Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (789)

Search Parameters:
Keywords = gelatin gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3224 KiB  
Article
GelMA Core–Shell Microgel Preparation Based on a Droplet Microfluidic Device for Three-Dimensional Tumor Ball Culture and Its Drug Testing
by Xindong Yang, Yi Xu, Dongchen Zhu and Xianqiang Mi
Molecules 2025, 30(15), 3305; https://doi.org/10.3390/molecules30153305 - 7 Aug 2025
Abstract
Gelatin methacrylate (GelMA) microgels serve as promising bioscaffolds for tissue engineering and drug screening. However, conventional solid GelMA microgels often exhibit limited mass transfer efficiency and provide insufficient protection for embedded cells. In this study, we developed a droplet-based microfluidic platform to fabricate [...] Read more.
Gelatin methacrylate (GelMA) microgels serve as promising bioscaffolds for tissue engineering and drug screening. However, conventional solid GelMA microgels often exhibit limited mass transfer efficiency and provide insufficient protection for embedded cells. In this study, we developed a droplet-based microfluidic platform to fabricate core–shell structured GelMA microgels. This system enabled precise control over microgel size and core-to-shell ratio by modulating flow rates. Encapsulation of A549 cells within these core–shell microgels preserved cellular viability and facilitated the formation of three-dimensional tumor spheroids. These outcomes confirmed both the protective function of the core–shell architecture during encapsulation and the overall biocompatibility of the microgels. The developed GelMA core–shell microgel system presents considerable applicability in research domains such as organoid modeling and high-throughput pharmacological screening. Full article
Show Figures

Figure 1

23 pages, 3724 KiB  
Article
An Injectable, Dual-Curing Hydrogel for Controlled Bioactive Release in Regenerative Endodontics
by Meisam Omidi, Daniela S. Masson-Meyers and Jeffrey M. Toth
J. Compos. Sci. 2025, 9(8), 424; https://doi.org/10.3390/jcs9080424 - 7 Aug 2025
Abstract
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) [...] Read more.
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) and compares its performance to a conventional gelatin methacryloyl (GelMA). The dAM-MA platform was designed for biphasic release, incorporating both free vascular endothelial growth factor (VEGF) for an initial burst and matrix-metalloproteinase-cleavable VEGF conjugates for sustained delivery. The dAM-MA hydrogel achieved shape-fidelity via thermal gelation at 37 °C and possessed tunable stiffness (0.5–7.8 kPa) after visible-light irradiation. While showing high cytocompatibility comparable to GelMA (>125% hDPSC viability), the dAM-MA platform markedly outperformed the control in promoting endothelial tube formation (up to 800 µm total length; 42 branch points at 96 h). The biphasic VEGF release from dAM-MA matched physiological injury kinetics, driving both early chemotaxis and late vessel maturation. These results demonstrate that dAM-MA hydrogels combine native extracellular matrix complexity with practical, dual-curing injectability and programmable VEGF kinetics, offering a promising scaffold for minimally invasive pulp–dentin regeneration. Full article
(This article belongs to the Special Issue Biomedical Composite Applications)
Show Figures

Figure 1

27 pages, 15414 KiB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 - 7 Aug 2025
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

15 pages, 2079 KiB  
Article
Incorporation of Encapsulated Omega-3 in 3D-Printed Food Gels: A Study on Rheology, Extrusion, and Print Performance in Dual Ink Printing
by Adrián Matas-Gil, Francisco de-la-Haba, Marta Igual, Purificación García-Segovia and Javier Martínez-Monzó
Foods 2025, 14(15), 2681; https://doi.org/10.3390/foods14152681 - 30 Jul 2025
Viewed by 232
Abstract
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model [...] Read more.
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model food gel composed of gelatin and iota-carrageenan. Four formulations with varying concentrations of encapsulated omega-3 (0%, 3%, 3.75%, and 6%) were evaluated for their rheological, textural, and printability properties. Rheological analysis revealed a progressive increase in storage modulus (G′) from 1200 Pa (0%) to 2000 Pa (6%), indicating enhanced elastic behavior. Extrusion analysis showed a reduction in maximum extrusion force from 325 N (0%) to 250 N (6%), and an increase in buffer time from 390 s to 500 s. Print fidelity at time 0 showed minimal deviation in the checkerboard geometry (area deviation: −12%), while the concentric cylinder showed the highest stability over 60 min (height deviation: 9%). These findings highlight the potential of using encapsulated bioactive compounds in 3D food printing to develop functional foods with tailored nutritional and mechanical properties. Full article
Show Figures

