Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (424)

Search Parameters:
Keywords = geostationary satellite observations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8624 KiB  
Article
Comparison of GOES16 Data with the TRACER-ESCAPE Field Campaign Dataset for Convection Characterization: A Selection of Case Studies and Lessons Learnt
by Aida Galfione, Alessandro Battaglia, Mariko Oue, Elsa Cattani and Pavlos Kollias
Remote Sens. 2025, 17(15), 2621; https://doi.org/10.3390/rs17152621 - 28 Jul 2025
Viewed by 256
Abstract
Convective updrafts are one of the main characteristics of convective clouds, responsible for the convective mass flux and the redistribution of energy and condensate in the atmosphere. During the early stages of their lifecycle, convective clouds experience rapid cloud-top ascent manifested by a [...] Read more.
Convective updrafts are one of the main characteristics of convective clouds, responsible for the convective mass flux and the redistribution of energy and condensate in the atmosphere. During the early stages of their lifecycle, convective clouds experience rapid cloud-top ascent manifested by a decrease in the geostationary IR brightness temperature (TBIR). Under the assumption that the convective cloud top behaves like a black body, the ascent rate of the convective cloud top can be estimated as (TBIRt), and it can be used to infer the near cloud-top convective updraft. The temporal resolution of the geostationary IR measurements and non-uniform beam-filling effects can influence the convective updraft estimation. However, the main shortcoming until today was the lack of independent verification of the strength of the convective updraft. Here, Doppler radar observations from the ESCAPE and TRACER field experiments provide independent estimates of the convective updraft velocity at higher spatiotemporal resolution throughout the convective core column and can be used to evaluate the updraft velocity estimates from the IR cooling rate for limited samples. Isolated convective cells were tracked with dedicated radar (RHIs and PPIs) scans throughout their lifecycle. Radial Doppler velocity measurements near the convective cloud top are used to provide estimates of convective updrafts. These data are compared with the geostationary IR and VIS channels (from the GOES satellite) to characterize the convection evolution and lifecycle based on cloud-top cooling rates. Full article
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Viewed by 272
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 236
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

27 pages, 7955 KiB  
Article
Land Surface Condition-Driven Emissivity Variation and Its Impact on Diurnal Land Surface Temperature Retrieval Uncertainty
by Lijuan Wang, Ping Yue, Yang Yang, Sha Sha, Die Hu, Xueyuan Ren, Xiaoping Wang, Hui Han and Xiaoyu Jiang
Remote Sens. 2025, 17(14), 2353; https://doi.org/10.3390/rs17142353 - 9 Jul 2025
Viewed by 223
Abstract
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected [...] Read more.
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected from diverse underlying surfaces from 2017 to 2024 to analyze LSE variation characteristics across different surface types, spectral bands, and temporal scales. Key influencing factors are quantified to establish empirical relationships between LSE dynamics and environmental variables. Furthermore, the impact of LSE models on diurnal LST retrieval accuracy is systematically evaluated through comparative experiments, emphasizing the necessity of integrating time-dependent LSE corrections into radiative transfer equations. The results indicate that LSE in the 8–11 µm band is highly sensitive to surface composition, with distinct dual-valley absorption features observed between 8 and 9.5 µm across different soil types, highlighting spectral variability. The 9.6 µm LSE exhibits strong sensitivity to crop growth dynamics, characterized by pronounced absorption valleys linked to vegetation biochemical properties. Beyond soil composition, LSE is significantly influenced by soil moisture, temperature, and vegetation coverage, emphasizing the need for multi-factor parameterization. LSE demonstrates typical diurnal variations, with an amplitude reaching an order of magnitude of 0.01, driven by thermal inertia and environmental interactions. A diurnal LSE retrieval model, integrating time-averaged LSE and diurnal perturbations, was developed based on underlying surface characteristics. This model reduced the root mean square error (RMSE) of LST retrieved from geostationary satellites from 6.02 °C to 2.97 °C, significantly enhancing retrieval accuracy. These findings deepen the understanding of LSE characteristics and provide a scientific basis for refining LST/LSE separation algorithms in thermal infrared remote sensing and for optimizing LSE parameterization schemes in land surface process models for climate and hydrological simulations. Full article
Show Figures

