Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = glass soiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

21 pages, 4076 KiB  
Article
Tissue Paper-Based Hydrogels for Soil Water Maintenance and Nitrogen Release
by Ana Carla Kuneski, Hima Haridevan, Elena Ninkovic, Ena McLeary, Darren Martin and Gunnar Kirchhof
Gels 2025, 11(8), 599; https://doi.org/10.3390/gels11080599 - 1 Aug 2025
Viewed by 164
Abstract
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced [...] Read more.
Hydrogels are widely known for their ability to increase soil water retention and for their potential slow nutrient release mechanism. They have been constantly improved to meet the growing demand for sustainability in agriculture. Research focused on the development of biodegradable hydrogels, produced from industrial cellulose waste, are an ecological and efficient alternative soil ameliorant for the improvement of agricultural land. The objective of this study was to evaluate the impacts of two types of hydrogel (processed in a glass reactor versus a twin-screw extruder) on soils with different textures (clay and sandy loam), testing their water retention capacity, nitrogen leaching, and effects on seed germination. The methodology included the evaluation of water retention capacity at different pressures with different hydrogel addition rates in the soil, leaching tests in columns filled with soil and hydrogel layers, and germination tests of sorghum and corn. The results indicated that the addition of hydrogel significantly improved water retention, especially in sandy loam soils. The hydrogels also reduced nitrogen leaching, acting as nitrification inhibitors and limiting the conversion of ammonium to nitrate, with greater effectiveness in clayey soils. In the tested formulations, it was observed that the hydrogel doses applied to the columns favored nitrogen retention in the region close to the roots, directly influencing the initial stages of germination. This behavior highlights the potential of hydrogels as tools for directing nutrients in the soil profile, indicating that adjustments to the C:N ratio, nutrient release rate, and applied doses can optimize their application for different crops. Full article
Show Figures

Figure 1

23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 261
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 218
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

18 pages, 2459 KiB  
Article
A Comprehensive Study on the Assessment of CaCO3-, Nano-CaCO3-, and Glass Fiber Chopped Strand (GFCS)-Treated Clay in Terms of Bearing Capacity and Settlement Enhancements
by Baki Bağrıaçık, Barış Mahmutluoğlu and Abdulkadir Ürünveren
Appl. Sci. 2025, 15(14), 7779; https://doi.org/10.3390/app15147779 - 11 Jul 2025
Viewed by 251
Abstract
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil [...] Read more.
Nanomaterials have been one of the latest trends used by geotechnical engineers for improving insufficient soil criteria. This study aims to assess the usability of CaCO3, nano-CaCO3 and Glass Fiber Chopped Strands (GFCSs) in the improvement procedures for clay soil media by performing traditional and laboratory model experiments. Clay samples mixed with CaCO3 at 5%, nano-CaCO3 at 0.75% and GFCSs at 2.0% separately provided 1.49, 1.68 and 1.86 times increments in the bearing capacity values in comparison with plain clay, respectively. Mixtures of clay, GFCSs at 1.5% and nano-CaCO3 at 0.75% enabled the most optimal result of 2.58 times improved bearing capacities. Curing durations had a significant effect on increasing the bonding between nano-CaCO3 and clay which led to further improved conditions. Settlement enhancements of up to 6.80% were recorded for the mixtures of nano-CaCO3, GFCSs and clay as well. Thus, improvements were reached in terms of bearing capacity and settlements along with the applicability and economy of the related procedures, of which the details can be seen in the following sections of this study. Full article
Show Figures

Figure 1

18 pages, 2438 KiB  
Article
Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects
by Yueyang Xu, Bangzheng Jiang, Kai Zhang, Gang Zhang, Hao Jin, Jun Zhao, Xing Zhou, Li Xie and Hui Zhang
Coatings 2025, 15(7), 782; https://doi.org/10.3390/coatings15070782 - 2 Jul 2025
Viewed by 275
Abstract
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be [...] Read more.
Because the loess widely used in the channel water conservancy projects in the Loess Plateau has a loose structure, low mechanical strength, and is prone to collapse when immersed in water, its comprehensive properties, such as structural strength and water resistance, must be greatly improved. Based on our previous work on the modification of Aga soil in Tibet, China, this study added hydrophobic n-dodecyltrimethoxysilane (WD10) to water glass solution (the main components are potassium silicate (K2SiO3) and silicic acid (H2SiO3) gel, referred to as PS) to obtain a composite coating PS-WD10, which was sprayed on the surface of loess blocks to achieve a full consolidation effect. We not only systematically investigated the morphology, chemical composition, and consolidation mechanism of the composite coating but also conducted in-depth and detailed research on its application performance such as friction resistance (structural strength), hydrophobicity, resistance to pure water and salt water immersion, and resistance to freeze–thaw cycles. The results showed that the PS-WD10 composite coating had better consolidation performance for loess blocks than the single coating of PS solution and WD10. For the loess block samples coated with the composite coatings, after 50 friction cycles, the weight loss rate was less than 15 wt%, and the water contact angle was above 120°. The main reason is that the good permeability of the PS solution and the excellent hydrophobicity of WD10 produce a good synergistic effect. The loess blocks coated with this composite coating are expected to replace traditional functional materials for water conservancy projects, such as cement and lime, in silt dam water conservancy projects, and also have better environmental protection and sustainability. Full article
Show Figures