Figure 1

19 pages, 3238 KiB  
Article
Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels
by Wanyi Sun, Qiuyu Lu, Jiajing Chen, Xinxin Fan, Shengnan Zhan, Wenge Yang, Tao Huang and Fulai Li
Foods 2025, 14(15), 2631; https://doi.org/10.3390/foods14152631 - 26 Jul 2025
Viewed by 495
Abstract
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) [...] Read more.
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) or κ-carrageenan (κC, 0.07% (w/v)). The results revealed that the gel strength, hardness, and chewiness of the composite gels initially increased (pH 4–6) and subsequently decreased with rising pH levels. This trend correlated with the formation of a dense gel network structure. Furthermore, as pH increased, in vitro digestibility showed a similar pH-dependent trend, with FG–XG demonstrating superior enhancement compared to FG–κC. The addition of XG and κC resulted in increased gas production and a decreased pH during fermentation. Intestinal microbiota analysis revealed that both FG–XG and FG–κC improved the abundances of Proteobacteria and Bacteroidete while reducing Firmicutes. Compared to FG–XG and FG, FG–κC promoted higher levels of the genera Lachnospiraceae and Bacteroides, suggesting a more favorable impact on intestinal health. These findings provide valuable insights into the pH-responsive functional properties of FG-based hydrogels and their potential applications in designing novel food matrices with enhanced nutritional and probiotic attributes. Full article
Show Figures

Figure 1

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 790
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

15 pages, 2303 KiB  
Article
Octacalcium Phosphate/Calcium Citrate/Methacrylated Gelatin Composites: Optimization of Photo-Crosslinking Conditions and Osteogenic Potential Evaluation
by Yuejun Wang, Taishi Yokoi, Masaya Shimabukuro and Masakazu Kawashita
Int. J. Mol. Sci. 2025, 26(14), 6889; https://doi.org/10.3390/ijms26146889 - 17 Jul 2025
Viewed by 251
Abstract
Bone grafting is essential for the regeneration of bone defects where natural healing is inadequate. Octacalcium phosphate (OCP)/calcium citrate (CC)/pig gelatin (pig Gel) composites promote hydroxyapatite (HAp) formation in simulated body fluid (SBF); however, the rapid degradation of pig Gel leads to their [...] Read more.
Bone grafting is essential for the regeneration of bone defects where natural healing is inadequate. Octacalcium phosphate (OCP)/calcium citrate (CC)/pig gelatin (pig Gel) composites promote hydroxyapatite (HAp) formation in simulated body fluid (SBF); however, the rapid degradation of pig Gel leads to their degradation in SBF within 7 d. To address this, we developed a 35% OCP/35% CC/30% methacrylated gelatin (GelMA) composite by leveraging the tuneable photo-crosslinking ability of GelMA to enhance the initial structural stability in SBF. However, the optimal synthetic photo-crosslinking conditions and the apatite-forming abilities of the OCP/CC/GelMA composite require investigation. In this study, we employed photo-crosslinking to synthesize homogeneous OCP/CC/GelMA composites with initial structural stability in SBF and evaluated their HAp-forming ability in SBF as an indicator of osteogenic potential, in comparison with the OCP/CC/pig Gel composites. Both GelMA- and pig Gel-based composites were prepared and immersed in SBF for 7 d to assess HAp formation. Although the OCP/CC/GelMA composite showed reduced HAp nucleation compared to the OCP/CC/pig Gel composites, it exhibited enhanced initial structural stability in SBF while retaining its HAp-forming ability. These findings highlight the OCP/CC/GelMA composite as a stable and promising scaffold for bone regeneration, laying the groundwork for further research. Full article
Show Figures