Graphical abstract

18 pages, 3896 KiB  
Article
The Contribution of Meteosat Third Generation–Flexible Combined Imager (MTG-FCI) Observations to the Monitoring of Thermal Volcanic Activity: The Mount Etna (Italy) February–March 2025 Eruption
by Carolina Filizzola, Giuseppe Mazzeo, Francesco Marchese, Carla Pietrapertosa and Nicola Pergola
Remote Sens. 2025, 17(12), 2102; https://doi.org/10.3390/rs17122102 - 19 Jun 2025
Viewed by 538
Abstract
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 [...] Read more.
The Flexible Combined Imager (FCI) instrument aboard the Meteosat Third Generation (MTG-I) geostationary satellite, launched in December 2022 and operational since September 2024, by providing shortwave infrared (SWIR), medium infrared (MIR) and thermal infrared (TIR) data, with an image refreshing time of 10 min and a spatial resolution ranging between 500 m in the high-resolution (HR) and 1–2 km in the normal-resolution (NR) mode, may represent a very promising instrument for monitoring thermal volcanic activity from space, also in operational contexts. In this work, we assess this potential by investigating the recent Mount Etna (Italy, Sicily) eruption of February–March 2025 through the analysis of daytime and night-time SWIR observations in the NR mode. The time series of a normalized hotspot index retrieved over Mt. Etna indicates that the effusive eruption started on 8 February at 13:40 UTC (14:40 LT), i.e., before information from independent sources. This observation is corroborated by the analysis of the MIR signal performed using an adapted Robust Satellite Technique (RST) approach, also revealing the occurrence of less intense thermal activity over the Mt. Etna area a few hours before (10.50 UTC) the possible start of lava effusion. By analyzing changes in total SWIR radiance (TSR), calculated starting from hot pixels detected using the preliminary NHI algorithm configuration tailored to FCI data, we inferred information about variations in thermal volcanic activity. The results show that the Mt. Etna eruption was particularly intense during 17–19 February, when the radiative power was estimated to be around 1–3 GW from other sensors. These outcomes, which are consistent with Multispectral Instrument (MSI) and Operational Land Imager (OLI) observations at a higher spatial resolution, providing accurate information about areas inundated by the lava, demonstrate that the FCI may provide a relevant contribution to the near-real-time monitoring of Mt. Etna activity. The usage of FCI data, in the HR mode, may further improve the timely identification of high-temperature features in the framework of early warning contexts, devoted to mitigating the social, environmental and economic impacts of effusive eruptions, especially over less monitored volcanic areas. Full article
Show Figures

Figure 1

18 pages, 5357 KiB  
Article
Multi-Scale Validation of Suspended Sediment Retrievals in Dynamic Estuaries: Integrating Geostationary and Low-Earth-Orbiting Optical Imagery for Hangzhou Bay
by Yi Dai, Jiangfei Wang, Bin Zhou, Wangbing Liu, Ben Wang, C. K. Shum, Xiaohong Yuan and Zhifeng Yu
Remote Sens. 2025, 17(12), 1975; https://doi.org/10.3390/rs17121975 - 6 Jun 2025
Viewed by 406
Abstract
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due [...] Read more.
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due to the pronounced complex oceanic dynamics that exhibit high spatiotemporal variability in the signals of the suspended sediment concentration (SSC) in the ocean. Here, we integrate satellite images from the sun-synchronous satellites, China’s Huanjing (Chinese for environmental, HJ)-1A/B (charged couple device) CCD (30 m), and from Korea’s Geostationary Ocean Color Imager GOCI (500 m) to the spatiotemporal scale effects to validate SSC remote sensing-retrieved data products. A multi-scale validation framework based on coefficient of variation (CV)-based zoning was developed, where high-resolution HJ CCD SSC data were resampled to the GOCI scale (500 m), and spatial variability was quantified using CV values within corresponding HJ CCD windows. Traditional validation, comparing in situ point measurements directly with GOCI pixel-averaged data, introduces significant uncertainties due to pixel heterogeneity. The results indicate that in regions with high spatial heterogeneity (CV > 0.10), using central pixel values significantly weakens correlations and increases errors, with performance declining further in highly heterogeneous areas (CV > 0.15), underscoring the critical role of spatial averaging in mitigating scale-related biases. This study enhances the quantitative assessment of uncertainties in validating medium-to-low-resolution water color products, providing a robust approach for high-dynamic oceanic environment estuaries and bays. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Graphical abstract

