Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,203)

Search Parameters:
Keywords = generalized fractional operators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1474 KB  
Article
A Fractional Hybrid Strategy for Reliable and Cost-Optimal Economic Dispatch in Wind-Integrated Power Systems
by Abdul Wadood, Babar Sattar Khan, Bakht Muhammad Khan, Herie Park and Byung O. Kang
Fractal Fract. 2026, 10(1), 64; https://doi.org/10.3390/fractalfract10010064 - 16 Jan 2026
Viewed by 146
Abstract
Economic dispatch in wind-integrated power systems is a critical challenge, yet many recent metaheuristics suffer from premature convergence, heavy parameter tuning, and limited ability to escape local optima in non-smooth valve-point landscapes. This study proposes a new hybrid optimization framework, the Fractional Grasshopper [...] Read more.
Economic dispatch in wind-integrated power systems is a critical challenge, yet many recent metaheuristics suffer from premature convergence, heavy parameter tuning, and limited ability to escape local optima in non-smooth valve-point landscapes. This study proposes a new hybrid optimization framework, the Fractional Grasshopper Optimization algorithm (FGOA), which integrates fractional-order calculus into the standard Grasshopper Optimization algorithm (GOA) to enhance its search efficiency. The FGOA method is applied to the economic load dispatch (ELD) problem, a nonlinear and nonconvex task that aims to minimize fuel and wind-generation costs while satisfying practical constraints such as valve-point loading effects (VPLEs), generator operating limits, and the stochastic behavior of renewable energy sources. Owing to the increasing role of wind energy, stochastic wind power is modeled through the incomplete gamma function (IGF). To further improve computational accuracy, FGOA is hybridized with Sequential Quadratic Programming (SQP), where FGOA provides global exploration and SQP performs local refinement. The proposed FGOA-SQP approach is validated on systems with 3, 13, and 40 generating units, including mixed thermal and wind sources. Comparative evaluations against recent metaheuristic algorithms demonstrate that FGOA-SQP achieves more accurate and reliable dispatch outcomes. Specifically, the proposed approach achieves fuel cost reductions ranging from 0.047% to 0.71% for the 3-unit system, 0.31% to 27.25% for the 13-unit system, and 0.69% to 12.55% for the 40-unit system when compared with state-of-the-art methods. Statistical results, particularly minimum fitness values, further confirm the superior performance of the FGOA-SQP framework in addressing the ELD problem under wind power uncertainty. Full article
Show Figures

Figure 1

18 pages, 2195 KB  
Article
On the Expansion of Legendre Polynomials in Bicomplex Space and Coupling with Fractional Operators
by Ahmed Bakhet, Shahid Hussain, Mohra Zayed and Aya M. Mourad
Axioms 2026, 15(1), 61; https://doi.org/10.3390/axioms15010061 - 15 Jan 2026
Viewed by 97
Abstract
In this paper, we introduce a novel version of the Legendre polynomials in the bicomplex system. We investigate the essential properties of the Legendre polynomial, focusing on its bicomplex structure, generating functions, orthogonality, and recurrence relations. We present a solution to the Legendre [...] Read more.
In this paper, we introduce a novel version of the Legendre polynomials in the bicomplex system. We investigate the essential properties of the Legendre polynomial, focusing on its bicomplex structure, generating functions, orthogonality, and recurrence relations. We present a solution to the Legendre differential equation in bicomplex space. Additionally, we discuss both theoretical and practical contributions, especially in bicomplex Riemann Liouville fractional calculus. We numerically study the construction of bicomplex Legendre polynomials, orthogonality, spectral projection, coefficient decay, and spectral convergence in bicomplex space. The findings contribute to a deeper insight into bicomplex functions, paving the way for further developments in science and mathematical analysis, and providing a foundation for future research on special functions and fractional operators within the bicomplex setting. Full article
(This article belongs to the Special Issue Special Functions and Related Topics, 2nd Edition)
Show Figures

