Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,774)

Search Parameters:
Keywords = genome composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2901 KiB  
Article
Unveiling the Genetic Landscape of Canine Papillomavirus in the Brazilian Amazon
by Jeneffer Caroline de Macêdo Sousa, André de Medeiros Costa Lins, Fernanda dos Anjos Souza, Higor Ortiz Manoel, Cleyton Silva de Araújo, Lorena Yanet Cáceres Tomaya, Paulo Henrique Gilio Gasparotto, Vyctoria Malayhka de Abreu Góes Pereira, Acácio Duarte Pacheco, Fernando Rosado Spilki, Mariana Soares da Silva, Felipe Masiero Salvarani, Cláudio Wageck Canal, Flavio Roberto Chaves da Silva and Cíntia Daudt
Microorganisms 2025, 13(8), 1811; https://doi.org/10.3390/microorganisms13081811 (registering DOI) - 2 Aug 2025
Abstract
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) [...] Read more.
Papillomaviruses (PVs) are double-stranded DNA viruses known to induce a variety of epithelial lesions in dogs, ranging from benign hyperplasia to malignancies. In regions of rich biodiversity such as the Western Amazon, data on the circulation and genetic composition of canine papillomaviruses (CPVs) remain scarce. This study investigated CPV types present in oral and cutaneous papillomatous lesions in domiciled dogs from Acre and Rondônia States, Brazil. Sixty-one dogs with macroscopically consistent lesions were clinically evaluated, and tissue samples were collected for histopathological examination and PCR targeting the L1 gene. Among these, 37% were histologically diagnosed as squamous papillomas or fibropapillomas, and 49.2% (30/61) tested positive for papillomavirus DNA. Sequencing of the L1 gene revealed that most positive samples belonged to CPV1 (Lambdapapillomavirus 2), while one case was identified as CPV8 (Chipapillomavirus 3). Complete genomes of three CPV1 strains were obtained via high-throughput sequencing and showed high identity with CPV1 strains from other Brazilian regions. Phylogenetic analysis confirmed close genetic relationships among isolates across distinct geographic areas. These findings demonstrate the circulation of genetically conserved CPVs in the Amazon and reinforce the value of molecular and histopathological approaches for the accurate diagnosis and surveillance of viral diseases in domestic dogs, especially in ecologically complex regions. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 (registering DOI) - 2 Aug 2025
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3291 KiB  
Article
Organelle Genome Characteristics and Phylogenetic Analysis of a Warm-Season Turfgrass Eremochloa ophiuroides (Poaceae)
by Junming Zhao, Yanli Xiong, Maotao Xu, Wenlong Gou, Tingyong Yang, Yi Xiong, Zhixiao Dong, Ling Pan, Lina Sha, Hong Luo and Xiao Ma
Biology 2025, 14(8), 975; https://doi.org/10.3390/biology14080975 (registering DOI) - 1 Aug 2025
Viewed by 46
Abstract
Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as “Chinese turfgrass”, is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. [...] Read more.
Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as “Chinese turfgrass”, is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. The chloroplast genome, with 139,107 bp, and the mitochondrial genome, with 564,432 bp, were both assembled into a single circular structure. We identified 44 gene transfer events between the chloroplast and mitochondrial genomes. The mitochondrial gene cox1 could serve as a marker for distinguishing accessions found at different altitudes. The unique features of the centipedegrass mitochondrial genome, coupled with the comparative genomic analysis of both chloroplast and mitochondrial genomes, have the potential to enrich the Poaceae database and provide crucial perspectives on plant evolution, energy metabolism, and responses to environmental conditions. The markers developed could facilitate the analysis of the genetic diversity of centipedegrass. Full article
Show Figures