Figure 1

22 pages, 1380 KiB  
Review
Carbon Mineralization in Basaltic Rocks: Mechanisms, Applications, and Prospects for Permanent CO2 Sequestration
by Ernest Ansah Owusu, Jiyue Wu, Elizabeth Akonobea Appiah, William Apau Marfo, Na Yuan, Xiaojing Ge, Kegang Ling and Sai Wang
Energies 2025, 18(13), 3489; https://doi.org/10.3390/en18133489 - 2 Jul 2025
Viewed by 665
Abstract
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an [...] Read more.
Basalt is prevalent in the Earth’s crust and makes up about 90% of all volcanic rocks. The earth is warming at an alarming rate, and there is a search for a long-term solution to this problem. Geologic carbon storage in basalt offers an effective and durable solution for carbon dioxide sequestration. Basaltic rocks are widely used for road and building construction and insulation, soil amendment, and in carbon storage. There is a need to understand the parameters that affect this process in order to achieve efficient carbon mineralization. This review systematically analyzes peer-reviewed studies and project reports published over the past two decades to assess the mechanisms, effectiveness, and challenges of carbon mineralization in basaltic formations. Key factors such as mineral composition, pH, temperature and pressure are evaluated for their impact on mineral dissolution and carbonate precipitation kinetics. The presence of olivine and basaltic glass also accelerates cation release and carbonation rates. The review includes case studies from major field projects (e.g., CarbFix and Wallula) and laboratory experiments to illustrate how mineralization performs in different geological environments. It is essential to maximize mineralization kinetics while ensuring the formation of stable carbonate phases in order to achieve efficient and permanent carbon dioxide storage in basaltic rock. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

15 pages, 1914 KiB  
Article
Derivatization of PVA into Polyols Suitable for Fabrication of Rigid Polyurethane Foams—Preliminary Studies and Perspectives
by Jacek Lubczak
Materials 2025, 18(12), 2780; https://doi.org/10.3390/ma18122780 - 12 Jun 2025
Viewed by 468
Abstract
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used [...] Read more.
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used to dissolve and convert PVA into liquid polyol. The physical properties of the PVA-derived polyol, such as the density, viscosity, and surface tension, were determined. The polyol was then used to obtain rigid polyurethane foams (PUFs). Foaming conditions were optimized, and the apparent density, volume water uptake, dimensional stability, heat conductance coefficient, pore size, thermal resistance, compressive strength, and glass transition temperature of the obtained PUFs were determined. The properties of the obtained PUFs were similar to those of classic rigid PUFs, but the thermal resistance of the former is better. Specifically, PVA-derived PUFs are thermally resistant at temperatures of up to 150 °C. Furthermore, they are ecologically safe; in standard soil conditions, 54.6% or 100% biodegradation of the foams in cube and powder form, respectively, was observed, as measured by BOD after 28 days of storage. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Graphical abstract

24 pages, 3644 KiB  
Article
Experimental Stabilization of Clay Soils in Cartagena de Indias Colombia: Influence of Porosity/Binder Index
by Jair de Jesús Arrieta Baldovino, Ramon Torres Ortega and Yamid E. Nuñez de la Rosa
Appl. Sci. 2025, 15(11), 5895; https://doi.org/10.3390/app15115895 - 23 May 2025
Viewed by 430
Abstract
In response to the need for sustainable soil stabilization alternatives, this study explores the use of waste materials and biopolymers to improve the mechanical behavior of clay from Cartagena, Colombia. Crushed limestone waste (CLW), ground glass powder (GG), recycled gypsum (GY), xanthan gum [...] Read more.
In response to the need for sustainable soil stabilization alternatives, this study explores the use of waste materials and biopolymers to improve the mechanical behavior of clay from Cartagena, Colombia. Crushed limestone waste (CLW), ground glass powder (GG), recycled gypsum (GY), xanthan gum (XG), and the combination of XG with polypropylene fibers (XG–PPF) were used as stabilizing agents. Samples were compacted at different dry densities and cured for 28 days. Unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were conducted to assess the strength and stiffness of the treated mixtures. Results were normalized using the porosity/binder index (η/Biv), leading to predictive equations with high determination coefficients (R2 = 0.94 for UCS and R2 = 0.96 for stiffness). However, XG-treated mixtures exhibited distinct behavior that prevented their inclusion in a unified predictive model, as the fitted exponent x in the porosity/binder index (η/Bivx) differed markedly from the others. While an exponent of 0.28 was suitable for blends with mineral binders, the optimal x values for XG and XG–PPF mixtures were significantly lower at 0.02 and 0.03, respectively, reflecting their unique gel-like and fiber-reinforced characteristics. The analysis of variance (ANOVA) identified cement content and compaction density as the most influential factors, while some interactions involving the residues were not statistically significant, despite aligning with experimental trends. The findings support the technical viability of using sustainable additives to enhance soil properties with reduced environmental impact. Full article
Show Figures