Figure 1

29 pages, 2565 KB  
Article
Characterization of Low-Alcohol Wines Obtained by Post-Fermentative Reverse Osmosis and Vacuum Concentration
by Răzvan Vasile Filimon, Florin Dumitru Bora, Constantin Bogdan Nechita, Marius Niculaua, Cătălin Ioan Zamfir, Roxana Mihaela Filimon, Ancuţa Nechita and Valeriu V. Cotea
Foods 2026, 15(2), 321; https://doi.org/10.3390/foods15020321 - 15 Jan 2026
Viewed by 251
Abstract
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis [...] Read more.
In the context of climate change and the general trend toward a healthy lifestyle, reducing the alcoholic strength of wines poses a major challenge for producers. In order to obtain quality low-alcohol wines (LAWs), Muscat Ottonel conventional wine was subjected to reverse osmosis followed by vacuum concentration of the hydroalcoholic permeate (ROVC) or to two-step vacuum concentration (TSVC), with the recovery of aromas as the first alcoholic fraction (F1). Beverages with alcoholic concentrations of 3.50, 5.50, and 8.50% vol. were obtained, with compositional characteristics and sensory properties varying significantly with alcoholic strength and dealcoholization technique applied. ROVC produced wines with organic acids, volatile constituents, extract, and color intensity decreasing progressively with the reduction in alcohol concentration. At similar alcohol concentration, TSVC LAW showed a significantly higher phenolic content, antioxidant activity, volatile compounds (including esters and terpenes), and overall structural balance, maintaining better the typicity of wines. In both processes, reducing alcohol below 5.50% vol. significantly affected the quality and acceptability of the final product. Hierarchical cluster analysis indicated that TSVC LAWs were statistically closer to the conventional wine (control). These findings improve the understanding of how dealcoholization technologies affect the composition of wine, improving product quality, sustainability, and operational efficiency. Full article
Show Figures

Figure 1

28 pages, 652 KB  
Article
A Generalized Fractional Legendre-Type Differential Equation Involving the Atangana–Baleanu–Caputo Derivative
by Muath Awadalla and Dalal Alhwikem
Fractal Fract. 2026, 10(1), 54; https://doi.org/10.3390/fractalfract10010054 - 13 Jan 2026
Viewed by 82
Abstract
This paper introduces a fractional generalization of the classical Legendre differential equation based on the Atangana–Baleanu–Caputo (ABC) derivative. A novel fractional Legendre-type operator is rigorously defined within a functional framework of continuously differentiable functions with absolutely continuous derivatives. The associated initial value problem [...] Read more.
This paper introduces a fractional generalization of the classical Legendre differential equation based on the Atangana–Baleanu–Caputo (ABC) derivative. A novel fractional Legendre-type operator is rigorously defined within a functional framework of continuously differentiable functions with absolutely continuous derivatives. The associated initial value problem is reformulated as an equivalent Volterra integral equation, and existence and uniqueness of classical solutions are established via the Banach fixed-point theorem, supported by a proved Lipschitz estimate for the ABC derivative. A constructive solution representation is obtained through a Volterra–Neumann series, explicitly revealing the role of Mittag–Leffler functions. We prove that the fractional solutions converge uniformly to the classical Legendre polynomials as the fractional order approaches unity, with a quantitative convergence rate of order O(1α) under mild regularity assumptions on the Volterra kernel. A fully reproducible quadrature-based numerical scheme is developed, with explicit kernel formulas and implementation algorithms provided in appendices. Numerical experiments for the quadratic Legendre mode confirm the theoretical convergence and illustrate the smooth interpolation between fractional and classical regimes. An application to time-fractional diffusion in spherical coordinates demonstrates that the operator arises naturally in physical models, providing a mathematically consistent tool for extending classical angular analysis to fractional settings with memory. Full article
Show Figures