Figure 1

20 pages, 6058 KiB  
Article
The GPI-Anchored Aspartyl Proteases Encoded by the YPS1 and YPS7 Genes of Candidozyma auris and Their Role Under Stress Conditions
by Alvaro Vidal-Montiel, Daniel Clark-Flores, Eulogio Valentín-Gómez, Juan Pedro Luna-Arias, Erika Rosales-Cruz, César Hernández-Rodríguez, Lourdes Villa-Tanaca and Margarita Juárez-Montiel
J. Fungi 2025, 11(8), 573; https://doi.org/10.3390/jof11080573 (registering DOI) - 1 Aug 2025
Viewed by 71
Abstract
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in [...] Read more.
Candidozyma auris is a multidrug-resistant, thermo- and osmotolerant yeast capable of persisting on biotic and abiotic surfaces, attributes likely linked to its cell wall composition. Here, seven putative genes encoding yapsins, aspartyl proteases GPI-anchored to the membrane or cell wall, were identified in the genomes of C. auris CJ97 and 20-1498, from clades III and IV, respectively. The C. auris YPS1 gene is orthologous to the SAP9 of C. albicans. The YPS7 gene is orthologous to YPS7 in C. glabrata and S. cerevisiae, so that they may share similar roles. An in silico analysis suggested an interaction between pepstatin and the catalytic domain of Yps1 and Yps7. Although this inhibitor, when combined with caffeine, had a subtle effect on the growth of C. auris, it induced alterations in the cell wall. CauYPS1 and CauYPS7 expression increased under nutrient starvation and NaCl, and at 42 °C. The transcriptome of the 20-1498 strain suggests that autophagy may play a role in thermal stress, probably degrading deleterious proteins or maintaining cell wall and vacuolar homeostasis. Therefore, CauYps1 and CauYps7 may play a role in the cell wall integrity of C. auris in stress conditions, and they could be a target of new antifungal or antivirulence agents. Full article
Show Figures

Graphical abstract

19 pages, 3683 KiB  
Article
Multiplex CRISPR/Cas9 Editing of Rice Prolamin and GluA Glutelin Genes Reveals Subfamily-Specific Effects on Seed Protein Composition
by María H. Guzmán-López, Susana Sánchez-León, Miriam Marín-Sanz and Francisco Barro
Plants 2025, 14(15), 2355; https://doi.org/10.3390/plants14152355 - 31 Jul 2025
Viewed by 86
Abstract
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A [...] Read more.
Rice seed storage proteins (SSPs) play a critical role in determining the nutritional quality, cooking properties, and digestibility of rice. To enhance seed quality, CRISPR/Cas9 genome editing was applied to modify SSP composition by targeting genes encoding 13 kDa prolamins and type A glutelins. Three CRISPR/Cas9 constructs were designed: one specific to the 13 kDa prolamin subfamily and two targeting conserved GluA glutelin regions. Edited T0 and T1 lines were generated and analyzed using InDel analysis, SDS-PAGE, Bradford assay, and RP-HPLC. Insertions were more frequent than deletions, accounting for 56% and 74% of mutations in prolamin and glutelin genes, respectively. Editing efficiency varied between sgRNAs. All lines with altered protein profiles contained InDels in target genes. SDS-PAGE confirmed the absence or reduction in bands corresponding to 13 kDa prolamins or GluA subunits, showing consistent profiles among lines carrying the same construct. Quantification revealed significant shifts in SSP composition, including increased albumin and globulin content. Prolamin-deficient lines showed reduced prolamins, while GluA-deficient lines exhibited increased prolamins. Total protein content was significantly elevated in all edited lines, suggesting enrichment in lysine-rich fractions. These findings demonstrate that CRISPR/Cas9-mediated editing of SSP genes can effectively reconfigure the rice protein profile and enhance its nutritional value. Full article
(This article belongs to the Special Issue Advances and Applications of Genome Editing in Plants)
16 pages, 2207 KiB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 (registering DOI) - 31 Jul 2025
Viewed by 163
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

