Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = geosynthetic-reinforced soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4783 KiB  
Article
Empirical Investigation of the Structural Response of Super-Span Soil–Steel Arches During Backfilling
by Bartłomiej Kunecki
Materials 2025, 18(15), 3650; https://doi.org/10.3390/ma18153650 - 3 Aug 2025
Viewed by 231
Abstract
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 [...] Read more.
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 expressway in northeastern Poland, was constructed using deep corrugated steel plates (500 mm× 237 mm) made from S315MC steel, without additional reinforcements such as stiffening ribs or geosynthetics. The study focused on monitoring the structural behavior during the critical backfilling phase. Displacements and strains were recorded using 34 electro-resistant strain gauges and a geodetic laser system at successive backfill levels, with particular attention to the loading stage at the crown. The measured results were compared with predictions based on the Swedish Design Method (SDM). The SDM equations did not accurately predict internal forces during backfilling. At the crown level, bending moments and axial forces were overestimated by approximately 69% and 152%, respectively. At the final backfill level, the SDM underestimated bending moments by 55% and overestimated axial forces by 90%. These findings highlight limitations of current design standards and emphasize the need for revised analytical models and long-term monitoring of large-span soil–steel structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 288
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

13 pages, 2034 KiB  
Article
A Comparative Study of the Pullout Strength of Geostraps and Geogrids in Reinforced Soil
by Kshitij Gaur, Ashutosh Trivedi and Sanjay Kumar Shukla
Appl. Sci. 2025, 15(14), 7715; https://doi.org/10.3390/app15147715 - 9 Jul 2025
Viewed by 289
Abstract
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, [...] Read more.
The sustainable development of geotechnical infrastructure necessitates using durable, efficient, and environmentally resilient reinforcement materials. This study investigates the pullout performance of geostraps to assess their potential as a sustainable alternative to conventional geosynthetics. This study focuses on the pullout performance of geostraps, flexible, polymeric reinforcement materials. There has not been a thorough study of their pullout resistance, which directly affects the stability and durability of reinforced soil structures. Pullout tests were conducted on sandy soil in a controlled environment. The experimental findings from the pullout test were then validated in a numerical model. The model was used to determine the pullout resistance of different grades of geostraps for comparative analysis. This helped to identify the possible application areas based on the pullout capacity of various grades. The results obtained for the geostraps were then compared with those in the established literature on geogrids. Initially, the pullout resistance of the M65 geostrap was up to 20% higher than that of a biaxial geogrid. This makes it a suitable option for reinforced earth applications. However, the maximum pullout resistance of geogrids was up to 8% higher than that of geostraps when subjected to a surcharge of 17 kN m−2 in poorly graded sand. This study highlights the potential of geostraps as reinforcement materials, particularly in challenging environments where conventional geosynthetics may underperform. Future research may explore their behaviour with different soil types and other controlled environmental factors to establish their broader applicability and design charts. Full article
Show Figures

Figure 1

19 pages, 5847 KiB  
Article
Numerical Analysis of the Stress–Deformation Behavior of Soil–Geosynthetic Composite (SGC) Masses Under Confining Pressure Conditions
by Truc T. T. Phan, Meen-Wah Gui, Thang Pham and Bich T. Luong
Buildings 2025, 15(13), 2229; https://doi.org/10.3390/buildings15132229 - 25 Jun 2025
Viewed by 411
Abstract
The growing application of soil–geosynthetic composites (SGCs) in geotechnical engineering has highlighted the critical role of reinforcement spacing in enhancing structural performance. This study presents a numerical investigation of the stress–deformation behavior of SGC masses under working stress and failure load conditions, considering [...] Read more.
The growing application of soil–geosynthetic composites (SGCs) in geotechnical engineering has highlighted the critical role of reinforcement spacing in enhancing structural performance. This study presents a numerical investigation of the stress–deformation behavior of SGC masses under working stress and failure load conditions, considering both confining and unconfined pressure scenarios. A finite element (FE) model was developed to analyze stress distribution, reinforcement strain profiles at varying depths, and lateral displacement at open facings. Results revealed that vertical stresses in reinforced and unreinforced soil masses were nearly identical, while lateral stresses increased notably in reinforced masses, particularly near reinforcement layers and open facings. Closer reinforcement spacing (0.2 m) effectively reduced lateral displacement and enhanced structural stability compared with wider spacing (0.4 m). In some cases, strengthening reinforcement in the upper portion of the SGC mass proved more effective under failure loads in both confining and unconfined pressure conditions. These findings provide critical insights for optimizing reinforcement spacing in SGC systems, with implications for the design of retaining walls and bridge abutments. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