Figure 1

13 pages, 3222 KiB  
Article
Effect of Flaxseed Gum on the Gelling and Structural Properties of Fish Gelatin
by Ting-Ting Wu, Ya-Ting Kuang, Chun-Yan Peng, Xin-Wu Hu, Ping Yuan, Xiao-Mei Sha and Zi-Zi Hu
Fishes 2025, 10(7), 346; https://doi.org/10.3390/fishes10070346 - 14 Jul 2025
Viewed by 223
Abstract
Fish gelatin (FG) has garnered significant attention as an alternative to mammalian gelatin, primarily attributed to its distinct advantages. These include the absence of epidemic transmission risks and the lack of religious restrictions, making it a more universally acceptable and safer option. However, [...] Read more.
Fish gelatin (FG) has garnered significant attention as an alternative to mammalian gelatin, primarily attributed to its distinct advantages. These include the absence of epidemic transmission risks and the lack of religious restrictions, making it a more universally acceptable and safer option. However, its application is limited due to shortcomings such as insufficient gel properties (such as rheological properties, gel strength, etc.). In this study, flaxseed gum (FFG) of 0–1.2% w/v was used to modify FG. The rheological properties, structural characteristics, and chemical bond changes of FG before and after modification were systematically analyzed using instruments such as a rheometer, infrared spectrometer, and Zeta potential analyzer. The results revealed that an appropriate amount of FFG could increase the gel strength of FG, but excessive FFG (>0.4%) reduced its gel strength. Moreover, FFG could increase the gelation transition temperature and apparent viscosity of the composite gel. FTIR confirmed that FFG and FG were bound through hydrogen bonding, β-sheet structure formation, and multi-electrolyte complexation. The ESEM showed that FFG promoted the formation of a denser network structure of FG. This study laid a theoretical foundation for the application and development of FG in the field of high-gel foods. Full article
(This article belongs to the Special Issue Fish Processing and Preservation Technologies)
Show Figures

Graphical abstract

24 pages, 5036 KiB  
Article
Eugenol@natural Zeolite vs. Citral@natural Zeolite Nanohybrids for Gelatin-Based Edible-Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstantinos Zaharioudakis, Katerina Katerinopoulou, Maria Baikousi, Nikolaos D. Andritsos, Charalampos Proestos, Nikolaos Chalmpes, Aris E. Giannakas and Constantinos E. Salmas
Gels 2025, 11(7), 518; https://doi.org/10.3390/gels11070518 - 3 Jul 2025
Viewed by 428
Abstract
In this study, aligned with the principles of the circular economy and sustainability, novel eugenol@natural zeolite (EG@NZ) and citral@natural zeolite (CT@NZ) nanohybrids were developed. These nanohybrids were successfully incorporated into a pork gelatin (Gel)/glycerol (Gl) composite matrix using an extrusion–compression molding method to [...] Read more.
In this study, aligned with the principles of the circular economy and sustainability, novel eugenol@natural zeolite (EG@NZ) and citral@natural zeolite (CT@NZ) nanohybrids were developed. These nanohybrids were successfully incorporated into a pork gelatin (Gel)/glycerol (Gl) composite matrix using an extrusion–compression molding method to produce innovative active packaging films: Gel/Gl/xEG@NZ (where x = 5, 10, and 15%wt.) and Gel/Gl/xCT@NZ (where x = 5 and 10%wt.). All films exhibited zero oxygen barrier properties. Release kinetic studies showed that both EG@NZ and CT@NZ nanohybrids adsorbed up to 58%wt. of their respective active compounds. However, EG@NZ exhibited a slow and nearly complete release of eugenol, whereas CT@NZ released approximately half of its citral content at a faster rate. Consequently, the obtained Gel/Gl/xEG@NZ films demonstrated significantly higher antioxidant activity as measured by the 2,2-diphenyl-1-picrylhydrazylradical (DPPH) assay and superior antibacterial effectiveness against Escherichia coli and Listeria monocytogenes compared to their CT-based counterparts. Overall, the Gel/Gl/xEG@NZ films show strong potential for applications as active pads for fresh pork ham slices, offering zero oxygen permeability, enhanced antioxidant and antibacterial properties, and effective control of total viable count (TVC) growth, maintaining a low and steady rate beyond the 10th day of a 26-day storage period. Full article
(This article belongs to the Special Issue Edible Gel Coatings and Membranes)
Show Figures

Figure 1

31 pages, 9591 KiB  
Article
Deformable Fricke-XO-Gelatin Radiochromic Dosimeter of Ionizing Radiation and Its Applications in Quality Assurance Tests for Radiation Therapy
by Michał Piotrowski, Piotr Maras, Zbigniew Stempień, Radosław Wach and Marek Kozicki
Materials 2025, 18(13), 3135; https://doi.org/10.3390/ma18133135 - 2 Jul 2025
Viewed by 358
Abstract
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The [...] Read more.
This work presents a Fricke radiochromic gel dosimeter with xylenol orange (XO) and a gelatin matrix modified with sorbitol. The dosimeter, combined with 2D scanning using a flatbed scanner and data processing using dedicated software packages, creates a radiotherapy dosimetry measurement system. The dosimeter reacts to ionizing radiation by changing color as a result of the formation of complexes of Fe3+ and XO molecules. It was characterized in terms of thermal and chemical stability and mechanical properties. The presence of sorbitol improved the mechanical and thermal properties of the dosimeter. The dosimeter maintains chemical stability, enabling its use in dosimetric applications, for at least six weeks. The dose–response characteristics of the dosimeter are discussed and indicate a dynamic dose–response of the dosimeter (up to saturation) of about 20 Gy and a linear dose–response of about 12.5 Gy. The following applications of the dosimeter are discussed: (i) as a 2D dosimeter in a plastic container for performing a coincidence test of radiation and mechanical isocenters of a medical accelerator, and (ii) for in vivo dosimetry as a 2D dosimeter alone and simultaneously as a bolus and a 2D dosimeter. Research has shown that the dosimeter has promise in many applications. Full article
Show Figures