Figure 1

14 pages, 2832 KiB  
Article
Novel Solid-Phase Bioassay Kit with Immobilized Chlorella vulgaris Spheres for Assessing Heavy Metal and Cyanide Toxicity in Soil
by Fida Hussain, Suleman Shahzad, Syed Ejaz Hussain Mehdi, Aparna Sharma, Sandesh Pandey, Woochang Kang and Sang-Eun Oh
Chemosensors 2025, 13(6), 193; https://doi.org/10.3390/chemosensors13060193 - 22 May 2025
Viewed by 672
Abstract
Heavy metal and cyanide contamination in soil presents serious environmental and ecological concerns due to their persistence, bioavailability, and toxicity to soil biota. In this study, a novel solid-phase direct contact bioassay kit was developed using immobilized Chlorella vulgaris spheres to evaluate the [...] Read more.
Heavy metal and cyanide contamination in soil presents serious environmental and ecological concerns due to their persistence, bioavailability, and toxicity to soil biota. In this study, a novel solid-phase direct contact bioassay kit was developed using immobilized Chlorella vulgaris spheres to evaluate the toxicity of soils contaminated with mercury (Hg2+), silver (Ag+), copper (Cu2+), and cyanide (CN). The assay was designed using 25 mL glass vials in which algal spheres were directly exposed to spiked soils for 72 h without the need for pollutant extraction. Oxygen evolution in the headspace was measured as the primary endpoint, alongside optical density and chlorophyll a fluorescence (OJIP) to assess photosynthetic inhibition. The assay demonstrated high sensitivity and reproducibility, with strong correlations (R2 > 0.93) between oxygen evolution and optical density. EC50 values based on oxygen evolution were 4.43, 4.18, 3.10, and 61.3 mg/kg for Hg2+, Ag+, CN, and Cu2+, respectively, and 7.8, 7.4, 2.9, and 29.7 mg/kg based on optical density. The relatively higher EC50 for copper was attributed to its biological role as an essential micronutrient. OJIP transient profiles supported the observed photosynthetic inhibition, particularly under Hg2+, Ag+, and CN exposure. The present study overcomes the limitations of conventional chemical analyses by providing a rapid, low-cost, and ecologically relevant tool for direct soil toxicity assessment, with potential applications in environmental monitoring and contaminated site evaluation. Full article
(This article belongs to the Special Issue Electrochemical Sensors and Biosensors for Environmental Detection)
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
A Poly(Acrylamide-co-Acrylic Acid)-Encapsulated Nitrification Inhibitor with Good Soil-Loosening, Phosphorous-Solubilizing, and Nitrogen Fixation Abilities and High-Temperature Resistance
by Hui Gao, Yuli Fu, Tianyu Wang, Meijia Liu, Jianzhen Mao and Feng Xu
Polymers 2025, 17(9), 1280; https://doi.org/10.3390/polym17091280 - 7 May 2025
Viewed by 343
Abstract
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA- [...] Read more.
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA-co-AM)-e-NI) is synthesized by incorporating linear P(AM-co-AA) macromolecular structures into NI systems. The P(AA-co-AM)-e-NI demonstrates an obvious phase transition from a glassy state to a rubbery state, with a glass transition temperature of ~150 °C. Only 5 wt% of the weight loss occurs at 220 °C, meeting the temperature requirements of the high-tower melt granulation process (≥165 °C). The DMPZ content in P(AA-co-AM)-e-NI is 1.067 wt%, representing a 120% increase compared to our previous products (0.484 wt%). P(AA-co-AM)-e-NI can effectively reduce the abundance of ammonia-oxidizing bacteria and prolong the duration during which nitrogen fertilizers exist in the form of ammonium nitrogen. It can also cooperatively enhance the conversion of insoluble phosphorus into soluble phosphorus in the presence of ammonium nitrogen (NH4+-N). In addition, upon adding P(AA-co-AM)-e-NI into soils, soil bulk density and hardness decrease by 9.2% and 10.5%, respectively, and soil permeability increases by 10.5%, showing that it has a good soil-loosening ability and capacity to regulate the soil environment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 8222 KiB  
Article
Multifunctional 3D-Printable Photocurable Elastomer with Self-Healing Capability Derived from Waste Cooking Oil
by Pengyu Wang, Jiahui Sun, Mengyu Liu, Chuanyang Tang, Yang Yang, Guanzhi Ding, Qing Liu and Shuoping Chen
Molecules 2025, 30(8), 1824; https://doi.org/10.3390/molecules30081824 - 18 Apr 2025
Viewed by 522
Abstract
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening [...] Read more.
This study presents a sustainable approach to transform waste cooking oil (WCO) into a multifunctional 3D-printable photocurable elastomer with integrated self-healing capabilities. A linear monomer, WCO-based methacrylate fatty acid ethyl ester (WMFAEE), was synthesized via a sequential strategy of transesterification, epoxidation, and ring-opening esterification. By copolymerizing WMFAEE with hydroxypropyl acrylate (HPA), a novel photocurable elastomer was developed, which could be amenable to molding using an LCD light-curing 3D printer. The resulting WMFAEE-HPA elastomer exhibits exceptional mechanical flexibility (elongation at break: 645.09%) and autonomous room-temperature self-healing properties, achieving 57.82% recovery of elongation after 24 h at 25 °C. Furthermore, the material demonstrates weldability (19.97% retained elongation after 12 h at 80 °C) and physical reprocessability (7.75% elongation retention after initial reprocessing). Additional functionalities include pressure-sensitive adhesion (interfacial toughness: 70.06 J/m2 on glass), thermally triggered shape memory behavior (fixed at −25 °C with reversible deformation/recovery at ambient conditions), and notable biodegradability (13.25% mass loss after 45-day soil burial). Molecular simulations reveal that the unique structure of the WMFAEE monomer enables a dual mechanism of autonomous self-healing at room temperature without external stimuli: chain diffusion and entanglement-driven gap closure, followed by hydrogen bond-mediated network reorganization. Furthermore, the synergy between monomer chain diffusion/entanglement and dynamic hydrogen bond reorganization allows the WMFAEE-HPA system to achieve a balance of multifunctional integration. Moreover, the integration of these multifunctional attributes highlights the potential of this WCO-derived photocurable elastomer for various possible 3D printing applications, such as flexible electronics, adaptive robotics, environmentally benign adhesives, and so on. It also establishes a paradigm for converting low-cost biowastes into high-performance smart materials through precision molecular engineering. Full article
Show Figures

Graphical abstract

32 pages, 20574 KiB  
Article
Alteration of Sulfur-Bearing Silicate–Phosphate (Agri)Glasses in Soil Environment: Chemical Interactions and Biological Response
by Anna Berezicka, Agnieszka Wojteczko, Justyna Sułowska and Magdalena Szumera
Molecules 2025, 30(8), 1790; https://doi.org/10.3390/molecules30081790 - 16 Apr 2025
Viewed by 488
Abstract
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to [...] Read more.
Glasses exposed to soil environments are of interest across various scientific fields, from nuclear waste containment to archaeological preservation and nutrient-delivery systems for plants. While immersion experiments provide valuable insights into the ion release kinetics in root- and microbe-exuded solutions, they fail to replicate the complexities of nutrient leaching in real soil conditions. To address this, the degradation behavior of nutrient-bearing glasses (41SiO2·6(10)P2O5·20K2O·33(29)MgO/CaO/MgO + CaO) with increasing sulfate contents was investigated through a soil incubation experiment simulating Central European weather variability. A comprehensive approach, combining SEM observations and EDS semi-quantitative analysis, revealed that acidic peat strongly promoted ion exchange, where protons from the medium replaced network cations. The glass composition played a crucial role in the fracture behavior: sulfate incorporation increased the network rigidity, making the glasses more prone to mechanical degradation and accelerating the reaction front advancement. The P2O5 content was also a key factor in modulating the reactivity, with higher concentrations intensifying interactions with the soil medium. Limited water availability accelerated the solution saturation, leading to secondary phase precipitation and temporary nutrient immobilization. These findings demonstrate that glass reactivity can be fine-tuned through composition adjustments and highlight the dynamic nature of glass–soil interactions, including seasonal variations in nutrient release under acidic conditions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Graphical abstract