14 pages, 12254 KiB  
Article
Experimental Exploration of Performance of “Prestressed” Geosynthetic-Reinforced Sheet Pile Retaining Wall
by Yong Liu, Tengfei Yan, Xinning Tan, Zhilong Shi and Kaiwen Liu
Buildings 2025, 15(8), 1278; https://doi.org/10.3390/buildings15081278 - 14 Apr 2025
Viewed by 451
Abstract
The sheet pile wall, a widely used retaining structure in railway construction, faces limitations such as restricted height, construction difficulties, and high costs. While geosynthetic-reinforced soil technology enhances soil tensile strength, it often lacks sufficient stiffness and strength. To address these issues, this [...] Read more.
The sheet pile wall, a widely used retaining structure in railway construction, faces limitations such as restricted height, construction difficulties, and high costs. While geosynthetic-reinforced soil technology enhances soil tensile strength, it often lacks sufficient stiffness and strength. To address these issues, this study proposes a “prestressed” geosynthetic-reinforced sheet pile retaining wall structure. The geosynthetic-reinforced soil was subjected to preloading to induce “prestress”, with enhanced soil reinforcement interaction improving load-bearing capacity, reducing horizontal displacement, and ensuring railway safety. Indoor model tests were conducted on sandy soil foundations to investigate the structure’s load settlement behavior, pile horizontal displacement, earth pressure distribution, pile bending moments, and reinforcement strain development. The results show that applying “prestress” significantly enhances soil reinforcement interaction, enabling the pile–slab wall to better retain soil and improve overall performance. The load-bearing capacity increased by 21.7% and 16.6% in two respective tests, while horizontal displacement was effectively reduced. The maximum earth pressure was observed on the right side of the pile, 20 cm above the base, and the maximum bending moment occurred in the anchored section. Prestressing also enhanced the utilization of the tensile reinforcement. The proposed structure offers a promising approach for optimizing railway retaining structures. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

19 pages, 5841 KiB  
Article
Comparative Analysis of Soft Clay Improvement Using Ordinary and Grouted Sand Columns with Geosynthetic Reinforcement
by Mohammed Y. Fattah, Muthanna A. Al-Khafaji, Makki K. Mohsen and Mohamed Hafez
Infrastructures 2025, 10(3), 62; https://doi.org/10.3390/infrastructures10030062 - 13 Mar 2025
Viewed by 814
Abstract
Soft clay soil is known for its high compressibility and low bearing capacity, making it one of the most challenging soil types. Sand columns and sand layers reinforced with geosynthetics are effective techniques to enhance the performance of foundations built on soft clay. [...] Read more.
Soft clay soil is known for its high compressibility and low bearing capacity, making it one of the most challenging soil types. Sand columns and sand layers reinforced with geosynthetics are effective techniques to enhance the performance of foundations built on soft clay. Stone or sand columns improve load-bearing capacity by utilizing the natural lateral confinement of the soil. However, in very soft soil, a significant design challenge arises due to bulging in the stone columns, as the surrounding soil may not provide adequate confinement to support the required load capacity. This issue has been addressed by grouting the columns, resulting in highly stable and solid structures. Additionally, the grouting pressure enhances frictional resistance and fills any voids within the soil, contributing to increased overall stability. In the current study, soil improvement methods using ordinary sand columns and grouted sand columns were investigated and then compared with adding sand layers with geogrid reinforcement. The study demonstrated that grouted sand columns improved the bearing capacity by 90% over untreated clay. With geogrid reinforcement, sand columns achieved a 180% increase, while grouted columns with geogrid reinforcement reached a 260% improvement. Increasing the thickness of reinforced sand (H/B = 1.5) further raised capacity improvements to 300% for ungrouted and 420% for grouted columns. Full article
Show Figures

