon outcomes. Relative to the conventional glass reference (C0), the nanogel–argon composite (C5) achieved a 32.4% reduction in annual cooling energy and a 28.9% decrease in total lifecycle carbon emissions, with a carbon payback period of approximately 1.1 years. The operational phase dominated total emissions (>97%), confirming that improvements in glazing thermal performance yield substantial long-term benefits even when embodied impacts are considered. While argon filling provided marginal benefit over air cavities, the nanogel insulation contributed the largest performance enhancement. However, the relatively low visible light transmittance (VLT = 0.27) of the C5 system suggests a potential daylight–comfort trade-off that warrants further investigation. The study demonstrates the importance of integrating energy simulation with lifecycle assessment to identify glazing systems that balance energy efficiency, embodied carbon, and indoor environmental quality in hot–arid regions. Full article
(This article belongs to the Special Issue Built Environments and Environmental Buildings: 2nd Edition)
Show Figures

Figure 1

12 pages, 4571 KB  
Article
Micro-Raman Study of Chinese Iron-Based Brown Wares Produced During Song Dynasty (960–1279 CE): Probing Crystals in the Glazes
by Tian Wang, Zilong He, Senwei Xia, Philippe Sciau, Anding Shao, Zhao Ren, Fen Wang, Jianfeng Zhu, Ying Wang, Qiang Li and Hongjie Luo
Heritage 2025, 8(11), 480; https://doi.org/10.3390/heritage8110480 - 15 Nov 2025
Viewed by 393
Abstract
Brown glazed wares, as some of the famous Song wares, attract significant attention nowadays due to the glaze containing a large amount of metastable ε-Fe2O3, a promising multiple-functional electromagnetic material. In this work, typical fragments were systematically analyzed by [...] Read more.
Brown glazed wares, as some of the famous Song wares, attract significant attention nowadays due to the glaze containing a large amount of metastable ε-Fe2O3, a promising multiple-functional electromagnetic material. In this work, typical fragments were systematically analyzed by micro-Raman spectroscopy combined with scanning electron microscopy as well as X-ray fluorescence. Abundant ε-Fe2O3 crystals were observed in the glaze surfaces, with the exception of numerous hematite crystals detected in the surfaces of fragments excavated in Hunyuan kilns (Shanxi province). The correlative analyses of Raman and XRF data indicate that relatively high SiO2 and low CaO contents in the system may benefit ε-Fe2O3 precipitation, and the crystallization temperature may range from 1150 to 1200 °C. In addition, various crystals were detected in the glazes, including magnetite, magnesioferrite, zircon, anatase, pseudobrookite, rutile, cordierite, cristobalite, quartz, and mullite. Full article
Show Figures

Figure 1

23 pages, 6344 KB  
Article
Comprehensive Performance Analysis and Low-Carbon Retrofitting Strategies for an Existing 5A-Grade Office Building
by Zhangsu Jiang, Kuan Wang, Zengzhi Qian, Hongwei Fang, Daxing Zhou, Zhi Wang and Xilong Wang
Buildings 2025, 15(22), 4101; https://doi.org/10.3390/buildings15224101 - 14 Nov 2025
Viewed by 347
Abstract
This study presents a monitoring-calibrated, systems-level retrofit assessment for a 15-year-old Grade-A office building in Beijing, China (temperate monsoon climate). One year of continuous monitoring (2023–2024) was combined with calibrated multi-physics simulations (EnergyPlus/DesignBuilder, Radiance, representative CFD) to evaluate retrofit scenarios for lighting, envelope [...] Read more.
This study presents a monitoring-calibrated, systems-level retrofit assessment for a 15-year-old Grade-A office building in Beijing, China (temperate monsoon climate). One year of continuous monitoring (2023–2024) was combined with calibrated multi-physics simulations (EnergyPlus/DesignBuilder, Radiance, representative CFD) to evaluate retrofit scenarios for lighting, envelope and HVAC systems. Baseline EUI = 108 kWh·m−2·yr−1 (total site electricity ≈ 3,088,893 kWh·yr−1). HVAC accounted for ≈48% of site electricity. Key findings: (1) LED lighting retrofit delivered measured lighting savings of ~26.7% (simulated potential up to ~32.7%) but may increase cooling loads in some operating regimes (simulated +8.3%) if not coordinated with HVAC and envelope measures; (2) glazing upgrades and airtightness improvements materially increase HVAC savings; (3) a prioritized, phased retrofit (lighting → envelope → HVAC) can capture ~80–85% of integrated carbon reductions while lowering immediate CAPEX and business disruption; (4) scheduling major HVAC upgrades before the cooling season and envelope works during transitional months improves operational and economic outcomes. Calibration and uncertainty metrics are reported (annual energy error < 5%). Full article
(This article belongs to the Special Issue Advanced Technologies in Building Energy Saving and Carbon Reduction)
Show Figures