19 pages, 3892 KiB  
Article
Impact of Fengyun-4A Atmospheric Motion Vector Data Assimilation on PM2.5 Simulation
by Kaiqiang Gu, Jinyan Wang, Shixiang Su, Jiangtao Zhu, Yu Zhang, Feifan Bian and Yi Yang
Remote Sens. 2025, 17(11), 1952; https://doi.org/10.3390/rs17111952 - 5 Jun 2025
Viewed by 371
Abstract
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation [...] Read more.
PM2.5 pollution poses significant risks to human health and the environment, underscoring the importance of accurate PM2.5 simulation. This study simulated a representative PM2.5 pollution event using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem), incorporating the assimilation of infrared atmospheric motion vector (AMV) data from the Fengyun-4A (FY-4A) satellite. A comprehensive analysis was conducted to examine the meteorological characteristics of the event and their influence on PM2.5 concentration simulations. The results demonstrate that the assimilation of FY-4A infrared AMV data significantly enhanced the simulation performance of meteorological variables, particularly improving the wind field and capturing local and small-scale wind variations. Moreover, PM2.5 concentrations simulated with AMV assimilation showed improved spatial and temporal agreement with ground-based observations, reducing the root mean square error (RMSE) by 8.2% and the mean bias (MB) by 15.2 µg/m3 relative to the control (CTL) experiment. In addition to regional improvements, the assimilation notably enhanced PM2.5 simulation accuracy in severely polluted cities, such as Tangshan and Tianjin. Mechanistic analysis revealed that low wind speeds and weak atmospheric divergence restricted pollutant dispersion, resulting in higher near-surface concentrations. This was exacerbated by cooler nighttime temperatures and a lower planetary boundary layer height (PBLH). These findings underscore the utility of assimilating satellite-derived wind products to enhance regional air quality modeling and forecasting accuracy. This study highlights the potential of FY-4A infrared AMV data in improving regional pollution simulations, offering scientific support for the application of next-generation Chinese geostationary satellite data in numerical air quality forecasting. Full article
Show Figures

Graphical abstract

24 pages, 6323 KiB  
Article
Estimating PM2.5 Exposures and Cardiovascular Disease Risks in the Yangtze River Delta Region Using a Spatiotemporal Convolutional Approach to Fill Gaps in Satellite Data
by Muhammad Jawad Hussain, Myeongsu Seong, Behjat Shahid and Heming Bai
Toxics 2025, 13(5), 392; https://doi.org/10.3390/toxics13050392 - 14 May 2025
Viewed by 397
Abstract
Accurate estimation of ambient PM2.5 concentrations is crucial for assessing air quality and health risks, particularly in regions with limited ground-based monitoring. Satellite-retrieved data products, such as top-of-atmosphere reflectance (TOAR) and aerosol optical depth (AOD), are widely used for PM2.5 estimation. [...] Read more.
Accurate estimation of ambient PM2.5 concentrations is crucial for assessing air quality and health risks, particularly in regions with limited ground-based monitoring. Satellite-retrieved data products, such as top-of-atmosphere reflectance (TOAR) and aerosol optical depth (AOD), are widely used for PM2.5 estimation. However, complex atmospheric conditions cause retrieval gaps in TOAR and AOD products, limiting their reliability. This study introduced a spatiotemporal convolutional approach to fill sampling gaps in TOAR and AOD data from the Himawari-8 geostationary satellite over the Yangtze River Delta (YRD) in 2016. Four machine-learning models (random forest, extreme gradient boosting, gradient boosting, and support vector regression) were used to estimate hourly PM2.5 concentrations by integrating gap-filled and original TOAR and AOD data with meteorological variables. The random forest model trained on gap-filled TOAR data yielded the highest predictive accuracy (R2 = 0.75, RMSE = 18.30 μg m−3). Significant seasonal variations in PM2.5 estimates were found, with TOAR-based models outperforming AOD-based models. Furthermore, we observed that a substantial portion of the YRD population in non-attainment areas is at risk of cardiovascular disease due to chronic PM2.5 exposure. This study suggests that TOAR-based models offer more reliable PM2.5 estimates, enhancing air-quality assessments and public health-risk evaluations. Full article
Show Figures

