Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = genetically modified plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1854 KiB  
Article
Identification of SUMO Proteins and Their Expression Profile During Induction of Somatic Embryogenesis in Medicago truncatula Gaertn
by Anna Kujawska and Paulina Król
Int. J. Mol. Sci. 2025, 26(17), 8133; https://doi.org/10.3390/ijms26178133 - 22 Aug 2025
Abstract
Somatic embryogenesis (SE) is a key plant regeneration technique involving the reprogramming of somatic cells into embryogenic structures. This developmental transition is regulated by complex genetic and epigenetic mechanisms, including post-translational modifications such as SUMOylation—the covalent attachment of small ubiquitin-like modifier (SUMO) proteins [...] Read more.
Somatic embryogenesis (SE) is a key plant regeneration technique involving the reprogramming of somatic cells into embryogenic structures. This developmental transition is regulated by complex genetic and epigenetic mechanisms, including post-translational modifications such as SUMOylation—the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, influencing their function, stability, and interactions. While SUMOylation is known to regulate plant development and stress responses, its role in SE has remained unknown. In this study, we investigated the involvement of the SUMOylation pathway in SE induction in Medicago truncatula. Using BLASTp analysis with known SUMO pathway proteins from Arabidopsis thaliana and Glycine max, we identified 10 homologous genes in M. truncatula. Phylogenetic relationships, gene structure, and conserved motif analyses confirmed their evolutionary conservation and characteristic domains. Expression profiling revealed significant upregulation of SUMO pathway genes—including Mt SUMO2, Mt SAE1-2, Mt SCE1a-b, Mt MMS21, and Mt PIAL2—in embryogenic cell lines during early SE induction. Additionally, in silico prediction of SUMOylation sites and SUMO-interacting motifs (SIMs) in 12 key SE regulatory proteins indicated a broad potential for SUMO-mediated regulation. These findings suggest that SUMOylation may contribute to the acquisition of embryogenic competence during somatic cell reprogramming in plants. Full article
(This article belongs to the Special Issue Molecular Approach to Fern Development)
Show Figures