Figure 1

14 pages, 330 KB  
Article
Comprehensive Subfamilies of Bi-Univalent Functions Involving a Certain Operator Subordinate to Generalized Bivariate Fibonacci Polynomials
by Ibtisam Aldawish, Hari M. Srivastava, Sheza M. El-Deeb and Tamer M. Seoudy
Mathematics 2026, 14(2), 292; https://doi.org/10.3390/math14020292 - 13 Jan 2026
Viewed by 118
Abstract
This paper introduces novel subfamilies of analytic and bi-univalent functions in Ω=ςC:|ς|<1, defined by applying a linear operator associated with the Mittag–Leffler function and requiring subordination to domains related to generalized bivariate [...] Read more.
This paper introduces novel subfamilies of analytic and bi-univalent functions in Ω=ςC:|ς|<1, defined by applying a linear operator associated with the Mittag–Leffler function and requiring subordination to domains related to generalized bivariate Fibonacci polynomials. The proposed framework provides a unified treatment that generalizes numerous earlier studies by incorporating parameters controlling both the operator’s fractional calculus features and the domain’s combinatorial geometry. For these subfamilies, we establish initial coefficient bounds (d2, d3) and solve the Fekete–Szegö problem (d3ξd22). The derived inequalities are interesting, and their proofs leverage the intricate interplay between the series expansions of the Mittag–Leffler function and the generating function of the Fibonacci polynomials. By specializing the parameters governing the operator and the polynomial domain, we show how our main theorems systematically recover and extend a wide range of known results from the literature, thereby demonstrating the generality and unifying power of our approach. Full article
(This article belongs to the Special Issue Current Topics in Geometric Function Theory, 2nd Edition)
21 pages, 5472 KB  
Article
Multifidelity Topology Design for Thermal–Fluid Devices via SEMDOT Algorithm
by Yiding Sun, Yun-Fei Fu, Shuzhi Xu and Yifan Guo
Computation 2026, 14(1), 19; https://doi.org/10.3390/computation14010019 - 12 Jan 2026
Viewed by 161
Abstract
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate [...] Read more.
Designing thermal–fluid devices that reduce peak temperature while limiting pressure loss is challenging because high-fidelity (HF) Navier–Stokes–convection simulations make direct HF-driven topology optimization computationally expensive. This study presents a two-dimensional, steady, laminar multifidelity topology design framework for thermal–fluid devices operating in a low-to-moderate Reynolds number regime. A computationally efficient low-fidelity (LF) Darcy–convection model is used for topology optimization, where SEMDOT decouples geometric smoothness from the analysis field to produce CAD-ready boundaries. The LF optimization minimizes a P-norm aggregated temperature subject to a prescribed volume fraction constraint; the inlet–outlet pressure difference and the P-norm parameter are varied to generate a diverse candidate set. All candidates are then evaluated using a steady incompressible HF Navier–Stokes–convection model in COMSOL 6.3 under a consistent operating condition (fixed flow; pressure drop reported as an output). In representative single- and multi-channel case studies, SEMDOT designs reduce the HF peak temperature (e.g., ~337 K to ~323 K) while also reducing the pressure drop (e.g., ~18.7 Pa to ~12.6 Pa) relative to conventional straight-channel layouts under the same operating point. Compared with a conventional RAMP-based pipeline under the tested settings, the proposed approach yields a more favorable Pareto distribution (normalized hypervolume 1.000 vs. 0.923). Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Graphical abstract