Figure 1

25 pages, 18819 KiB  
Article
Integrating Geosynthetics and Vegetation for Sustainable Erosion Control Applications
by Tatiana Olinic, Ernest-Daniel Olinic and Ana-Cornelia Butcaru
Sustainability 2024, 16(23), 10621; https://doi.org/10.3390/su162310621 - 4 Dec 2024
Viewed by 2202
Abstract
The stability of slopes is a critical challenge in various civil engineering projects, such as embankments, cut-slopes, landfills, dams, transportation infrastructure, and riverbank restoration. Stabilizing slopes using bioengineering methods is a sustainable approach that limits the negative impact of engineering works; such methods [...] Read more.
The stability of slopes is a critical challenge in various civil engineering projects, such as embankments, cut-slopes, landfills, dams, transportation infrastructure, and riverbank restoration. Stabilizing slopes using bioengineering methods is a sustainable approach that limits the negative impact of engineering works; such methods should be implemented and adopted worldwide. Geosynthetic materials and plant roots are sustainable for preventing erosion and surface landslides. The plants used for this paper are known to have beneficial effects on erosion control, namely Festuca arundinaceous, Dactylis glomerata, Phleum pratensis, Trifolium pratense, and Trifolium repens. Using vegetation as a bio-reinforcement method is often more cost effective and environmentally friendly than traditional engineering solutions, making a more sustainable engineering solution for shallow slope stabilization applications. The paper presents the erosion process that occurred on sandy slopes protected by organic soil layers and geosynthetic materials under rainfall simulation in scaled model tests. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

28 pages, 9525 KiB  
Article
Research on the Geosynthetic-Encased Gravel Pile Composite Highway Foundation in Low-Temperature Stable Permafrost Regions
by Rongyan Tian, Xiaoming Huang, Runmin Zhao and Haoyuan Luo
Buildings 2024, 14(11), 3612; https://doi.org/10.3390/buildings14113612 - 13 Nov 2024
Viewed by 1098
Abstract
In low-temperature stable permafrost regions, both active and passive cooling measures are commonly employed to ensure the long-term stability of highway structures. However, despite adopting these measures, various types of structural issues caused by permafrost degradation remain prevalent in high-grade highways. This indicates [...] Read more.
In low-temperature stable permafrost regions, both active and passive cooling measures are commonly employed to ensure the long-term stability of highway structures. However, despite adopting these measures, various types of structural issues caused by permafrost degradation remain prevalent in high-grade highways. This indicates that in addition to preventing permafrost melting, structural reinforcement of the foundation is still necessary. Based on the analysis of the long-term foundation temperature field and settlement using the finite element method, which was validated through an indoor top-down freeze–thaw cycle test, this paper explores, for the first time, the feasibility of applying geosynthetic-encased gravel pile composite highway foundations—previously commonly used for permafrost destruction—in low-temperature stable permafrost areas where permafrost protection is the primary principle. By analyzing the long-term temperature field, settlement behavior, and pile–soil stress ratios of permafrost foundations influenced by both the highway structure and composite foundation, it was found that when the pile diameter is 0.5 m, pile spacing is 2 m, and pile length is 11 m, the mean monthly ground temperature of the permafrost foundation will not be significantly affected. Therefore, the properly designed geosynthetic-encased gravel pile composite highway foundation can be adopted in low-temperature stable permafrost regions where permafrost protection, rather than destruction, is required. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 11973 KiB  
Article
Enhancing Load-Bearing Capacity of Weak Soils Using Geosynthetics: A Finite Element Analysis
by Hassan Tavassoli Rad, Farhad Mahmoudi Jalali, Mohammad Gheibi, Reza Yeganeh Khaksar, Andres Annuk and Reza Moezzi
Mining 2024, 4(4), 777-805; https://doi.org/10.3390/mining4040044 - 11 Oct 2024
Cited by 1 | Viewed by 1960
Abstract
In the context of mining applications and the increasing demand for high load-bearing soils, utilizing weak soils poses a significant challenge. This study investigates the effectiveness of geosynthetics in stabilizing weak soils through numerical modeling using Abaqus software (R2016X)and validation via laboratory model [...] Read more.
In the context of mining applications and the increasing demand for high load-bearing soils, utilizing weak soils poses a significant challenge. This study investigates the effectiveness of geosynthetics in stabilizing weak soils through numerical modeling using Abaqus software (R2016X)and validation via laboratory model testing. We examined the impact of various geosynthetic lengths and embedment depths across three soil types: clay loam (ML), sand (SM), and well-graded sand (SW). Our results reveal that ML and SM soil types exhibit local shear failure, while SW soil types demonstrate general shear failure. Notably, the bearing capacity of soils increases with coarser particle sizes due to higher Meyerhof parameters, leading to soil failure at lower settlements. Optimal geotextile embedment depths were determined as H/B = 0.125 for ML soil, H/B = 0.250 for SM soil, and H/B = 0.5 for SW soil. Additionally, the effect of geotextile length on bearing capacity is more pronounced in ML soil, suggesting greater effectiveness in fine-grained soils. The optimal geotextile lengths for installation are approximately 1.5 times the width for ML soil, 1.0 times for SM soil, and 1.0 times for SW soil. We also found that SW soil typically fails at lower settlements compared to ML and SM soils. Consequently, geotextile placement at shallower depths is recommended for SW soil, where the soil experiences higher tension and pressure. These findings contribute to enhance soil stabilization and load management in mining geotechnics. Full article
Show Figures