Figure 1

14 pages, 6190 KiB  
Article
Effects of Transgenic Insect-Resistant Maize HGK60 on Rhizosphere Soil Bacterial Communities
by Yanjun Chen, Junyi Yang, Libo Pan, Meng Liu, Qiuming Wang, Nengwen Xiao and Xiao Guan
Microorganisms 2025, 13(8), 1892; https://doi.org/10.3390/microorganisms13081892 - 14 Aug 2025
Viewed by 252
Abstract
While genetically modified crops bring significant economic benefits, the environmental safety issues they may pose have also received increasing attention. To study the impact of planting genetically modified insect-resistant crops on soil ecosystems, this research employed methods such as 16S rDNA amplicon full-length [...] Read more.
While genetically modified crops bring significant economic benefits, the environmental safety issues they may pose have also received increasing attention. To study the impact of planting genetically modified insect-resistant crops on soil ecosystems, this research employed methods such as 16S rDNA amplicon full-length sequencing, using transgenic Cry1Ah insect-resistant corn HGK60 and its conventional counterpart Zheng 58 as subjects for a three-year continuous survey to analyze the effects of planting transgenic Cry1Ah insect-resistant corn HGK60 on the rhizosphere bacterial community. The following results were obtained. (1) A total of 216 corn rhizosphere soil samples were annotated to 51 phyla, 119 orders, 221 families, and 549 genera. (2) Overall, there was no significant difference in the composition of the rhizosphere bacterial community between HGK60 and Zheng 58 at the phylum, class, order, or family levels (p > 0.05), and the planting of HGK60 did not significantly affect the relative abundance of rhizosphere probiotics (p > 0.05). Some differences appeared only briefly and were not reproducible. (3) Alpha and beta diversity analyses showed that overall, the planting of HGK60 had no significant impact on the structure of the rhizosphere bacterial community (p > 0.05). (4) Significant changes in the rhizosphere bacterial community were observed across different growth stages of corn. It can be concluded that the planting of HGK60 has no significant impact on the rhizosphere bacteria. This study provides valuable data support for the environmental safety assessment of genetically modified crops. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 2098 KiB  
Article
Efficacy of Transgenic Maize LD05 Against Fall Armyworm (Spodoptera frugiperda)
by Wenlan Li, Xiang Gao, Xinwei Hou, Zhaohua Ding, Zhaodong Meng and Runqing Yue
Plants 2025, 14(16), 2504; https://doi.org/10.3390/plants14162504 - 12 Aug 2025
Viewed by 340
Abstract
The fall armyworm (Spodoptera frugiperda (J.E. Smith)), which invaded China in 2018, has caused severe corn yield losses and increased pesticide application frequency. Bacillus thuringiensis (Bt)-based genetically modified corn represents an environmentally friendly and effective strategy for managing S. frugiperda. The [...] Read more.
The fall armyworm (Spodoptera frugiperda (J.E. Smith)), which invaded China in 2018, has caused severe corn yield losses and increased pesticide application frequency. Bacillus thuringiensis (Bt)-based genetically modified corn represents an environmentally friendly and effective strategy for managing S. frugiperda. The transgenic corn LD05 harbors the m2cryAb-vip3A insect-resistant fusion gene, which has demonstrated potent inhibitory effects against fall armyworm and is currently in the phase of applying for safety certification. Here, we evaluated the inhibitory efficacy of LD05 against S. frugiperda through laboratory and field experiments during 2022–2024. The LC50 and LC95 of M2CryAb-VIP3A against fall armyworm were 0.024 μg/cm2 and 0.508 μg/cm2, respectively; and the GLC50 and GLC95 were 0.142 μg cm−2 and 0.556 μg cm−2, respectively. M2CryAb-VIP3A expression of LD05 varied significantly across tissues, and remained stable between generations. Bioassays revealed significant tissue-specific differences in fall armyworm larval mortality for LD05 corn tissues, ranked as V5-stage leaves > R3-stage kernels > R1-stage silks. Field trials demonstrated that LD05 corn significantly reduced fall armyworm larval populations, leaf damage incidence, and plant damage incidence compared to non-Bt control Zheng58. Agronomic trait analysis showed no significant differences between LD05 and Zheng58. These results indicate that LD05 has a significant inhibitory effect on fall armyworm, which is an effective strategy for the comprehensive management of fall armyworm in China. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