Graphical abstract

25 pages, 16504 KiB  
Article
High-Resolution, Low-Latency Multi-Satellite Precipitation Merging by Correcting with Weather Radar Network Data
by Seungwoo Baek, Soorok Ryu, Choeng-Lyong Lee, Francisco J. Tapiador and Gyuwon Lee
Remote Sens. 2025, 17(10), 1702; https://doi.org/10.3390/rs17101702 - 13 May 2025
Viewed by 633
Abstract
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower [...] Read more.
Satellite-based precipitation products (SPPs) have become a crucial source of quantitative global precipitation data. Geostationary Orbit (GEO) satellites provide high spatiotemporal resolution but tend to have lower accuracy, while Low Earth Orbit (LEO) satellites provide more precise precipitation estimates but suffer from lower temporal resolution due to their limited observation frequency. This study proposes an efficient algorithm for integrating and enhancing precipitation estimates from multiple satellite observations. The target domain includes the Full Disk (FD) and the extended East Asia (EA) regions, both of which are observable by GEO satellites, such as Himawari-8, serving as the GEO platform in this study. The algorithm involves four steps: pre-data preparation, LEO morphing, adjustment, and final merging. It produces Early and Late composite products with 10-min temporal and up to 2 km spatial resolution and significantly reduces latency compared to IMERG. Specifically, the Early and Late products can be generated with approximate latencies of 90 min and 270 min, respectively—much faster than Integrated Multi-satellite Retrievals for GPM (IMERG)’s Early (4-h) and Late (14-h) products. A key feature of the proposed method is the use of accuracy-based weighting derived from radar-based validation, enabling dynamic merging that reflects the reliability of each satellite observation. Statistical validation using Global Telecommunication System (GTS) precipitation data confirmed the positive impact of the proposed bias correction and merging method. In particular, the Late product achieved accuracy comparable to or higher than that of IMERG Early and IMERG Late, despite its significantly shorter latency. However, its accuracy was still lower than that of IMERG Final, which benefits from additional gauge-based correction but is released with a delay of several months. Full article
(This article belongs to the Special Issue Precipitation Estimations Based on Satellite Observations)
Show Figures

Figure 1

18 pages, 7914 KiB  
Article
Direct Comparison of Infrared Channel Measurements by Two ABIs to Monitor Their Calibration Stability
by Fangfang Yu, Xiangqian Wu, Hyelim Yoo, Hui Xu and Haifeng Qian
Remote Sens. 2025, 17(10), 1656; https://doi.org/10.3390/rs17101656 - 8 May 2025
Viewed by 379
Abstract
This paper introduces a method of monitoring infrared channel calibration stability through direct comparison of calibrated radiances by two Advanced Baseline Imager (ABI) on two geostationary (GEO) platforms. This GEO-GEO comparison is based on radiances in the overlapping area observed by the two [...] Read more.
This paper introduces a method of monitoring infrared channel calibration stability through direct comparison of calibrated radiances by two Advanced Baseline Imager (ABI) on two geostationary (GEO) platforms. This GEO-GEO comparison is based on radiances in the overlapping area observed by the two ABIs, pixel by pixel, at approximately the same time, location, spectrum, and viewing zenith angle. It was initially developed for GOES-17 and subsequent GOES missions to validate the ABI’s calibration around its local midnight—a subject of particular interest for instruments on three-axis stabilized geostationary satellites. With the cryocooler anomaly of the GOES-17 ABI, however, the GEO-GEO comparison became an indispensable tool to characterize GOES-17 ABI infrared (IR) channel calibration with high frequency, low uncertainty, and in near real time, providing critical feedback to root cause investigation and mitigation options. Later, the GEO-GEO comparison was applied to the GOES-18 ABI as originally intended and was proved successful. It confirms that, with few exceptions, radiometric calibration for all ABIs is stable to within 0.1 K when the radiance fluctuation is converted to the brightness temperature at 300 K. Full article
Show Figures

Graphical abstract

16 pages, 7106 KiB  
Article
Spatial–Temporal Distribution of Offshore Transport Pathways of Coastal Water Masses in the East China Sea Based on GOCI-TSS
by Yuanjie Peng and Wenbin Yin
Water 2025, 17(9), 1370; https://doi.org/10.3390/w17091370 - 1 May 2025
Cited by 1 | Viewed by 513
Abstract
The offshore transport of coastal water masses in the East China Sea is vital for maintaining ecological stability. Understanding its spatial-temporal pathways helps clarify material transport and ecological responses. This study used total suspended sediment (TSS) data from the Korean Geostationary Ocean Color [...] Read more.
The offshore transport of coastal water masses in the East China Sea is vital for maintaining ecological stability. Understanding its spatial-temporal pathways helps clarify material transport and ecological responses. This study used total suspended sediment (TSS) data from the Korean Geostationary Ocean Color Imager to analyze TSS distribution and anomalies, combined with satellite-derived surface residual currents. Results show significant seasonal variations: coastal water masses expand to the 50 m isobath in winter and contract to the 20 m isobath in summer. Offshore transport pathways vary spatially, extending to the shelf edge north of 28° N but restricted by the Taiwan Warm Current south of 28° N. A persistent transport pathway near 28° N shifts from northeastward to eastward. Other pathways include one south of Hangzhou Bay (spring and autumn) linked to tidal mixing and another north of the Yangtze River estuary (summer) following the Yangtze River Diluted Water. These findings provide crucial observational insights for modeling material cycling in the East China Sea shelf. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