22 pages, 1013 KiB  
Review
Genomic Alterations and Microbiota Crosstalk in Hepatic Cancers: The Gut–Liver Axis in Tumorigenesis and Therapy
by Yuanji Fu, Jenny Bonifacio-Mundaca, Christophe Desterke, Íñigo Casafont and Jorge Mata-Garrido
Genes 2025, 16(8), 920; https://doi.org/10.3390/genes16080920 - 30 Jul 2025
Viewed by 132
Abstract
Background/Objectives: Hepatic cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are major global health concerns due to rising incidence and limited therapeutic success. While traditional risk factors include chronic liver disease and environmental exposures, recent evidence underscores the significance of genetic alterations and [...] Read more.
Background/Objectives: Hepatic cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are major global health concerns due to rising incidence and limited therapeutic success. While traditional risk factors include chronic liver disease and environmental exposures, recent evidence underscores the significance of genetic alterations and gut microbiota in liver cancer development and progression. This review aims to integrate emerging knowledge on the interplay between host genomic changes and gut microbial dynamics in the pathogenesis and treatment of hepatic cancers. Methods: We conducted a comprehensive review of current literature on genetic and epigenetic drivers of HCC and CCA, focusing on commonly mutated genes such as TP53, CTNNB1, TERT, IDH1/2, and FGFR2. In parallel, we evaluated studies addressing the gut–liver axis, including the roles of dysbiosis, microbial metabolites, and immune modulation. Key clinical and preclinical findings were synthesized to explore how host–microbe interactions influence tumorigenesis and therapeutic response. Results: HCC and CCA exhibit distinct but overlapping genomic landscapes marked by recurrent mutations and epigenetic reprogramming. Alterations in the gut microbiota contribute to hepatic inflammation, genomic instability, and immune evasion, potentially enhancing oncogenic signaling pathways. Furthermore, microbiota composition appears to affect responses to immune checkpoint inhibitors. Emerging therapeutic strategies such as probiotics, fecal microbiota transplantation, and precision oncology based on mutational profiling demonstrate potential for personalized interventions. Conclusions: The integration of host genomics with microbial ecology provides a promising paradigm for advancing diagnostics and therapies in liver cancer. Targeting the gut–liver axis may complement genome-informed strategies to improve outcomes for patients with HCC and CCA. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 13626 KiB  
Article
Genome-Wide Identification and Co-Expression Analysis of WRKY Genes Unveil Their Role in Regulating Anthocyanin Accumulation During Euscaphis japonica Fruit Maturation
by Bobin Liu, Qingying Wang, Dongmei He, Xiaqin Wang, Guiliang Xin, Xiaoxing Zou, Daizhen Zhang, Shuangquan Zou and Jiakai Liao
Biology 2025, 14(8), 958; https://doi.org/10.3390/biology14080958 - 29 Jul 2025
Viewed by 211
Abstract
Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription [...] Read more.
Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription factor families. Euscaphis japonica is an East Asian species, prized for its exceptionally persistent butterfly-shaped fruits that undergo pericarp dehiscence, overturning, and a color transition to scarlet red. This species represents an ideal system for studying anthocyanin regulation. However, the mechanisms by which WRKY transcription factors orchestrate anthocyanin accumulation during this process remain unknown. In this study, we identified 87 WRKY genes (EjaWRKYs) from the E. japonica genome. Phylogenetic analysis was used to classify these genes into three primary groups, with five subgroups, revealing conserved gene structures and motif compositions, supported by collinearity and comparative synteny analyses. Crucially, ten EjaWRKYs exhibited peak expression during the mature fruit stages, showing positive correlations with key anthocyanin biosynthesis genes. Functional validation through the use of transient transactivation assays in Nicotiana benthamiana confirmed that the five selected EjaWRKYs bind W-box elements and strongly activate reporter gene expression. Our results reveal EjaWRKYs’ regulation of anthocyanin accumulation in E. japonica fruit, provide the first comprehensive WRKY family characterization of this species, and establish a foundation for manipulating ornamental traits in horticultural breeding. Full article
(This article belongs to the Special Issue Recent Advances in Biosynthesis and Degradation of Plant Anthocyanin)
Show Figures

Figure 1

22 pages, 3465 KiB  
Article
Chromosome-Level Genome Announcement of the Monokaryotic Pleurotus ostreatus Strain PC80
by Jie Wu, Wenhua Sun, Jingkang Zheng, Jinling Liu, Xuedi Liang, Qin Liu and Weili Kong
J. Fungi 2025, 11(8), 563; https://doi.org/10.3390/jof11080563 - 29 Jul 2025
Viewed by 253
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In [...] Read more.
Pleurotus ostreatus is a widely cultivated edible fungus in China, renowned for its rich nutritional composition and diverse medicinal compounds. However, the quality of the currently published P. ostreatus genomes remained suboptimal, which limited in-depth research on its evolution, growth, and development. In this study, we conducted a chromosome-level genome assembly of the monokaryotic basidiospore strain PC80. The assembled genome spanned 40.6 Mb and consisted of 15 scaffolds. Ten of these scaffolds contained complete telomere-to-telomere structures. The scaffold N50 value was 3.6 Mb. Genome annotation revealed 634 carbohydrate-active enzyme (CAZyme) family genes. Through collinearity analysis, we further confirmed that the PC80 genome exhibited higher completeness and greater accuracy compared to the currently published genomes of P. ostreatus. At the matA locus of PC80, three hd1 genes and one hd2 gene were identified. At the matB locus, seven pheromone receptor genes and two pheromone precursor genes were detected. Further phylogenetic analysis indicated that three of these pheromone receptor genes are likely to have mating-specific functions. This complete genome assembly could provide a foundation for future genomic and genetic studies, facilitate the identification of key genes related to growth and developmental regulation, and promote technological innovations in P. ostreatus breeding and efficient utilization. Full article
Show Figures