25 pages, 522 KB  
Article
Fractional Integral Estimates of Boole Type: Majorization and Convex Function Approach with Applications
by Saad Ihsan Butt, Mohammed Alammar and Youngsoo Seol
Fractal Fract. 2026, 10(1), 49; https://doi.org/10.3390/fractalfract10010049 - 12 Jan 2026
Viewed by 118
Abstract
The goal of this paper is to use a Boole-type inequality framework to provide better estimates for differentiable functions. Using majorization theory, fractional integral operators are incorporated into a new auxiliary identity. The method establishes sharp bounds by combining the properties of convex [...] Read more.
The goal of this paper is to use a Boole-type inequality framework to provide better estimates for differentiable functions. Using majorization theory, fractional integral operators are incorporated into a new auxiliary identity. The method establishes sharp bounds by combining the properties of convex functions with classical inequalities like the Power mean and Hölder inequalities, as well as the Niezgoda–Jensen–Mercer (NJM) inequality for majorized tuples. Additionally, the study presents real-world examples involving special functions and examines pertinent quadrature rules. This work’s primary contribution is the extension and generalization of a number of results that are already known in the current body of mathematical literature. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

29 pages, 2977 KB  
Article
Metagenomic Profiling Reveals the Role of Soil Chemistry–Climate Interactions in Shaping the Bacterial Communities and Functional Repertories of Algerian Drylands
by Meriem Guellout, Zineb Guellout, Hani Belhadj, Aya Guellout, Antonio Gil Bravo and Atef Jaouani
Eng 2026, 7(1), 40; https://doi.org/10.3390/eng7010040 - 12 Jan 2026
Viewed by 200
Abstract
Arid and semi-arid soils represent extreme habitats where microbial life is constrained by high temperature, low water availability, salinity, and nutrient limitation, yet these ecosystems harbor unique bacterial communities that sustain key ecological processes. To explore the diversity and functional potential of prokaryotic [...] Read more.
Arid and semi-arid soils represent extreme habitats where microbial life is constrained by high temperature, low water availability, salinity, and nutrient limitation, yet these ecosystems harbor unique bacterial communities that sustain key ecological processes. To explore the diversity and functional potential of prokaryotic assemblages in Algerian drylands, we compared soils from three contrasting sites: The Oasis of Djanet (RM1), the hyper-arid Tassili of Djanet desert (RM2), and the semi-arid El Ouricia forest in Sétif (RM3). Physicochemical analyses revealed strong environmental gradients: RM2 exhibited the highest pH (8.66), electrical conductivity (11.7 dS/m), and sand fraction (56%), whereas RM3 displayed the greatest moisture (10.9%), organic matter (7.6%), and calcium carbonate (20.7%) content, with RM1 generally showing intermediate levels. High-throughput 16S rRNA gene sequencing generated >60,000 effective reads per sample with sufficient coverage (>0.99). Alpha diversity indices indicated the highest bacterial richness and diversity in RM2 (Chao1 = 3144, Shannon = 10.0), while RM3 showed lower evenness and the dominance of a few taxa. Across sites, 66 phyla and 551 genera were detected, dominated by Actinobacteriota (38–45%) and Chloroflexi (13–44%), with Proteobacteria declining from RM1 (17.5%) to RM3 (3.3%). Venn analysis revealed limited overlap, with only 58 operational taxonomic units shared among all sites, suggesting highly habitat-specific communities. Predictive functional profiling (PICRUSt2, Tax4Fun, FAPROTAX) indicated metabolism as the dominant functional category (≈50% of KEGG Level-1), with carbohydrate and amino acid metabolism forming the metabolic backbone. Notably, transport functions (ABC transporters), lipid metabolism, and amino acid degradation pathways were enriched in RM2–RM3, consistent with adaptation to osmotic stress, nutrient limitation, and energy conservation under aridity. Collectively, these findings demonstrate that Algerian arid and semi-arid soils host diverse, site-specific bacterial communities whose functional repertoires are strongly shaped by soil chemistry and climate, highlighting their ecological and biotechnological potential. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