19 pages, 5290 KiB  
Article
Real-Time Regional Ionospheric Total Electron Content Modeling Using the Extended Kalman Filter
by Jun Tang, Yuhan Gao, Heng Liu, Mingxian Hu, Chaoqian Xu and Liang Zhang
Remote Sens. 2025, 17(9), 1568; https://doi.org/10.3390/rs17091568 - 28 Apr 2025
Viewed by 468
Abstract
Real-time ionospheric products can accelerate the convergence of real-time precise point positioning (PPP) to improve the real-time positioning services of global navigation satellite systems (GNSSs), as well as to achieve continuous monitoring of the ionosphere. This study applied an extended Kalman filter (EKF) [...] Read more.
Real-time ionospheric products can accelerate the convergence of real-time precise point positioning (PPP) to improve the real-time positioning services of global navigation satellite systems (GNSSs), as well as to achieve continuous monitoring of the ionosphere. This study applied an extended Kalman filter (EKF) to total electron content (TEC) modeling, proposing a regional real-time EKF-based ionospheric model (REIM) with a spatial resolution of 1° × 1° and a temporal resolution of 1 h. We examined the performance of REIM through a 7-day period during geomagnetic storms. The post-processing model from the China Earthquake Administration (IOSR), CODG, IGSG, and the BDS geostationary orbit satellite (GEO) observations were utilized as reference. The consistency analysis showed that the mean deviation between REIM and IOSR was 0.97 TECU, with correlation coefficients of 0.936 and 0.938 relative to IOSR and IGSG, respectively. The VTEC mean deviation between REIM and BDS GEO observations was 4.15 TECU, which is lower than those of CODG (4.68 TECU), IGSG (5.67 TECU), and IOSR (6.27 TECU). In the real-time single-frequency PPP (RT-SF-PPP) experiments, REIM-augmented positioning converges within approximately 80 epochs, and IGSG requires 140 epochs. The REIM-augmented east-direction positioning error was 0.086 m, smaller than that of IGSG (0.095 m) and the Klobuchar model (0.098 m). REIM demonstrated high consistencies with post-processing models and showed a higher accuracy at IPPs of BDS GEO satellites. Moreover, the correction results of the REIM model are comparable to post-processing models in RT-SF-PPP while achieving faster convergence. Full article
Show Figures

Figure 1

24 pages, 9553 KiB  
Article
A Random Forest-Based Precipitation Detection Algorithm for FY-3C/3D MWTS2 over Oceanic Regions
by Tengling Luo, Yi Yu, Gang Ma, Weimin Zhang, Luyao Qin, Weilai Shi, Qiudan Dai and Peng Zhang
Remote Sens. 2025, 17(9), 1566; https://doi.org/10.3390/rs17091566 - 28 Apr 2025
Viewed by 426
Abstract
Satellite microwave-sounding radiometer data assimilation under clear-sky conditions typically requires the exclusion of precipitation-affected field-of-view (FOV) regions. However, the traditional scatter index (SI) and cloud liquid water path (CLWP)-based precipitation sounding algorithms from earlier NOAA microwave sounders are built [...] Read more.
Satellite microwave-sounding radiometer data assimilation under clear-sky conditions typically requires the exclusion of precipitation-affected field-of-view (FOV) regions. However, the traditional scatter index (SI) and cloud liquid water path (CLWP)-based precipitation sounding algorithms from earlier NOAA microwave sounders are built on window channels which are not available from FY-3C/D MWTS-II. To address this limitation, this study establishes a nonlinear relationship between multispectral visible/infrared data from the FY-2F geostationary satellite and microwave sounding channels using an artificial intelligence (AI)-driven approach. The methodology involves three key steps: (1) The spatiotemporal integration of FY-2F VISSR-derived products with NOAA-19 AMSU-A microwave brightness temperatures was achieved through the GEO-LEO pixel fusion algorithm. (2) The fused observations were used as a training set and input into a random forest model. (3) The performance of the RF_SI method was evaluated by using individual cases and time series observations. Results demonstrate that the RF_SI method effectively captures the horizontal distribution of microwave scattering signals in deep convective systems. Compared with those of the NOAA-19 AMSU-A traditional SI and CLWP-based precipitation sounding algorithms, the accuracy and sounding rate of the RF_SI method exceed 94% and 92%, respectively, and the error rate is less than 3%. Also, the RF_SI method exhibits consistent performance across diverse temporal and spatial domains, highlighting its robustness for cross-platform precipitation screening in microwave data assimilation. Full article
Show Figures

