Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,112)

Search Parameters:
Keywords = gel consistency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1262 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
33 pages, 19356 KiB  
Article
Hoffman–Lauritzen Analysis of Crystallization of Hydrolyzed Poly(Butylene Succinate-Co-Adipate)
by Anna Svarcova and Petr Svoboda
Crystals 2025, 15(7), 645; https://doi.org/10.3390/cryst15070645 - 14 Jul 2025
Viewed by 188
Abstract
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening [...] Read more.
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening its polydispersity index (PDI from ~2 to 7 after 64 days). Differential scanning calorimetry (DSC) analysis revealed that hydrolytic degradation dramatically accelerated crystallization rates, reducing crystallization time roughly 10-fold (e.g., from ~3000 s to ~300 s), and crystallinity increased from 34% to 63%. Multiple melting peaks suggested the presence of lamellae with varying thicknesses, consistent with the Gibbs–Thomson equation. Isothermal crystallization kinetics were evaluated using the Avrami equation (with n ≈ 3), reciprocal half-time of crystallization, and a novel inflection point slope method, all confirming accelerated crystallization; for instance, the slope increased from 0.00517 to 0.05203. Polarized optical microscopy (POM) revealed evolving spherulite morphologies, including hexagonal and flower-like dendritic spherulites with diamond-shape ends, while wide-angle X-ray diffraction (WAXD) showed a crystallization range shift to higher temperatures (e.g., from 72–61 °C to 82–71 °C) and a 14% increase in crystallite diameter, aligning with increased melting point and lamellar thickness and overall increased crystallinity. Full article
Show Figures

Figure 1

16 pages, 3539 KiB  
Article
The Wx/SSIIa and GS3/GW7 Alleles, Both Individually and in Combination, Can Significantly Distinguish Rice Germplasm Quality
by Yuanyuan Hao, Junfeng Xu, Mingming Wu, Ying Zhu, Jiayu Song, Yifei Han, Chunshou Li and Fudeng Huang
Int. J. Mol. Sci. 2025, 26(14), 6726; https://doi.org/10.3390/ijms26146726 - 14 Jul 2025
Viewed by 144
Abstract
As living standards rise, there has been a growing emphasis on quality traits related to rice’s taste potential. Recent studies explored correlations among quality traits, but the influence of major genes governing a specific quality trait on other quality traits remains elusive. Here, [...] Read more.
As living standards rise, there has been a growing emphasis on quality traits related to rice’s taste potential. Recent studies explored correlations among quality traits, but the influence of major genes governing a specific quality trait on other quality traits remains elusive. Here, we report on the application of grain quality genes, two of Waxy (Wx) and Starch synthase II-a (SSIIa), which dominates in rice cooking and eating quality, and two grain length/width-related genes, grain size 3 (GS3) and grain width 7 (GW7), on appearance quality traits. Five allele-specific markers for these genes were developed, and used to stack the desirable alleles at these loci. The effects of individual or combined alleles at the loci were evaluated using a set of 156 rice germplasm. We found that the Wx-In1 (Intron 1) locus exerts a major effect in controlling both amylose content and gel consistency, while the SSIIa-Ex8 (Exon 8) locus primarily governs alkali spreading value. The impact on chalkiness-related traits follows the hierarchy of Wx-In1 > SSIIa-Ex8 > Wx-Ex10 (Exon 10). GS3-Ex2 (Exon 2) has a highly significant impact on chalkiness-related traits, and the GW7-Pro (Promoter) locus exerts a synergistic effect. The GS3-Ex2 locus exerts an effect in controlling both gel consistency and alkali spreading value, while the GW7-Pro locus governs amylose content. The data for newly developed allele-specific markers will facilitate the improvement of rice quality in rice. Full article
(This article belongs to the Special Issue Molecular and Epigenetic Regulation in Seed Development)
Show Figures