18 pages, 676 KiB  
Review
Advances of Peptides for Plant Immunity
by Minghao Liu, Guangzhong Zhang, Suikang Wang and Quan Wang
Plants 2025, 14(15), 2452; https://doi.org/10.3390/plants14152452 - 7 Aug 2025
Viewed by 552
Abstract
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich [...] Read more.
Plant peptides, as key signaling molecules, play pivotal roles in plant growth, development, and stress responses. This review focuses on research progress in plant peptides involved in plant immunity, providing a detailed classification of immunity-related plant polypeptides, including small post-translationally modified peptides, cysteine-rich peptides, and non-cysteine-rich peptides. It discusses the mechanisms by which plant polypeptides confer disease resistance, such as their involvement in pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and regulation of hormone-mediated defense pathways. Furthermore, it explores potential agricultural applications of plant polypeptides, including the development of novel biopesticides and enhancement of crop disease resistance via genetic engineering. By summarizing current research, this review aims to provide a theoretical basis for in-depth studies on peptide-mediated disease resistance and offer innovative insights for plant disease control. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 3724 KiB  
Article
Exploring the Association Between Multidimensional Dietary Patterns and Non-Scarring Hair Loss Using Mendelian Randomization
by Lingfeng Pan, Philipp Moog, Caihong Li, Leonard Steinbacher, Samuel Knoedler, Haydar Kükrek, Ulf Dornseifer, Hans-Günther Machens and Jun Jiang
Nutrients 2025, 17(15), 2569; https://doi.org/10.3390/nu17152569 - 7 Aug 2025
Viewed by 644
Abstract
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary [...] Read more.
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary exposures and hair loss, leveraging genetic variants to address confounding biases. Methods: Genome-wide association study (GWAS) data from 161,625 UK Biobank participants were analyzed, focusing on food preferences and intake patterns. Genetic instruments for each of the 187 dietary exposures were selected at a genome-wide significance threshold (p < 5 × 10−8), with rigorous sensitivity analyses (MR-Egger, MR-PRESSO) to validate causality. Outcomes included AA and AGA datasets from the FinnGen consortium. Results: MR analysis identified 18 specific dietary exposures significantly associated with non-scarring hair loss (FDR < 0.05). Protective effects emerged for antioxidant-rich dietary exposures, represented by higher preferences for melon, onions, and tea. Elevated risks were observed for certain exposures, including croissants, goat cheese, and whole milk. Alcohol consumption exhibited the strongest risk associations. Our extensive analysis of alcohol intake, combining data from multiple studies, consistently identified it as a significant risk factor for both alopecia areata and androgenetic alopecia. Conclusions: These findings imply modifiable dietary patterns in hair loss pathophysiology. A dual strategy is proposed: prioritizing polyphenol-rich plant foods while minimizing pro-inflammatory triggers like processed carbohydrates and alcohol. Clinically, tailored dietary adjustments—reducing ultra-processed foods and alcohol—may complement existing therapies for hair loss management. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Impact of Nitrogen Fertilisation and Inoculation on Soybean Nodulation, Nitrogen Status, and Yield in a Central European Climate
by Waldemar Helios, Magdalena Serafin-Andrzejewska, Marcin Kozak and Sylwia Lewandowska
Agriculture 2025, 15(15), 1654; https://doi.org/10.3390/agriculture15151654 - 1 Aug 2025
Viewed by 376
Abstract
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate [...] Read more.
Soybean (Glycine max [L.] Merr.) cultivation is expanding in Central Europe due to the development of early-maturing cultivars and growing demand for plant-based protein produced without the use of genetically modified organisms. However, nitrogen (N) management remains a major challenge in temperate climates, where variable weather conditions can significantly affect nodulation and yield. This study evaluated the effects of three nitrogen fertilisation doses (0, 30, and 60 kg N·ha−1), applied in the form of ammonium nitrate (34% N) and two commercial rhizobial inoculants—HiStick Soy (containing Bradyrhizobium japonicum strain 532C) and Nitragina (including a Polish strain of B. japonicum)—on nodulation, nitrogen uptake, and seed yield. A three-year field experiment (2017–2019) was conducted in southwestern Poland using a two-factor randomized complete block design. Nodulation varied significantly across years, with the highest values recorded under favourable early-season moisture and reduced during drought. In the first year, inoculation with HiStick Soy significantly increased nodule number and seed yield compared to Nitragina and the uninoculated control. Nitrogen fertilisation consistently improved seed yield, although it had no significant effect on nodulation. The highest nitrogen use efficiency was observed with moderate nitrogen input (30 kg N·ha−1) combined with inoculation. These findings highlight the importance of integrating effective rhizobial inoculants with optimized nitrogen fertilisation to improve soybean productivity and nitrogen efficiency under variable temperate climate conditions. Full article
(This article belongs to the Special Issue Strategies to Enhance Nutrient Use Efficiency and Crop Nutrition)
Show Figures

Figure 1

18 pages, 2752 KiB  
Review
Research Advances in Multiple Embryos and Apomixis in Rice (Oryza sativa L.)
by Junhao Dan, Wuhua Long, Mudan Qiu, Longhui Zhang, Chaoxin Wu, Xue Jiang, Shengyan Fang, Susong Zhu and Huafeng Deng
Int. J. Mol. Sci. 2025, 26(15), 7257; https://doi.org/10.3390/ijms26157257 - 27 Jul 2025
Viewed by 488
Abstract
A typical seed of rice (Oryza sativa L.) gives rise to a single seedling. In contrast, seeds from multiple embryos may develop into two or more seedlings, one of which is generated via sexual reproduction, while the others are likely to originate [...] Read more.
A typical seed of rice (Oryza sativa L.) gives rise to a single seedling. In contrast, seeds from multiple embryos may develop into two or more seedlings, one of which is generated via sexual reproduction, while the others are likely to originate through apomictic pathways. Therefore, the occurrence of multiple embryos is often considered a hallmark of apomixis in rice. Apomixis refers to an asexual reproductive strategy wherein unreduced gametes form through modified meiosis (apomeiosis) without fertilization, thereby generating clonal offspring generally genetically identical to the maternal plant. This process is of great relevance in fixing heterosis in hybrid rice breeding. This review discusses the origin, frequency, genetic regulation, and candidate genes related to multiple embryos in rice and provides a systematic summary of the latest research advances in rice apomixis. The insights presented in this study provide a theoretical foundation for the application of apomixis in rice breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 446
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