Figure 1

10 pages, 3646 KiB  
Article
Non-Destructive Methods for Assessing the Condition of Reinforcement Materials in Soil
by Naoki Tatta and Hideo Sakai
Geosciences 2024, 14(10), 261; https://doi.org/10.3390/geosciences14100261 - 1 Oct 2024
Viewed by 1237
Abstract
A reinforced earth wall is a structure in which reinforcement materials are placed in an embankment to build a vertical or nearly vertical wall surface. Such walls have been widely used in roads and in developed land since around 1960. Reinforcement materials have [...] Read more.
A reinforced earth wall is a structure in which reinforcement materials are placed in an embankment to build a vertical or nearly vertical wall surface. Such walls have been widely used in roads and in developed land since around 1960. Reinforcement materials have a set service life of 100 years and fall into two types: steel and geosynthetics. To ensure long-term durability, steel reinforcement materials are plated, while geosynthetics are designed with a limit strength designed to resist fracture for 100 years under the conditions of a given load placed on the reinforcement materials. However, owing to the difficulty of assessing the condition of reinforcement materials in soil, this paper proposes solutions based on non-destructive methods. Specifically, it proposes a method of assessing the amount of strain through an embedded optical fiber in the case of geosynthetic reinforcement materials, or magnetic surveying to investigate the degree of corrosion in the case of steel reinforcement materials. This paper demonstrates that it is possible to non-destructively assess the state of either type of reinforcement material. Full article
(This article belongs to the Special Issue Computational Geodynamic, Geotechnics and Geomechanics)
Show Figures