Figure 1

18 pages, 3968 KiB  
Article
Design, Development, and Clinical Validation of a Novel Kit for Cell-Free DNA Extraction
by Ekin Çelik, Hande Güner, Gizem Kayalı, Haktan Bagis Erdem, Taha Bahsi and Hasan Huseyin Kazan
Diagnostics 2025, 15(15), 1897; https://doi.org/10.3390/diagnostics15151897 - 29 Jul 2025
Viewed by 253
Abstract
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, [...] Read more.
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, and reproducibility. Methods: We developed and optimized SafeCAP 2.0, a novel magnetic bead-based cfDNA extraction kit, focusing on efficient recovery, minimal genomic DNA contamination, and PCR compatibility. Optimization involved systematic evaluation of magnetic bead chemistry, buffer composition, and reagent volumes. Performance was benchmarked against a commercial reference kit (Apostle MiniMax) using spiked oligonucleotides and plasma from patients with stage IV NSCLC. Results: The optimized protocol demonstrated superior recovery with a limit of detection (LoD) as low as 0.3 pg/µL and a limit of quantification (LoQ) of 1 pg/μL with no detectable PCR inhibition. In comparative studies, SafeCAP 2.0 showed equivalent or improved performance over the commercial kit. Clinical validation using 47 patient plasma samples confirmed robust cfDNA recovery and fragment integrity. Conclusions: SafeCAP 2.0 offers a cost-effective, high-performance solution for cfDNA extraction in both research and clinical workflows. Its design and validation address key pre-analytical barriers, supporting integration into routine diagnostics and precision medicine platforms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 221
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 2164 KiB  
Article
Community Structure, Growth-Promoting Potential, and Genomic Analysis of Seed-Endophytic Bacteria in Stipagrostis pennata
by Yuanyuan Yuan, Shuyue Pang, Wenkang Niu, Tingting Zhang and Lei Ma
Microorganisms 2025, 13(8), 1754; https://doi.org/10.3390/microorganisms13081754 - 27 Jul 2025
Viewed by 229
Abstract
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. [...] Read more.
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. pennata. The results showed that while the overall diversity of bacterial communities from different sampling sites was similar, significant differences were observed in specific functional genes and species abundances. Nine endophytic bacterial strains were isolated from the seeds, among which Bacillus altitudinis strain L7 exhibited phosphorus solubilizing capabilities, nitrogen fixing, IAA production, siderophore generation, and multi-hydrolytic enzyme activities. Additionally, the genomic sequencing of L7 revealed the key genes involved in plant growth promotion and environmental adaptation, including Na+ efflux systems, K+ transport systems, compatible solute synthesis genes, and the gene clusters associated with nitrogen metabolism, IAA synthesis, phosphate solubilization, and siderophore synthesis. Strain L7 exhibits salt and osmotic stress tolerance while promoting plant growth, providing a promising candidate for desert microbial resource utilization and plant biostimulant development. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 4407 KiB  
Article
Mitochondrial Genome of Scutiger ningshanensis (Anura, Megophryidae, Scutiger): Insights into the Characteristics of the Mitogenome and the Phylogenetic Relationships of Megophryidae Species
by Siqi Shan, Simin Chen, Chengmin Li, Lingyu Peng, Dongmei Zhao, Yaqing Liao, Peng Liu and Lichun Jiang
Genes 2025, 16(8), 879; https://doi.org/10.3390/genes16080879 - 26 Jul 2025
Viewed by 282
Abstract
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns [...] Read more.
Background/Objectives: Scutiger ningshanensis (Fang, 1985) is an endemic Chinese amphibian species within the genus Scutiger (Megophryidae). Despite its ecological significance, its mitochondrial genome architecture and evolutionary relationships remain poorly understood. Given the high structural variability in Megophryidae mitogenomes and unresolved phylogenetic patterns in Scutiger, this study aims to (1) characterize the complete mitogenome of S. ningshanensis, (2) analyze its molecular evolution, and (3) clarify its phylogenetic position and divergence history within Megophryidae. Methods: The complete mitochondrial genome was sequenced and annotated, followed by analyses of nucleotide composition, codon usage bias, and selection pressures (Ka/Ks ratios). Secondary structures of rRNAs and tRNAs were predicted, and phylogenetic relationships were reconstructed using maximum likelihood and Bayesian methods. Divergence times were estimated using molecular clock analysis. Results: The mitogenome of S. ningshanensis is 17,282 bp long, encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and a control region, with a notable AT bias (61.05%) with nucleotide compositions of T (32.51%), C (24.64%), G (14.3%), and A (28.54%). All tRNAs exhibited cloverleaf structures except trnS1, which lacked a DHU stem. Phylogenetic analysis confirmed the monophyly of Scutiger, forming a sister clade to Oreolalax and Leptobrachium, and that S. ningshanensis and S. liubanensis are sister species with a close evolutionary relationship. Positive selection was detected in Atp8 (Ka/Ks > 1), suggesting adaptation to plateau environments, while other PCGs underwent purifying selection (Ka/Ks < 1). Divergence time estimation placed the origin of Megophryidae at~47.97 MYA (Eocene), with S. ningshanensis diverging~32.67 MYA (Oligocene). Conclusions: This study provides the first comprehensive mitogenomic characterization of S. ningshanensis, revealing its evolutionary adaptations and phylogenetic placement. The findings enhance our understanding of Megophryidae’s diversification and offer a genomic foundation for future taxonomic and conservation studies. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