34 pages, 2259 KiB  
Review
Unveiling the Molecular Mechanism of Azospirillum in Plant Growth Promotion
by Bikash Ranjan Giri, Sourav Chattaraj, Subhashree Rath, Mousumi Madhusmita Pattnaik, Debasis Mitra and Hrudayanath Thatoi
Bacteria 2025, 4(3), 36; https://doi.org/10.3390/bacteria4030036 - 18 Jul 2025
Viewed by 699
Abstract
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, [...] Read more.
Azospirillum is a well-studied genus of plant growth-promoting rhizobacteria (PGPR) and one of the most extensively researched diazotrophs. This genus can colonize rhizosphere soil and enhance plant growth and productivity by supplying essential nutrients to the host. Azospirillum–plant interactions involve multiple mechanisms, including nitrogen fixation, the production of phytohormones (auxins, cytokinins, indole acetic acid (IAA), and gibberellins), plant growth regulators, siderophore production, phosphate solubilization, and the synthesis of various bioactive molecules, such as flavonoids, hydrogen cyanide (HCN), and catalase. Thus, Azospirillum is involved in plant growth and development. The genus Azospirillum also enhances membrane activity by modifying the composition of membrane phospholipids and fatty acids, thereby ensuring membrane fluidity under water deficiency. It promotes the development of adventitious root systems, increases mineral and water uptake, mitigates environmental stressors (both biotic and abiotic), and exhibits antipathogenic activity. Biological nitrogen fixation (BNF) is the primary mechanism of Azospirillum, which is governed by structural nif genes present in all diazotrophic species. Globally, Azospirillum spp. are widely used as inoculants for commercial crop production. It is considered a non-pathogenic bacterium that can be utilized as a biofertilizer for a variety of crops, particularly cereals and grasses such as rice and wheat, which are economically significant for agriculture. Furthermore, Azospirillum spp. influence gene expression pathways in plants, enhancing their resistance to biotic and abiotic stressors. Advances in genomics and transcriptomics have provided new insights into plant-microbe interactions. This review explored the molecular mechanisms underlying the role of Azospirillum spp. in plant growth. Additionally, BNF phytohormone synthesis, root architecture modification for nutrient uptake and stress tolerance, and immobilization for enhanced crop production are also important. A deeper understanding of the molecular basis of Azospirillum in biofertilizer and biostimulant development, as well as genetically engineered and immobilized strains for improved phosphate solubilization and nitrogen fixation, will contribute to sustainable agricultural practices and help to meet global food security demands. Full article
Show Figures

Figure 1

31 pages, 1386 KiB  
Review
RNAi in Pest Control: Critical Factors Affecting dsRNA Efficacy
by Maribel Mendoza-Alatorre, Brenda Julian-Chávez, Stephanie Solano-Ornelas, Tania Samanta Siqueiros-Cendón, Jorge Ariel Torres-Castillo, Sugey Ramona Sinagawa-García, María Jazmín Abraham-Juárez, Carmen Daniela González-Barriga, Quintín Rascón-Cruz, Luis Ignacio Siañez-Estrada and Edward Alexander Espinoza-Sánchez
Insects 2025, 16(7), 737; https://doi.org/10.3390/insects16070737 - 18 Jul 2025
Viewed by 1549
Abstract
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been [...] Read more.
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been proposed as a safer alternative due to its high specificity, adaptability, and low ecological footprint. So far, dsRNA has proven effective in controlling various pest species, either through topical application or via genetically modified plants. Despite advances, large-scale implementation of RNAi remains challenging due to technical and biological hurdles that contribute to inconsistent performance. Key aspects such as dsRNA design, delivery techniques, and cellular uptake mechanisms still require refinement. Additionally, ensuring environmental stability, addressing biosafety concerns, and developing cost-effective production methods are essential for its practical application. In this review, we explore recent advances in the design and implementation of dsRNA, as well as the strategies that could support the successful integration of RNAi technology into pest management programs. Full article
Show Figures

Figure 1

60 pages, 3898 KiB  
Review
The Therapeutic Potential of Phytochemicals Unlocks New Avenues in the Management of Rheumatoid Arthritis
by Kalina A. Nikolova-Ganeva, Nikolina M. Mihaylova, Lidiya A. Kechidzhieva, Kristina I. Ivanova, Alexander S. Zarkov, Daniel L. Parzhanov, Momchil M. Ivanov and Andrey S. Marchev
Int. J. Mol. Sci. 2025, 26(14), 6813; https://doi.org/10.3390/ijms26146813 - 16 Jul 2025
Viewed by 863
Abstract
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis [...] Read more.
Rheumatoid arthritis (RA) is a progressive and systemic autoimmune disease, characterized by a chronic inflammatory process, affecting the lining of the synovial joints, many body organs/systems, and blood vessels. Its pathological hallmarks are hyperplasic synovium, bone erosion, and progressive joint destruction. Rheumatoid arthritis affects over 20 million people, with a worldwide prevalence of 0.5–1.0%, exhibiting gender, ethnic, and geographical differences. The progressive disability severely impairs physical motion and quality of life and is finally leading to a shortened life span. The pathogenesis of RA is a complex and still poorly understood process in which genetic and environmental factors are principally associated. Current treatment mostly relies on conventional/non-biological disease-modifying anti-rheumatic drugs (cDMARDs), analgesics, non-steroidal anti-inflammatory drugs, glucocorticoids, steroids, immunosuppresants, and biologic DMARDs, which only control inflammation and pain. Along with side effects (drug toxicity and intolerance), these anti-rheumatic drugs possess limited efficacy. Therefore, the discovery of novel multi-target therapeutics with an improved safety profile that function as inhibitors of RA-linked signaling systems are in high demand, and this is in the interest of both patients and clinicians. Plant-derived extracts, nutritional supplements, dietary medicine, and molecules with anti-inflammatory activity represent promising adjuvant agents or alternatives for RA therapeutics. This review not only aims to discuss the basic features of RA pathogenesis, risk factors, and signaling pathways but also highlights the research progress in pre-clinical RA in in vitro and in vivo models, revealing new avenues in the management of the disease in terms of comprehensive multidisciplinary strategies originating from medicinal plants and plant-derived molecules. Full article
(This article belongs to the Special Issue Natural Products as Multitarget Agents in Human Diseases)
Show Figures

Graphical abstract

40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 929
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

13 pages, 20460 KiB  
Article
The Effects of AtNCED3 on the Cuticle of Rice Leaves During the Nutritional Growth Period
by Yang Zhang, Yuwei Jia, Hui Chen, Min Wang, Xiaoli Li, Lanfang Jiang, Jianyu Hao, Xiaofei Ma and Hutai Ji
Int. J. Mol. Sci. 2025, 26(14), 6690; https://doi.org/10.3390/ijms26146690 - 12 Jul 2025
Viewed by 363
Abstract
The plant cuticle, a protective barrier against external stresses, and abscisic acid (ABA), a key phytohormone, are crucial for plant growth and stress responses. Heterologous expression of AtNCED3 in plants has been widely studied. In this research, by comparing the japonica rice cultivar [...] Read more.
The plant cuticle, a protective barrier against external stresses, and abscisic acid (ABA), a key phytohormone, are crucial for plant growth and stress responses. Heterologous expression of AtNCED3 in plants has been widely studied. In this research, by comparing the japonica rice cultivar Zhonghua 10 and its AtNCED3 over-expressing lines during the vegetative growth stage through multiple methods, we found that AtNCED3 over-expression increased leaf ABA content, enhanced epidermal wax and cutin accumulation, modified wax crystal density, and thickened the cuticle. These changes reduced leaf epidermal permeability and the transpiration rate, thus enhancing drought tolerance. This study helps understand the role of endogenous ABA in rice cuticle synthesis and its mechanism in plant drought tolerance, offering potential for genetic improvement of drought resistance in crops. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