Figure 1

17 pages, 10971 KiB  
Article
Experimental Study on Reinforcement Properties of Tension-Resistant Reinforced Soil Retaining Wall
by Yantao Wang, Guangqing Yang, Lei Wang, Xujia Li and Guomu Jiao
Buildings 2024, 14(9), 2951; https://doi.org/10.3390/buildings14092951 - 18 Sep 2024
Cited by 1 | Viewed by 1671
Abstract
The tensioned reinforced soil retaining wall, a novel retaining structure, utilizes either anchors or geosynthetic materials as reinforcements that contribute to load-bearing and friction within the structure. This study aims to explore the tension distribution and strain patterns in the reinforcements, and their [...] Read more.
The tensioned reinforced soil retaining wall, a novel retaining structure, utilizes either anchors or geosynthetic materials as reinforcements that contribute to load-bearing and friction within the structure. This study aims to explore the tension distribution and strain patterns in the reinforcements, and their influence on the reinforced soil retaining walls. To this end, tensile, direct shear, and pullout tests were conducted on GeoStrap@5-50 geotextile strips and TGDG130HDPE geogrids to evaluate the tensile strength and interface strength between the reinforcement and the soil. The characteristics of the reinforcement–soil interface and the deformation behavior under stress were examined, with a comparative analysis of the technical merits of the two types of reinforcements. The results indicate that both the geotextile strips and geogrids enhanced the strength of the reinforced soil, primarily by increasing cohesion. The GeoStrap@5-50 geotextile strips exhibited superior tensile strength compared to the TGDG130HDPE geogrids; the reinforcement with the geotextile and geogrids both enhanced the cohesion of the standard sand, albeit with a slight decrease in the internal friction angle, by 4.6% and 3.1%, respectively, offering enhanced mechanical properties and economic value in reinforced soil retaining wall applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 3587 KiB  
Article
Deterministic and Probabilistic Assessment of Failure Mechanisms in Geosynthetic-Reinforced Embankments
by Shen Zhang, Lifang Pai, Rongxue Yue, Yuang Shan, Renjie You, Yaqing Ma and Xiaojuan He
Appl. Sci. 2024, 14(18), 8106; https://doi.org/10.3390/app14188106 - 10 Sep 2024
Viewed by 1016
Abstract
Geosynthetic-reinforced embankments are subject to two primary failure mechanisms: bond failure and rupture. Bond failure occurs when the critical slip surface extends beyond the reinforced zone, while rupture occurs when the slip surface intersects the reinforcement. For a specified factor of safety and [...] Read more.
Geosynthetic-reinforced embankments are subject to two primary failure mechanisms: bond failure and rupture. Bond failure occurs when the critical slip surface extends beyond the reinforced zone, while rupture occurs when the slip surface intersects the reinforcement. For a specified factor of safety and reinforcement length, there exists a minimum tensile strength of the reinforcement required to ensure bond failure only. Increasing the tensile strength beyond this minimum does not alter the failure mechanism or the factor of safety. Conversely, extending the reinforcement length while keeping the tensile strength below this critical value may lead to rupture failure at the same factor of safety. This study utilizes Monte Carlo simulation to perform a probabilistic stability analysis of these failure mechanisms in embankments with varying soil types and slope angles. The analysis evaluates safety margins in terms of the factor of safety and probability of failure. Furthermore, this study investigates the impact of cross-correlation between soil strength parameters, demonstrating that realistic values of the correlation coefficient can reduce the probability of failure for both failure mechanisms. Full article
(This article belongs to the Special Issue Advances in Tunnelling and Underground Space Technology)
Show Figures

Figure 1

12 pages, 4110 KiB  
Article
Laboratory Evaluation of Geosynthetic Interface Friction under Low Stress
by Paolo Carrubba
Polymers 2024, 16(17), 2519; https://doi.org/10.3390/polym16172519 - 5 Sep 2024
Cited by 1 | Viewed by 1084
Abstract
In landfill cover, geosynthetic packages are often used to fulfil different and simultaneous functions: drainage, waterproofing, separation, reinforcement, and soil protection. In this regard, various types of geosynthetics are combined in succession to allow for water and biogas drainage and to waterproof, reinforce, [...] Read more.
In landfill cover, geosynthetic packages are often used to fulfil different and simultaneous functions: drainage, waterproofing, separation, reinforcement, and soil protection. In this regard, various types of geosynthetics are combined in succession to allow for water and biogas drainage and to waterproof, reinforce, and provide protection from erosion over the useful lifetime, ranging over many decades if we consider the long phases of disposal, closure, and quiescence of the landfill itself. The creation of the composite cover barrier requires the evaluation of various interfaces’ frictional strength under low contact stresses, both in static and seismic cases. The main purpose of this study is to summarize the results of past laboratory tests carried out on different geosynthetic–geosynthetic and geosynthetic–soil–geosynthetic interfaces using experimental instrumentation developed at the geotechnical laboratory of the University of Padua, which allows for the characterization of the interface geosynthetic friction at low contact stresses. The main aspects highlighted are the kinematic mode of failure, the wearing of the contact surfaces, the presence or absence of interstitial fluid, and, finally, the density level of the granular soil in contact with the geosynthetics. Full article
Show Figures