Figure 1

18 pages, 4812 KiB  
Article
A Novel Aerosol Optical Depth Retrieval Method Based on SDAE from Himawari-8/AHI Next-Generation Geostationary Satellite in Hubei Province
by Shiquan Deng, Ting Bai, Zhe Chen and Yepei Chen
Remote Sens. 2025, 17(8), 1396; https://doi.org/10.3390/rs17081396 - 14 Apr 2025
Viewed by 471
Abstract
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly [...] Read more.
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly AOD. However, a highly accurate evaluation of AOD using AHI is still limited. In this paper, we establish a Stacked Denoising AutoEncoder (SDAE) model to retrieve highly accurate AOD using AHI. We explore the SDAE to retrieve AOD by taking the ground-observed AOD as the output and taking the AHI image, the month, hour, latitude, and longitude as the input data. This approach was tested in the Hubei province of China. Traditional machine learning methods such as Extreme Learning Machines (ELMs), BackPropagation Neural Networks (BPNNs), and Support Vector Machines (SVMs) are also used to evaluate model performance. The results show that the proposed method has the highest accuracy. We also compare the proposed method with ground-observed AOD measurements at the Wuhan University site, showing good consistency between the satellite-retrieved AOD and the ground-observed value. The study of the spatiotemporal change pattern of the hourly AOD in the Hubei province shows that the algorithm has good stability in the face of changes in the angle and intensity of sunlight. Full article
(This article belongs to the Special Issue Near Real-Time Remote Sensing Data and Its Geoscience Applications)
Show Figures

Figure 1

20 pages, 36484 KiB  
Article
Quality Assessment of Operational Fengyun-4B/GIIRS Atmospheric Temperature and Humidity Profile Products
by Zhi Zhu, Junxia Gu, Fang Yuan and Chunxiang Shi
Remote Sens. 2025, 17(8), 1353; https://doi.org/10.3390/rs17081353 - 10 Apr 2025
Viewed by 395
Abstract
As China’s second operational Geostationary Interferometric Infrared Sounder, Fengyun-4B/GIIRS can provide temporally and spatially continuous atmospheric temperature profile (ATP) and atmospheric humidity profile (AHP) information, which can be used in cold wave monitoring and other meteorological applications. In this study, radiosonde observations and [...] Read more.
As China’s second operational Geostationary Interferometric Infrared Sounder, Fengyun-4B/GIIRS can provide temporally and spatially continuous atmospheric temperature profile (ATP) and atmospheric humidity profile (AHP) information, which can be used in cold wave monitoring and other meteorological applications. In this study, radiosonde observations and ERA5 reanalysis are used to assess the quality of operational Fengyun-4B/GIIRS ATP and AHP products released by the National Satellite Meteorological Centre (NSMC). The results are as follows: (1) Compared to Fengyun-4A/GIIRS, due to the improvement in the instruments, the usability of Fengyun-4B/GIIRS is enhanced, and the influence of clouds and land surfaces reduces its usability under clear-sky conditions and below 900 hPa. (2) The current operational quality-flagged algorithm can identify the Fengyun-4B/GIIRS ATP and AHP products with different accuracies well, providing beneficial information to users. Taking radiosonde observations as a reference, the RMSEs of the Fengyun-4B/GIIRS ATP and AHP products with the best quality (with the quality flag of “very good”) are around 1.5K and below 2 kg/kg, respectively, which is better than those of the Fengyun-4A/GIIRS ATP product. (3) Compared to the ERA5 reanalysis, due to the different coefficients in the retrieval algorithm, systematic overestimation and underestimation occur for the Fengyun-4B/GIIRS ATP product under clear-sky conditions and cloudy-sky conditions, respectively. (4) The biases and RMSEs of the Fengyun-4B/GIIRS ATP and AHP products have significant dependence on the satellite zenith angles when the angles are larger than 50°, but when the angles are smaller than 50°, the dependence is negligible. Full article
Show Figures

Figure 1

Back to TopTop