26 pages, 3417 KB  
Article
Optimal Fractional Order PID Controller Design for Hydraulic Turbines Using a Multi-Objective Imperialist Competitive Algorithm
by Mohamed Nejlaoui, Abdullah Alghafis and Nasser Ayidh Alqahtani
Fractal Fract. 2026, 10(1), 46; https://doi.org/10.3390/fractalfract10010046 - 11 Jan 2026
Viewed by 146
Abstract
This paper introduces a novel approach for designing a Fractional Order Proportional-Integral-Derivative (FOPID) controller for the Hydraulic Turbine Regulating System (HTRS), aiming to overcome the challenge of tuning its five complex parameters (Kp,Ki,Kd, λ [...] Read more.
This paper introduces a novel approach for designing a Fractional Order Proportional-Integral-Derivative (FOPID) controller for the Hydraulic Turbine Regulating System (HTRS), aiming to overcome the challenge of tuning its five complex parameters (Kp,Ki,Kd, λ and μ). The design is formulated as a multi-objective optimization problem, minimized using the Multi-Objective Imperialist Competitive Algorithm (MOICA). The goal is to minimize two key transient performance metrics: the Integral of Squared Error (ISE) and the Integral of the Time Multiplied Squared Error (ITSE). MOICA efficiently generates a Pareto-front of non-dominated solutions, providing control system designers with diverse trade-off options. The resulting optimal FOPID controller demonstrated superior robustness when evaluated against simulated variations in key HTRS parameters (mg, eg and Tw). Comparative simulations against an optimally tuned integer-order PID and established literature methods (FOPID-GA, FOPID-MOPSO and FOPID-MOHHO) confirm the enhanced dynamic response and stable operation of the MOICA-based FOPID. The MOICA-tuned FOPID demonstrated superior performance for Setpoint Tracking, achieving up to a 26% faster settling speed (ITSE) and an 8% higher accuracy (ISE). Furthermore, for Disturbance Rejection, it showed enhanced robustness, leading to up to a 23% quicker recovery speed (ITSE) and an 18.9% greater error suppression (ISE). Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

20 pages, 1129 KB  
Article
Fractional Viscoelastic Modeling of Multi-Step Creep and Relaxation in an Aerospace Epoxy Adhesive
by Jesús Gabino Puente-Córdova, Flor Yanhira Rentería-Baltiérrez, José de Jesús Villalobos-Luna and Pedro López-Cruz
Symmetry 2026, 18(1), 130; https://doi.org/10.3390/sym18010130 - 9 Jan 2026
Viewed by 187
Abstract
Structural adhesives in aeronautical applications are routinely exposed to complex loading histories that generate time-dependent deformation, making accurate prediction of their viscoelastic response essential for reliable assessment of joint integrity. This work presents an integrated experimental and modeling study of the aerospace-grade epoxy [...] Read more.
Structural adhesives in aeronautical applications are routinely exposed to complex loading histories that generate time-dependent deformation, making accurate prediction of their viscoelastic response essential for reliable assessment of joint integrity. This work presents an integrated experimental and modeling study of the aerospace-grade epoxy adhesive 3M Scotch-Weld EC-2216 using multi-step creep and stress-relaxation tests performed at room temperature and controlled loading rates, combined with fractional viscoelastic modeling. Unlike traditional single-step characterizations, the multi-step protocol employed here captures the cumulative loading effects and fading-memory dynamics that govern the adhesive’s mechanical response. The experimental data were analyzed using fractional Maxwell, Voigt–Kelvin, and Zener formulations. Statistical evaluation based on the Bayesian Information Criterion (BIC) consistently identified the Fractional Zener Model (FZM) as the most robust representation of the stress-relaxation behavior, effectively capturing both the unrelaxed and relaxed modulus. The results demonstrate that EC-2216 exhibits hierarchical relaxation mechanisms and history-dependent viscoelasticity that cannot be accurately described by classical integer-order models. Overall, the study validates the use of fractional operators to represent the broad and hierarchical relaxation spectra typical of toughened aerospace epoxies and provides a rigorous framework for durability assessment and predictive modeling of adhesively bonded structures. Full article
Show Figures