12 pages, 3338 KiB  
Article
Natural CCD2 Variants and RNA Interference for Boosting Crocin Biosynthesis in Tomato
by Elena Moreno-Giménez, Eduardo Parreño, Lucía Morote, Alberto José López Jiménez, Cristian Martínez Fajardo, Silvia Presa, Ángela Rubio-Moraga, Antonio Granell, Oussama Ahrazem and Lourdes Gómez-Gómez
Biology 2025, 14(7), 850; https://doi.org/10.3390/biology14070850 - 12 Jul 2025
Viewed by 616
Abstract
Crocin biosynthesis involves a complex network of enzymes with biosynthetic and modifier enzymes, and the manipulation of these pathways holds promise for improving human health through the broad exploitation of these bioactive metabolites. Crocins play a significant role in human nutrition and health, [...] Read more.
Crocin biosynthesis involves a complex network of enzymes with biosynthetic and modifier enzymes, and the manipulation of these pathways holds promise for improving human health through the broad exploitation of these bioactive metabolites. Crocins play a significant role in human nutrition and health, as they exhibit antioxidant and anti-inflammatory activity. Plants that naturally accumulate high levels of crocins are scarce, and the production of crocins is highly limited by the characteristics of the crops and their yield. The CCD2 enzyme, initially identified in saffron, is responsible for converting zeaxanthin into crocetin, which is further modified to crocins by aldehyde dehydrogenases and glucosyltransferase enzymes. Crops like tomato fruits, which naturally contain high levels of carotenoids, offer valuable genetic resources for expanding synthetic biology tools. In an effort to explore CCD2 enzymes with improved activity, two CCD2 alleles from saffron and Crocosmia were introduced into tomato, together with a UGT gene. Furthermore, in order to increase the zeaxanthin pool in the fruit, an RNA interference construct was introduced to limit the conversion of zeaxanthin to violaxanthin. The expression of saffron CCD2, CsCCDD2L, led to the creation of transgenic tomatoes with significantly high crocins levels, reaching concentrations of 4.7 mg/g dry weight. The Crocosmia allele, CroCCD2, also resulted in high crocins levels, reaching a concentration of 2.1 mg/g dry weight. These findings underscore the importance of enzyme variants in synthetic biology, as they enable the development of crops rich in beneficial apocarotenoids. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

19 pages, 1845 KiB  
Article
Genetic Basis and Simulated Breeding Strategies for Enhancing Soybean Seed Protein Content Across Multiple Environments
by Xu Sun, Bo Hu, Wen-Xia Li and Hai-Long Ning
Plants 2025, 14(14), 2117; https://doi.org/10.3390/plants14142117 - 9 Jul 2025
Viewed by 544
Abstract
Soybeans are a primary source of plant-based protein, with seeds containing approximately 40% protein—a key quality trait. Selecting superior hybrid combinations and managing progeny effectively are crucial for developing high-protein soybean varieties. Using a recombinant inbred line population (RIL3613) derived from Dongnong L13 [...] Read more.
Soybeans are a primary source of plant-based protein, with seeds containing approximately 40% protein—a key quality trait. Selecting superior hybrid combinations and managing progeny effectively are crucial for developing high-protein soybean varieties. Using a recombinant inbred line population (RIL3613) derived from Dongnong L13 × Heihe 36 and its previously constructed high-density genetic linkage map, QTLs and QTL × environment interactions (QEIs) associated with seed protein content (SPC) were identified through the bi-parental population (BIP) model and multi-environment trials (MET) model in QTL IciMapping v4.2. Candidate genes were then predicted via sequence alignment and haplotype analysis between the parents. Finally, simulated breeding was conducted using the B4L function in the In Silico Breeding (ISB) module of the Blib platform to determine optimal breeding strategies across diverse environments. The analysis identified 19 QTLs associated with SPC and 97 QEIs linked to SPC. These QTLs collectively explained 84.442% of the phenotypic variance, with four QTLs exhibiting significant contributions. A key candidate gene, Glyma.12G231400, associated with soybean SPC, was predicted within the 38,995,090–39,293,825 bp interval on chromosome 12. Across 11 environments, three to six optimal breeding schemes were selected, all employing modified pedigree selection. These findings enhance our understanding of the genetic basis of soybean protein formation and provide technological support for molecular breeding for seed quality improvement. Full article
(This article belongs to the Special Issue Crop Genetics and Breeding)
Show Figures

Figure 1

Back to TopTop