29 pages, 6770 KiB  
Article
Machine Learning-Driven Design and Optimization of Multi-Metal Nitride Hard Coatings via Multi-Arc Ion Plating Using Genetic Algorithm and Support Vector Regression
by Yu Gu, Jiayue Wang, Jun Zhang, Yu Zhang, Bushi Dai, Yu Li, Guangchao Liu, Li Bao and Rihuan Lu
Materials 2025, 18(15), 3478; https://doi.org/10.3390/ma18153478 - 24 Jul 2025
Viewed by 241
Abstract
The goal of this study is to develop an efficient machine learning framework for designing high-hardness multi-metal nitride coatings, overcoming the limitations of traditional trial-and-error methods. The development of multicomponent metal nitride hard coatings via multi-arc ion plating remains a significant challenge due [...] Read more.
The goal of this study is to develop an efficient machine learning framework for designing high-hardness multi-metal nitride coatings, overcoming the limitations of traditional trial-and-error methods. The development of multicomponent metal nitride hard coatings via multi-arc ion plating remains a significant challenge due to the vast compositional search space. Although theoretical studies in macroscopic, mesoscopic, and microscopic domains exist, these often focus on idealized models and lack effective coupling across scales, leading to time-consuming and labor-intensive traditional methods. With advancements in materials genomics and data mining, machine learning has become a powerful tool in material discovery. In this work, we construct a compositional search space for multicomponent nitrides based on electronic configuration, valence electron count, electronegativity, and oxidation states of metal elements in unary nitrides. The search space is further constrained by FCC crystal structure and hardness theory. By incorporating a feature library with micro-, meso-, and macro-structural characteristics and using clustering analysis with theoretical intermediate variables, the model enriches dataset information and enhances predictive accuracy by reducing experimental errors. This model is successfully applied to design multicomponent metal nitride coatings using a literature-derived database of 233 entries. Experimental validation confirms the model’s predictions, and clustering is used to minimize experimental and data errors, yielding a strong agreement between predicted optimal molar ratios of metal elements and nitrogen and measured hardness performance. Of the 100 Vickers hardness (HV) predictions made by the model using input features like molar ratios of metal elements (e.g., Ti, Al, Cr, Zr) and atomic size mismatch, 82 exceeded the dataset’s maximum hardness, with the best sample achieving a prediction accuracy of 91.6% validated against experimental measurements. This approach offers a robust strategy for designing high-performance coatings with optimized hardness. Full article
(This article belongs to the Special Issue Advances in Computation and Modeling of Materials Mechanics)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 333
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

Back to TopTop