Figure 1

16 pages, 7290 KB  
Article
Transfer Learning Fractional-Order Recurrent Neural Network for MPPT Under Weak PV Generation Conditions
by Umair Hussan, Mudasser Hassan, Umar Farooq, Huaizhi Wang and Muhammad Ahsan Ayub
Fractal Fract. 2026, 10(1), 41; https://doi.org/10.3390/fractalfract10010041 - 8 Jan 2026
Viewed by 198
Abstract
Photovoltaic generation systems (PVGSs) face significant efficiency challenges under partial shading conditions and rapidly changing irradiance due to the limitations of conventional maximum power point tracking (MPPT) methods. To address these challenges, this paper proposes a Transfer Learning-based Fractional-Order Recurrent Neural Network (TL-FRNN) [...] Read more.
Photovoltaic generation systems (PVGSs) face significant efficiency challenges under partial shading conditions and rapidly changing irradiance due to the limitations of conventional maximum power point tracking (MPPT) methods. To address these challenges, this paper proposes a Transfer Learning-based Fractional-Order Recurrent Neural Network (TL-FRNN) for robust global maximum power point (GMPP) tracking across diverse operating conditions. The incorporation of fractional-order dynamics introduces long-term memory and non-local behavior, enabling smoother state evolution and improved discrimination between local and global maxima, particularly under weak and partially shaded conditions. The proposed approach leverages Caputo fractional derivatives with Grünwald–Letnikov approximation to capture the history-dependent behavior of PVGSs while implementing a parameter-partitioning strategy that separates shared features from task-specific parameters. The architecture employs a multi-head design with GMPP regression and partial shading classification capabilities, trained through a two-stage process of pretraining on general PV data followed by efficient fine-tuning on target systems with limited site-specific data. The TL-FRNN achieved 99.2% tracking efficiency with 98.7% GMPP detection accuracy, reducing convergence time by 53% compared to state-of-the-art alternatives while requiring 72% less retraining time through transfer learning. This approach represents a significant advancement in adaptive, intelligent MPPT control for real-world photovoltaic energy-harvesting systems. Full article
Show Figures

Figure 1

17 pages, 1626 KB  
Article
Syngas Production from Liquid and Solid Fractions of Swine Manure in a 0.5 kWth Chemical Looping Gasification Unit
by Yldeney Domingos, Margarita de Las Obras Loscertales, María T. Izquierdo and Alberto Abad
Energies 2026, 19(2), 317; https://doi.org/10.3390/en19020317 - 8 Jan 2026
Viewed by 212
Abstract
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward [...] Read more.
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward net-negative carbon emissions. The experimental campaign was conducted at 900 °C in a continuously operated 0.5 kWth CLG unit consisting of two interconnected fluidized bed reactors (fuel and air). Ilmenite was employed as the oxygen carrier to provide the oxygen required for gasification. This study focuses on the gasification of raw swine manure, comprising both solid and liquid fractions. The solid fraction was introduced via a screw feeder, while the liquid fraction was simulated by injecting an ammonia–water solution as gasifying agents (water or ammonia + water). The effect of the liquid fraction on syngas composition, carbon conversion, and nitrogen species (N2, NH3, N2O, NO2, and NO) was evaluated at ammonia concentrations typical of swine manure (800–5600 mg/L). Results showed an average syngas composition for solid and liquid fraction feeding of ~31% CO2, 20% CO, 41% H2, 7% CH4, and 0.5% C2 hydrocarbons, with 91–96% carbon conversion. Benzene and naphthalene dominated the tar compounds. CO2 capture potential reached 60%, with nitrogen mainly converted to N2. Full article
Show Figures