Figure 1

32 pages, 11571 KiB  
Review
Polymeric Products in Erosion Control Applications: A Review
by Anna Markiewicz, Eugeniusz Koda, Marta Kiraga, Grzegorz Wrzesiński, Klementyna Kozanka, Maurycy Naliwajko and Magdalena Daria Vaverková
Polymers 2024, 16(17), 2490; https://doi.org/10.3390/polym16172490 - 31 Aug 2024
Cited by 4 | Viewed by 3147
Abstract
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, [...] Read more.
Among the various types of polymeric materials, geosynthetics deserve special attention. A geosynthetic is a product made from synthetic polymers that is embedded in soils for various purposes. There are some basic functions of geosynthetics, namely, erosion control, filtration, drainage, separation, reinforcement, containment, barrier, and protection. Geosynthetics for erosion control are very effective in preventing or limiting soil loss by water erosion on slopes or river/channel banks. Where the current line runs through the undercut area of the slope, the curvature of the arch is increased. If this phenomenon is undesirable, the meander arch should be protected from erosion processes. The combination of geosynthetics provides the best resistance to erosion. In addition to external erosion, internal erosion of soils is also a negative phenomenon. Internal erosion refers to any process by which soil particles are eroded from within or beneath a water-retaining structure. Geosynthetics, particularly geotextiles, are used to prevent internal erosion of soils in contact with the filters. Therefore, the main objective of this review paper is to address the many ways in which geosynthetics are used for erosion control (internal and external). Many examples of hydrotechnical and civil engineering applications of geosynthetics will be presented. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 6416 KiB  
Article
Numerical Stability Analysis of Sloped Geosynthetic Encased Stone Column Composite Foundation under Embankment Based on Equivalent Method
by Bo-Cheng Peng, Ling Zhang, Ze-Yu Xu, Peng-Lu Cui and Yang-Yang Liu
Buildings 2024, 14(9), 2681; https://doi.org/10.3390/buildings14092681 - 28 Aug 2024
Cited by 3 | Viewed by 1185
Abstract
As an effective technology for the rapid treatment of soft-soil foundations, geosynthetic encased stone column (GESC) composite foundations are commonly used in various embankment engineerings, including those situated on sloped soft foundations. Nevertheless, there is still a scarcity of stability studies for sloped [...] Read more.
As an effective technology for the rapid treatment of soft-soil foundations, geosynthetic encased stone column (GESC) composite foundations are commonly used in various embankment engineerings, including those situated on sloped soft foundations. Nevertheless, there is still a scarcity of stability studies for sloped GESC composite foundations. Several 3D numerical models for sloped GESC composite foundations were established using an equivalent method. The influences of the area replacement ratio and the tensile strength of geosynthetic encasement on the stability were investigated. The results showed that the stability increased nonlinearly with the area replacement ratio, and there existed an optimal area replacement ratio (e.g., 24.56% in this study) to balance the safety and economic requirements. The stability increased linearly with the tensile strength of geosynthetic encasement at low tensile strength levels (lower than 105 kN/m in this study), and the impact was relatively limited compared with that of the area replacement ratio. In addition, the stability generally decreased nonlinearly as the foundation slope decreased, and high-angle (foundation slope close to 30°) sloped GESC composite foundations are recommended to be treated with multiple reinforcement techniques. The relationship between the minimum area replacement ratio and the foundation slope was further quantified by an exponential function, allowing for the determination of the area replacement ratio of various sloped GESC composite foundations and providing theoretical guidance for engineering practice. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop