Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects
Abstract
1. Introduction
2. Experimental Part
2.1. Preparation of Loess Block Samples
2.2. Preparation of Composite Coatings and Coating Process of Loess Block Samples
2.3. Basic Performance Tests of Loess Block Samples
2.3.1. Determination of Moisture Content of the Loess Samples Collected in the Field
2.3.2. Particle Size Test of Loess Particle Samples
2.3.3. Determination of Chemical Composition of Loess Particle Samples
2.3.4. Surface Morphology Observation of Loess Block Samples
2.3.5. X-Ray Diffractometry (XRD) Test of Loess Block Samples
2.3.6. Fourier Transform Infrared Spectroscopy (FTIR) Test of Loess Block Samples
2.3.7. Thermal Stability Test of Loess Block Samples
2.4. Application Performance Tests of Loess Block Samples
2.4.1. Penetration Test of Coating on Loess Block Samples
2.4.2. Hydrophobicity Test of Loess Block Samples
2.4.3. Abrasion Resistance (Structural Strength) Test of Loess Block Samples
2.4.4. Salt Water Resistance Test of Loess Block Samples
2.4.5. Water Resistance Test of Loess Block Samples
2.4.6. Freeze–Thaw Resistance Test of Loess Block Samples
3. Results and Discussion
3.1. Basic Properties of Loess Particles
3.2. Improvement of Structural Strength and Hydrophobicity of Loess Block Samples by Surface Coating
3.3. Improvement of Practical Performance of Loess Block Samples by Surface Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costantini, E.A.; Carnicelli, S.; Sauer, D.; Priori, S.; Andreetta, A.; Kadereit, A.; Lorenzetti, R. Loess in Italy: Genesis, characteristics and occurrence. Catena 2018, 168, 14–33. [Google Scholar] [CrossRef]
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Amiri, O.; Levacher, D.; Deneele, D. Effect of fly ash on microstructural and resistance characteristics of dredged sediment stabilized with lime and cement. Constr. Build. Mater. 2021, 272, 121637. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr. Build. Mater. 2020, 231, 117195. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Li, N.; Zhou, L.; Pu, S.; Wang, W. Strength properties and microscopic mechanism of lime and fly ash modified expandable poly styrene lightweight soil reinforced by polypropylene fiber. Case Stud. Constr. Mater. 2022, 17, e01250. [Google Scholar] [CrossRef]
- Romero-Diaz, A.; Marin-Sanleandro, P.; Ortiz-Silla, R. Loss of soil fertility estimated from sediment trapped in check dams. South-eastern Spain. Catena 2012, 99, 42–53. [Google Scholar] [CrossRef]
- Galicia, S.; Navarro-Hevia, J.; Martínez-Rodríguez, A.; Mongil-Manso, J.; Santibáñez, J. ‘Green’, rammed earth check dams: A proposal to restore gullies under low rainfall erosivity and runoff conditions. Sci. Total Environ. 2019, 676, 584–594. [Google Scholar] [CrossRef]
- Xu, P.; Qian, H.; Zhang, Q.; Zheng, L. Exploring the saturated permeability of remolded loess under inorganic salt solution seepage. Eng. Geol. 2021, 294, 106354. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, Q.; Qian, H.; Li, M.; Yang, F. An investigation into the relationship between saturated permeability and microstructure of remolded loess: A case study from Chinese Loess Plateau. Geoderma 2021, 382, 114774. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, H.; Hou, K.; Qu, W. Investigating and predicting the temperature effects of permeability for loess. Eng. Geol. 2021, 285, 106050. [Google Scholar] [CrossRef]
- Xu, P.; Qian, H.; Zhang, Q.; Shang, J.; Guo, Y.; Li, M. Response mechanism of permeability change of remolded loess to seepage parameters. J. Hydrol. 2022, 612, 128224. [Google Scholar] [CrossRef]
- Yang, H.; Xie, W.; Liu, Q.; Zhu, R.; Liu, Y. Three-stage collapsibility evolution of Malan loess in the Loess Plateau. Catena 2022, 217, 106482. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, X.; Huang, H.; Liu, D.; Hui, X. Study on permeability and collapsibility characteristics of sandy loess in northern Loess Plateau, China. J. Hydrol. 2021, 603, 126883. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X.; Wang, L.; Li, L.; Shi, J.; Bi, M. A new approach to evaluation of loess collapsibility based on quantitative analyses of colloid-clay coating with statistical methods. Eng. Geol. 2021, 288, 106167. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Chen, R.; Wang, H.; Xia, J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. J. Environ. Manag. 2022, 301, 113883. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, C.; Pan, X.; Liu, B.; Xie, Y.; Cheng, Q.; Shi, B. Application of microbial induced carbonate precipitation for loess surface erosion control. Eng. Geol. 2021, 294, 106387. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Zhao, C.; Zhang, L.; Zhang, Q.; Fu, H.; Cao, S. Loess erosion change modeling during heavy rainfall, International. J. Sediment Res. 2023, 38, 24–32. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, D.; Wang, S.; Liang, C.; Zhao, D. Dynamic-response characteristics and deformation evolution of loess slopes under seismic loads. Eng. Geol. 2020, 267, 105507. [Google Scholar] [CrossRef]
- Li, Y. A review of shear and tensile strengths of the Malan Loess in China. Eng. Geol. 2018, 236, 4–10. [Google Scholar] [CrossRef]
- Wang, J.; Gu, T.; Zhang, M.; Xu, Y.; Kong, J. Experimental study of loess disintegration characteristics. Earth Surf. Process. Landf. 2019, 44, 1317–1329. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Yan, Y.; Hong, B.; Li, L. Experimental study on the disintegration of loess in the Loess Plateau of China. Bull. Eng. Geol. Environ. 2019, 78, 4907–4918. [Google Scholar] [CrossRef]
- Lin, H.; Wang, J.; Xu, Y. Synergistic effects and mechanism of locomotive vibration and chemical dissolution on loess disintegration. J. Soils Sediments 2022, 22, 3106–3118. [Google Scholar] [CrossRef]
- Li, H.; Yang, M.; Guo, X. Study of the disintegration of loess modified with fly ash and Roadyes. Sci. Rep. 2023, 13, 7253. [Google Scholar] [CrossRef]
- Axel, M.; Li, X.; Wen, F.; An, M. Microstructure and strength parameters of cement-stabilized loess. Geotechnics 2023, 3, 161–178. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, C.; Wang, C.; Wang, Y.; Wang, L. Study on mechanical properties of permeable polymer treated loess. Materials 2022, 15, 6647. [Google Scholar] [CrossRef]
- Dassekpo, J.-B.M.; Zha, X.; Zhan, J. Synthesis reaction and compressive strength behavior of loess-fly ash based geopolymers for the development of sustainable green materials. Constr. Build. Mater. 2017, 141, 491–500. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Y.; Pei, X.; Duan, Y. A cross-linked polymer soil stabilizer for hillslope conservation on the Loess Plateau. Front. Earth Sci. 2021, 9, 771316. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Y.; Zhang, Y.; Yan, M. Study on the differential disintegration mechanism of water glass cured sandy soil: Analysis from the perspective of the coexistence state of gel and particles. Acta Geotech. 2024, 19, 2191–2212. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Huang, J.; Chen, G. Mechanical properties, microstructure and consolidation of sand modified with sodium silicate. Eng. Geol. 2022, 310, 106875. [Google Scholar] [CrossRef]
- Yu, X.; Lu, H.; Peng, J.; Ren, J.; Wang, Y.; Chen, J. Modified lignin-based cement solidifying material for improving engineering residual soil. Materials 2023, 16, 7100. [Google Scholar] [CrossRef]
- Kuang, L.; Li, G.; Xiang, J.; Ma, W.; Cui, X. Effect of seawater on the properties and microstructure of metakaolin/slag-based geopolymers. Constr. Build. Mater. 2023, 397, 132418. [Google Scholar] [CrossRef]
- Li, J.; Du, M.; Cheng, Y.; Wang, S.; Chen, J.; Hu, S.; Zhang, H.; Zhang, H. Condensation and hydrophobicity of the surface hydroxyl groups between organosilane modified water glass and microsilica. Ceram. Int. 2023, 49, 21278–21286. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, W. Effect of spent waterglass foundry sand on the performance of MgO-activated slag materials. Front. Mater. 2023, 10, 1207246. [Google Scholar] [CrossRef]
- Fei, M.; Fu, W.; Zheng, X.; Chen, Y.; Liu, W.; Qiu, R. Enhancing cement composite interface with waterglass modification on bamboo fiber: A viable and effective approach. Constr. Build. Mater. 2024, 411, 134338. [Google Scholar] [CrossRef]
- Jiang, F.; Hao, Y.; Wu, H.; Liu, Y.; Wang, Z.; Tan, B.; Zhang, C.; Lan, M. Study on damage degradation and radon emission from uranium tailing polymer-solidified soil under freeze-thaw cycles. J. Radioanal. Nucl. Chem. 2022, 331, 1573–1583. [Google Scholar] [CrossRef]
- Duan, X.; Xiao, D.; Zou, Y.; Dong, Q.; Ye, W.; Tang, L. Permeability characteristics and mechanism of silicone-hydrophobic-powder-modified compacted loess. Sustainability 2023, 15, 6606. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J. TEOS modified with PMHS as consolidating coating to improve the strength and hydrophobicity of earthen structures. Constr. Build. Mater. 2022, 322, 126165. [Google Scholar] [CrossRef]
- Li, X.; Ma, Q.; Ji, Y.; Cheng, K.; Sun, Z. Study on the improvement of waterproof performance of historical silt sites with silicone waterproofing agent. Coatings 2022, 12, 1162. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Jiang, Z.; Zhang, L.; Xue, X.; Zhang, Z. Water-proof organosilicon coating for Aga soil in Tibet. Synth. Mater. Aging Appl. 2021, 50, 1–6+13. (In Chinese) [Google Scholar]
- Nadaraia, K.V.; Suchkov, S.N.; Imshinetskiy, I.M.; Mashtalyar, D.V.; Kosianov, D.Y.; Belov, E.A.; Sinebryukhov, S.L.; Gnedenkov, S.V. New superhydrophobic composite coatings on Mg-Mn-Ce magnesium alloy. J. Magnes. Alloys 2023, 11, 1721–1739. [Google Scholar] [CrossRef]
- Paquet, O.; Salon, M.-C.B.; Zeno, E.; Belgacem, M.N. Hydrolysis-condensation kinetics of 3-(2-amino-ethylamino)propyl-trimethoxysilane. Mater. Sci. Eng. C 2012, 32, 487–493. [Google Scholar] [CrossRef]
- Salon, M.-C.B.; Belgacem, M.N. Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 147–154. [Google Scholar] [CrossRef]
- Mu, Q.Y.; Zhou, C.; Ng, C.W.W. Compression and wetting induced volumetric behavior of loess: Macro- and micro-investigations. Transp. Geotech. 2020, 23, 100345. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Dong, Y.; Lv, Y.; Wang, D.; Qi, L. Mechanical properties and microstructure characteristics of the loess modified by the consolid system. Adv. Mater. Sci. Eng. 2022, 2022, 1628985. [Google Scholar] [CrossRef]
Composite Coating | PS-W10 | PS-W20 | PS-W30 | PS-W40 | PS-W50 |
---|---|---|---|---|---|
PS percentage (wt%) | 90 | 80 | 70 | 60 | 50 |
WD10 percentage (wt%) | 10 | 20 | 30 | 40 | 50 |
Chemical Composition | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | K2O | Na2O | TiO2 | H2O |
---|---|---|---|---|---|---|---|---|---|
Weight percentage (wt%) | 64.4 | 12.9 | 9.9 | 3.9 | 3.0 | 2.2 | 1.7 | 1.4 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Jiang, B.; Zhang, K.; Zhang, G.; Jin, H.; Zhao, J.; Zhou, X.; Xie, L.; Zhang, H. Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects. Coatings 2025, 15, 782. https://doi.org/10.3390/coatings15070782
Xu Y, Jiang B, Zhang K, Zhang G, Jin H, Zhao J, Zhou X, Xie L, Zhang H. Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects. Coatings. 2025; 15(7):782. https://doi.org/10.3390/coatings15070782
Chicago/Turabian StyleXu, Yueyang, Bangzheng Jiang, Kai Zhang, Gang Zhang, Hao Jin, Jun Zhao, Xing Zhou, Li Xie, and Hui Zhang. 2025. "Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects" Coatings 15, no. 7: 782. https://doi.org/10.3390/coatings15070782
APA StyleXu, Y., Jiang, B., Zhang, K., Zhang, G., Jin, H., Zhao, J., Zhou, X., Xie, L., & Zhang, H. (2025). Synergistic Effect of Organic Silane and Water Glass Solution on Simultaneously Enhancing the Structural Strength and Water Resistance of Loess Blocks for the Water Conservancy Projects. Coatings, 15(7), 782. https://doi.org/10.3390/coatings15070782