Figure 1

23 pages, 2423 KB  
Article
Development, Implementation, and Experimental Validation of a Novel Thermal–Optical–Electrical Model for Photovoltaic Glazing
by Juan Luis Foncubierta Blázquez, Jesús Daniel Mena Baladés, Irene Sánchez Orihuela, María Jesús Jiménez Come and Gabriel González Siles
Appl. Sci. 2025, 15(22), 12041; https://doi.org/10.3390/app152212041 - 12 Nov 2025
Viewed by 329
Abstract
The use of semi-transparent photovoltaic (Solar PV) glass in buildings is an effective strategy for integrating renewable energy generation, solar control, and thermal comfort. However, conventional simulation models rely on global optical properties, neglecting spectral radiation and its propagation within the material. This [...] Read more.
The use of semi-transparent photovoltaic (Solar PV) glass in buildings is an effective strategy for integrating renewable energy generation, solar control, and thermal comfort. However, conventional simulation models rely on global optical properties, neglecting spectral radiation and its propagation within the material. This limits the accurate assessment of thermal comfort, light distribution, and performance in complex systems such as multi-layer glazing. This study presents the development, implementation, and experimental validation of a numerical model that reproduces the thermal, electrical, and optical behaviour of semi-transparent Solar PV glass, explicitly incorporating radiative transfer. The model simultaneously solves the conduction, convection, and electrical generation equations together with the radiative transfer equation, solved via the finite volume method across two spectral bands. The refractive index and extinction coefficient, derived from manufacturer-provided optical data, were used as inputs. Experimental validation employed 10% semi-transparent a-Si glass, comparing surface temperatures and electrical power generation. The model achieved average relative errors of 3.8% for temperature and 3.3% for electrical power. Comparisons with representative literature models yielded errors between 6% and 21%. Additionally, the proposed model estimated a solar factor of 0.32, closely matching the manufacturer’s 0.29. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

19 pages, 5509 KB  
Article
Application of Multi-Sensor Data Fusion and Machine Learning for Early Warning of Cambrian Limestone Water Hazards
by Hang Li, Yijia Li, Wantong Lin, Huaixiang Yang and Kefeng Liu
Sensors 2025, 25(22), 6854; https://doi.org/10.3390/s25226854 - 10 Nov 2025
Viewed by 457
Abstract
The issue of water disasters in the mining floor is extremely severe. Despite significant progress in the on-site monitoring and identification of water inrush channels, research on the spatial development characteristics of cracks and the temporal evolution patterns remains insufficient, resulting in the [...] Read more.
The issue of water disasters in the mining floor is extremely severe. Despite significant progress in the on-site monitoring and identification of water inrush channels, research on the spatial development characteristics of cracks and the temporal evolution patterns remains insufficient, resulting in the incomplete development of microseismic-based water disaster early warning theory and practice. Based on this, the present study first derives the expressions for the diameter and length of water inrush channels according to the damage characteristics of microseismic events and the glazed porcelain shape features of the channels. A theoretical model for the correlation between microseismic-water inrush volume is established, and the relationship between microseismic and water level is revealed. Analysis of field monitoring data further indicates that when high-energy microseismic features (such as single high-energy events and higher daily cumulative energy) are detected, the aquifer water level begins to decline, followed by high water inrush events. Therefore, a decrease in water level accompanied by high-energy microseismic features can serve as an important early warning marker for water disasters. Finally, advanced machine learning methods are applied, in which the optimal index combination for floor water inrush prediction is obtained through the genetic algorithm, and the weights of each index are determined by integrating the analytic hierarchy process with the random forest model. Field engineering verification demonstrates that the integrated early warning system performs significantly better than any single monitoring indicator, and all high-water-inrush events are successfully predicted within four days. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 4924 KB  
Article
Thermal Performance Evaluation of Phase Change Material-Integrated Triple-Glazed Windows Under Korean Climatic Conditions
by Kwanghyun Song, Ruda Lee, Dongsu Kim, Jongho Yoon and Dongho Shin
Energies 2025, 18(21), 5754; https://doi.org/10.3390/en18215754 - 31 Oct 2025
Cited by 1 | Viewed by 441
Abstract
Passive design strategies incorporating phase change materials (PCM) provide effective thermal energy storage, improve indoor comfort, and reduce building energy demand. This study aimed to evaluate the effectiveness of partially filled PCM glazing systems in stabilizing indoor thermal comfort under Korean climate conditions, [...] Read more.
Passive design strategies incorporating phase change materials (PCM) provide effective thermal energy storage, improve indoor comfort, and reduce building energy demand. This study aimed to evaluate the effectiveness of partially filled PCM glazing systems in stabilizing indoor thermal comfort under Korean climate conditions, testing the hypothesis that partial integration can provide meaningful diurnal temperature regulation without compromising daylight access. Indoor air, interior and exterior glazing surfaces, and the PCM layer were monitored to evaluate heat transfer, while EnergyPlus simulations extended the analysis to seasonal conditions. The PCM model was developed using the Conduction Finite Difference (CondFD) algorithm and validated against experimental data, reliably reproducing dynamic phase change behavior. Field tests with a 28 °C PCM showed reductions in indoor peak temperatures of about 2.0 °C during daytime and increases of 1.5 °C at night. Under broader climatic simulations, the same PCM achieved up to 3.7 °C daytime reductions and 2.0 °C nighttime increases, depending on outdoor conditions. These findings highlight the potential of PCM-integrated glazing systems for adaptive thermal regulation in Korean climates and suggest broader applicability for passive cooling and heating strategies in buildings facing increasingly variable weather conditions. Full article
Show Figures

Figure 1

Back to TopTop