Graphical abstract

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 372
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
13 pages, 313 KB  
Article
Comparison of N-Terminal Pro-B-Type Natriuretic Peptide Between Cats with Cardiogenic Arterial Thromboembolism and Cats with Occult Cardiomyopathy Without Arterial Thromboembolism
by Michelle A. Oranges, Lisa M. Freeman, Elizabeth A. Rozanski, Emily T. Karlin and John E. Rush
Animals 2026, 16(2), 157; https://doi.org/10.3390/ani16020157 - 6 Jan 2026
Viewed by 146
Abstract
To help assess the relationship between N-terminal pro-B-type natriuretic peptide (NT-proBNP) and feline cardiogenic arterial thromboembolism (ATE), the objective of this retrospective study was to compare plasma NT-proBNP concentrations between cats with cardiomyopathy that developed ATE (ATE group) and cats with occult cardiomyopathy [...] Read more.
To help assess the relationship between N-terminal pro-B-type natriuretic peptide (NT-proBNP) and feline cardiogenic arterial thromboembolism (ATE), the objective of this retrospective study was to compare plasma NT-proBNP concentrations between cats with cardiomyopathy that developed ATE (ATE group) and cats with occult cardiomyopathy that did not develop ATE within 1 year of testing (occult cardiomyopathy [OCM] group). Cats with cardiomyopathy and congestive heart failure (CHF) but no ATE (CHF group) were included for comparison. Cats with cardiomyopathy that had NT-proBNP testing were classified into ATE, OCM, or CHF groups. Clinical, echocardiographic, treatment, and NT-proBNP data from medical records were reviewed and compared among groups. A receiver operating characteristic curve was generated to develop a cutoff point for NT-proBNP. Cats were then compared based on this cutoff point. The ATE group (n = 25) had significantly higher NT-proBNP concentrations than the OCM group (n = 31; p < 0.001); there was no significant difference in NT-proBNP concentrations between the ATE and CHF groups (p = 0.92). The estimated optimal NT-proBNP cutoff point to separate OCM and ATE groups was 491 pmol/L (sensitivity = 96.0%, specificity = 93.5%). Cats with NT-proBNP > 491 pmol/L had a larger left atrium, thicker left ventricle, lower fractional shortening, and higher prevalence of spontaneous echogenic contrast and left atrial thrombi on echocardiography. These preliminary, hypothesis-generating findings suggest that NT-proBNP concentrations > 491 pmol/L may help detect cats with OCM at risk for ATE, but given the limitations of this retrospective study, prospective studies are needed to evaluate the potential utility of this measurement. Full article
Show Figures

Figure 1

13 pages, 1261 KB  
Article
The Self-Adjoint Fractional Heun Operator and Its Spectral Properties
by Muath Awadalla
Mathematics 2026, 14(2), 204; https://doi.org/10.3390/math14020204 - 6 Jan 2026
Viewed by 181
Abstract
This paper introduces a rigorously defined fractional Heun operator constructed through a symmetric composition of left and right Riemann–Liouville fractional derivatives. By deriving a compatible fractional Pearson-type equation, a new weight function and Hilbert space setting are established, ensuring the operator’s self-adjointness under [...] Read more.
This paper introduces a rigorously defined fractional Heun operator constructed through a symmetric composition of left and right Riemann–Liouville fractional derivatives. By deriving a compatible fractional Pearson-type equation, a new weight function and Hilbert space setting are established, ensuring the operator’s self-adjointness under natural fractional boundary conditions. Within this framework, we prove the existence of a real, discrete spectrum and demonstrate that the corresponding eigenfunctions form a complete orthogonal system in Lωα2(a,b). The central theoretical result shows that the fractional eigenpairs (λn(α),un(α)) converge continuously to their classical Heun counterparts (λn(1),un(1)) as α1. This provides a rigorous analytic bridge between fractional and classical spectral theories. A numerical study based on the fractional Legendre case confirms the predicted self-adjointness and spectral convergence, illustrating the smooth deformation of the classical eigenfunctions into their fractional counterparts. The results establish the fractional Heun operator as a mathematically consistent generalization capable of generating new families of orthogonal fractional functions. Full article
Show Figures

Figure 1

Back to TopTop