Figure 1

21 pages, 4997 KiB  
Article
3D-Printed Multi-Stimulus-Responsive Hydrogels: Fabrication and Characterization
by Jinzhe Wu, Zhiyuan Ma, Qianqian Tang and Runhuai Yang
Micromachines 2025, 16(7), 788; https://doi.org/10.3390/mi16070788 - 1 Jul 2025
Viewed by 450
Abstract
Stimulus-responsive hydrogels have broad applications in the biomedical, sensing, and actuation fields. However, conventional fabrication methods are often limited to 2D structures, hindering the creation of complex, personalized 3D hydrogel architectures. Furthermore, hydrogels responding to only a single stimulus and delays in fabrication [...] Read more.
Stimulus-responsive hydrogels have broad applications in the biomedical, sensing, and actuation fields. However, conventional fabrication methods are often limited to 2D structures, hindering the creation of complex, personalized 3D hydrogel architectures. Furthermore, hydrogels responding to only a single stimulus and delays in fabrication techniques restrict their practical utility in biomedicine. In this study, we developed two novel multi-stimuli-responsive hydrogels (based on Gelatin/Sodium Alginate and Tannic Acid/EDTA-FeNa complexes) specifically designed for direct ink writing (DIW) 3D printing. We systematically characterized the printed properties and optimized component ratio, revealing sufficient mechanical strength (e.g., tensile modulus: Gel/SA-TA ≥ 0.22854 ± 0.021 MPa and Gel/SA-TA@Fe3+ ≥ 0.35881 ± 0.021 MPa), high water content (e.g., water absorption rate Gel/SA-TA ≥ 70.21% ± 1.5% and Gel/SA-TA@Fe3+ ≥ 64.86% ± 1.28%), excellent biocompatibility (e.g., cell viability: Gel/SA-TA and Gel/SA-TA@Fe3+ ≥ 90%) and good shape memory performance (e.g., the highest shape recovery rate of Gel/SA-TA reaches 74.85% ± 4.776%). Furthermore, we explored electrical characteristics, showing that the impedance value of Gel/SA-TA@Fe3+ hydrogel changes significantly under finger bending and NIR irradiation. This investigation demonstrates the potential of these 3D-printed multi-stimuli hydrogels for applications such as wearable flexible strain sensors. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

13 pages, 336 KiB  
Review
The Use of Gelatin Methacrylate (GelMA) in Cartilage Tissue Engineering: A Comprehensive Review
by Kush Savsani, Alexandra Hunter Aitchison, Nicholas B. Allen, Elsie A. Adams and Samuel B. Adams
Bioengineering 2025, 12(7), 700; https://doi.org/10.3390/bioengineering12070700 - 27 Jun 2025
Viewed by 609
Abstract
Cartilage injuries, due to their limited regenerative capacity, often result in chronic pain and functional impairment. These injuries are difficult to manage with conventional surgical repair techniques; therefore, alternative treatments are necessary. Gelatin methacrylate (GelMA) has emerged as a promising biomaterial for cartilage [...] Read more.
Cartilage injuries, due to their limited regenerative capacity, often result in chronic pain and functional impairment. These injuries are difficult to manage with conventional surgical repair techniques; therefore, alternative treatments are necessary. Gelatin methacrylate (GelMA) has emerged as a promising biomaterial for cartilage tissue engineering due to its biocompatibility, tunable mechanical properties, and ability to be used in advanced applications like 3D bioprinting. This review examines the synthesis, properties, and limitations of GelMA in cartilage repair, focusing on its applications in 3D bioprinting for the creation of patient-specific cartilage constructs. It also highlights preclinical studies exploring the potential of GelMA-based scaffolds in various animal models. Despite its advantages, challenges remain, such as the mechanical limitations of GelMA and its degradation rate in dynamic environments. Hybrid scaffolds, in situ bioprinting, and personalized bioinks offer solutions to these issues. Ultimately, long-term clinical trials are needed to assess the durability and efficacy of GelMA-based scaffolds in human applications. Future research is aimed at overcoming these challenges, improving the mechanical strength of GelMA scaffolds, and enhancing their clinical translation for cartilage repair. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Regeneration)
Show Figures