40 pages, 8843 KiB  
Article
Alteration of Sulfur-Bearing Silicate-Phosphate (Agri)Glasses in Soil Environment: Structural Characterization and Chemical Reactivity of Fertilizer Glasses: Insights from ‘In Vitro’ Studies
by Anna Berezicka, Justyna Sułowska and Magdalena Szumera
Molecules 2025, 30(8), 1684; https://doi.org/10.3390/molecules30081684 - 9 Apr 2025
Cited by 1 | Viewed by 533
Abstract
Vitreous carriers of essential nutrients should release elements in response to plant demand, minimizing over-fertilization risks. This study focused on designing and characterizing sulfate-bearing slow-release fertilizers based on four glass series (41SiO2∙6(10)P2O5∙20K2O–33(29)MgO/CaO/MgO + CaO) with [...] Read more.
Vitreous carriers of essential nutrients should release elements in response to plant demand, minimizing over-fertilization risks. This study focused on designing and characterizing sulfate-bearing slow-release fertilizers based on four glass series (41SiO2∙6(10)P2O5∙20K2O–33(29)MgO/CaO/MgO + CaO) with increasing sulfate content. Structural analysis identified a network dominated by QSi2 units, with some QSi3 species and isolated QP0 units. This fragmented structure resulted in high solubility in acidic environments while maintaining water resistance. Such dual behavior is a direct consequence of the delicate balance between depolymerized silicate chains and isolated orthophosphate units, which ensure rapid ion exchange under acidic conditions while preventing uncontrolled leaching in neutral media. Nutrient leaching depended on SO3 content, affecting matrix rigidity, and on the type of alkaline earth modifier and P2O5 content. Dissolution kinetics showed an initial rapid release phase, followed by stabilization governed by silicate hydrolysis. Thermal analysis linked network flexibility to dissolution behavior—CaO promoted an open structure with high SiO2 release, MgO increased rigidity, while their co-addition reduced ion diffusion and silica dissolution. The thermal behavior of the glasses provided indirect insight into their structural rigidity, revealing how compositional variations influence the mechanical stability of the network. This structural rigidity, inferred from glass transition and crystallization phenomena, was found to correlate with the selective dissolution profiles observed in acidic versus neutral environments. These results reveal complex interactions between composition, structure, and nutrient release, shaping the agricultural potential of these glasses. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Graphical abstract

18 pages, 9061 KiB  
Article
Preparation and Performance Optimization of Lead–Zinc Tailing Sintered Bricks
by Dongliang He, Yanhui Cheng, Rui Li and Hang Lin
Materials 2025, 18(6), 1381; https://doi.org/10.3390/ma18061381 - 20 Mar 2025
Cited by 1 | Viewed by 503
Abstract
Lead–zinc tailings are waste materials generated from mineral processing and smelting, and their long-term accumulation poses potential threats to the environment and soil. To achieve resource recycling and sustainable development, this study used lead–zinc tailings and clay as raw materials and glass powder [...] Read more.
Lead–zinc tailings are waste materials generated from mineral processing and smelting, and their long-term accumulation poses potential threats to the environment and soil. To achieve resource recycling and sustainable development, this study used lead–zinc tailings and clay as raw materials and glass powder as a modifier to prepare modified lead–zinc tailing sintered bricks. Through full-factor experiments and single-factor experiments, the effects of the material proportions, the sintering temperature, and the holding time on the properties of the sintered bricks were investigated. The results show that the addition of glass powder significantly enhanced the compressive strength of the sintered bricks, reduced their water absorption rate, and improved their volume shrinkage rate. The optimal preparation conditions were as follows: 9% glass powder content, 90% lead–zinc tailings content, a sintering temperature of 1060 °C, and a holding time of 60 min. The resulting sintered bricks met the MU30-strength-grade requirements of the national standard for ordinary sintered bricks (GB/T5101-2017). The sintering temperature has a significant impact on brick performance; the compressive strength first increases, and then decreases, the water absorption rate continues to decrease, and volume change shifts from expansion to contraction. The influence of holding time was relatively weaker, but as the holding time increased, the compressive strength and the water absorption rate of the sintered bricks gradually stabilized. XRD and SEM analyses indicated that the minerals in the lead–zinc tailings decomposed and recrystallized during the sintering process. The liquid phase melt from the glass powder filled the pores and enhanced skeletal strength, thereby improving the microstructure and properties of the sintered bricks. The research findings provide a theoretical basis and practical guidance for the efficient utilization and building material application of lead–zinc tailings. Full article
Show Figures

Figure 1

Back to TopTop