Graphical abstract

19 pages, 2541 KiB  
Article
Dopamine-Conjugated Methacrylated Gelatin Hydrogel—Physical, Mechanical, and Biological Properties
by Weiwen Lu, Maedeh Rahimnejad, Beatriz Ometto Sahadi and Marco C. Bottino
Gels 2025, 11(7), 499; https://doi.org/10.3390/gels11070499 - 26 Jun 2025
Viewed by 527
Abstract
This study develops and characterizes GelMA–dopamine conjugates as novel tissue adhesives, offering an alternative to sutures. GelMA was synthesized at 5%, 10%, and 15% (w/v) with medium and high dopamine (DOPA) conjugation. Adhesives were evaluated for swelling, degradation, mechanical [...] Read more.
This study develops and characterizes GelMA–dopamine conjugates as novel tissue adhesives, offering an alternative to sutures. GelMA was synthesized at 5%, 10%, and 15% (w/v) with medium and high dopamine (DOPA) conjugation. Adhesives were evaluated for swelling, degradation, mechanical strength, and cytocompatibility using AlamarBlue assays and F-actin staining to assess cell viability and adhesion. Our findings indicate that DOPA conjugation significantly reduced the swelling ratio while increasing the biodegradation rate, resulting in enhanced release of free methacrylate groups over time. The mechanical properties and adhesion capabilities showed a complex relationship with DOPA substitution. Notably, the formulation containing 10% GelMA with high dopamine conjugation (HD) exhibited superior adhesion and mechanical strength. All formulations demonstrated shear-thinning behavior and recovery, making them suitable for injection and bioprinting applications. Although increased DOPA levels negatively affected crosslinking, the optimal formulation achieved a balance between adhesion and gel concentration. Rapid crosslinking was achieved within five minutes, enhancing the material’s suitability for clinical applications. In vitro cell-based assays confirmed the non-cytotoxic nature of the optimal adhesives, with metabolic activity showing significant increases over a 7-day period. These advancements support the development of improved tissue adhesives, potentially reducing reliance on sutures and enhancing wound healing outcomes. Full article
Show Figures

Graphical abstract

22 pages, 1001 KiB  
Review
Bioactive Hydrogels for Spinal Cord Injury Repair: Emphasis on Gelatin and Its Derivatives
by Alexandra Daniela Rotaru-Zavaleanu, Marius Bica, Sorin-Nicolae Dinescu, Mihai Andrei Ruscu, Ramona Constantina Vasile, Andrei Calin Zavate and Venera Cristina Dinescu
Gels 2025, 11(7), 497; https://doi.org/10.3390/gels11070497 - 26 Jun 2025
Viewed by 597
Abstract
Spinal cord injuries (SCIs) present a major clinical challenge, often resulting in permanent loss of function and limited treatment options. Traditional approaches, including surgery, drugs, and rehabilitation, have had modest success in restoring neural connectivity due to the complex pathophysiology of SCI. In [...] Read more.
Spinal cord injuries (SCIs) present a major clinical challenge, often resulting in permanent loss of function and limited treatment options. Traditional approaches, including surgery, drugs, and rehabilitation, have had modest success in restoring neural connectivity due to the complex pathophysiology of SCI. In recent years, bioactive hydrogels have gained attention as a versatile platform for neural repair. Their ability to mimic the extracellular matrix, deliver therapeutic agents, and support cell survival makes them promising tools in regenerative medicine. This narrative review highlights the latest advances in hydrogel-based therapies for SCI, with a focus on innovations such as self-healing, conductive, and anti-inflammatory hydrogels. We also explore hybrid approaches that integrate nanomaterials, stem cells, and bioelectronics to address both primary and secondary injury mechanisms. While various hydrogel systems have been investigated, we place particular emphasis on gelatin-based hydrogels, especially gelatin methacryloyl (GelMA), due to their emerging clinical relevance. GelMA stands out for its bioactivity, tunable mechanics, and compatibility with 3D printing, making it a strong candidate for personalized therapies and scalable production. Unlike previous reviews that broadly summarize hydrogel use, this work specifically contextualizes gelatin-based platforms within the wider landscape of SCI repair, underscoring their translational potential. We also address current challenges, such as immune response, long-term integration, and clinical validation, and suggest future directions for bridging the gap from bench to bedside. Full article
(This article belongs to the Special Issue Gelatin-Based Materials for Tissue Engineering)
Show Figures

Figure 1

Back to TopTop