Figure 1

19 pages, 6405 KiB  
Article
The Venom Proteome of the Ecologically Divergent Australian Elapid, Southern Death Adder Acanthophis antarcticus
by Theo Tasoulis, C. Ruth Wang, Shaun Ellis, Tara L. Pukala, Joanna Sumner, Kate Murphy, Nathan Dunstan and Geoffrey K. Isbister
Toxins 2025, 17(7), 352; https://doi.org/10.3390/toxins17070352 - 14 Jul 2025
Viewed by 511
Abstract
The composition of Australian snake venoms is the least well-known of any continent. We characterised the venom proteome of the southern death adder Acanthophis antarcticus—one of the world’s most morphologically and ecologically divergent elapids. Using a combined bottom-up proteomic and venom gland [...] Read more.
The composition of Australian snake venoms is the least well-known of any continent. We characterised the venom proteome of the southern death adder Acanthophis antarcticus—one of the world’s most morphologically and ecologically divergent elapids. Using a combined bottom-up proteomic and venom gland transcriptomic approach employing reverse-phase chromatographic and gel electrophoretic fractionation strategies in the bottom-up proteomic workflow, we characterised 92.8% of the venom, comprising twelve different toxin identification hits belonging to seven toxin families. The most abundant protein family was three-finger toxins (3FTxs; 59.8% whole venom), consisting mostly of one long-chain neurotoxin, alpha-elapitoxin-Aa2b making up 59% of the venom and two proteoforms of another long-chain neurotoxin. Phospholipase A2s (PLA2s) were the second most abundant, with four different toxins making up 22.5% of the venom. One toxin was similar to two previous non-neurotoxic PLA2s, making up 16% of the venom. The remaining protein families present were CTL (3.6%), NGF (2.5%), CRiSP (1.8%), LAAO (1.4%), and AChE (0.8%). A. antarcticus is the first Australian elapid characterised that has a 3FTx dominant venom, a composition typical of elapids on other continents, particularly cobras Naja sp. The fact that A. antarcticus has a venom composition similar to cobra venom while having a viper-like ecology illustrates that similar venom expressions can evolve independently of ecology. The predominance of post-synaptic neurotoxins (3FTxs) and pre-synaptic neurotoxins (PLA2) is consistent with the neurotoxic clinical effects of envenomation in humans. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

15 pages, 2630 KiB  
Article
Mechanistic Insights into Full Solid-Waste Activators for Enhancing the Performance of Blast Furnace Slag–Fly Ash Cementitious Composites
by Huiying Zhang, Yongchun Li, Dingbang Wei, Xu Wu and Yapeng Wang
Materials 2025, 18(14), 3275; https://doi.org/10.3390/ma18143275 - 11 Jul 2025
Viewed by 259
Abstract
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS [...] Read more.
To address the practical limitations of conventional alkaline activators (e.g., handling hazards, cost) and promote the resource utilization of industrial solid wastes, this study developed a novel all-solid-waste activator system comprising soda residue (SR) and carbide slag (CS). The synergistic effects of SR-CS activators on the hydration behavior of blast furnace slag (GGBS)–fly ash (FA) cementitious composites were systematically investigated. Mechanical performance, phase evolution, and microstructural development were analyzed through compressive strength tests, XRD, FTIR, TG-DTG, and SEM-EDS. Results demonstrate that in the SR-CS activator system, which combines with desulfuriation gypsum as sulfate activator, increasing CS content elevates the normal consistency water demand due to the high-polarity, low-solubility Ca(OH)2 in CS. The SR-CS activator accelerates the early hydration process of cementitious materials, shortening the paste setting time while achieving compressive strengths of 17 MPa at 7 days and 32.4 MPa at 28 days, respectively. Higher fly ash content reduced strength owing to increased unreacted particles and prolonged setting. Conversely, desulfurization gypsum exhibited a sulfate activation effect, with compressive strength peaking at 34.2 MPa with 4 wt% gypsum. Chloride immobilization by C-S-H gel was confirmed, effectively mitigating environmental risks associated with SR. This work establishes a sustainable pathway for developing low-carbon cementitious materials using multi-source solid wastes. Full article
Show Figures

Figure 1

14 pages, 351 KiB  
Article
Vaginal Adsorbent Gel as a Therapeutic Agent: Is a New Era Beginning for HPV?
by Fatma Ozmen, Sule Gul Aydin, Sevtap Seyfettinoglu, Sevda Bas and Mehmet Ali Narin
J. Clin. Med. 2025, 14(14), 4826; https://doi.org/10.3390/jcm14144826 - 8 Jul 2025
Viewed by 238
Abstract
Objectives: Persistent Human Papillomavirus (HPV) infection in the cervix and the preinvasive lesions it causes are significant risk factors for cervical cancer. Therefore, a treatment strategy is necessary to facilitate the clearance of HPV and prevent the progression of preinvasive lesions without causing [...] Read more.
Objectives: Persistent Human Papillomavirus (HPV) infection in the cervix and the preinvasive lesions it causes are significant risk factors for cervical cancer. Therefore, a treatment strategy is necessary to facilitate the clearance of HPV and prevent the progression of preinvasive lesions without causing cervical tissue destruction. This study aimed to evaluate the effectiveness of a vaginal adsorbent gel composed of a hydroxyethyl cellulose matrix formulation containing dispersed silicon dioxide, antioxidant sodium selenite, deflamin, and citric acid in patients with HPV infection. Methods: The study was designed as a retrospective cohort study and involved 449 women infected with HPV. For the purposes of the study, the patients were divided into two groups: the treatment group (TG) comprised 207 patients who used the vaginal gel daily for a period of three months, while the control group (CG), consisting of 242 patients, received no treatment under an “active surveillance” protocol. The study’s endpoints encompassed the domains of cytology, histology, and HPV clearance. Results: The regression rate of smear pathologies was 24.8% in the control group and 29.0% in the group using the vaginal adsorbent gel. In the first year, the histological regression rate in cervical biopsies was 49.3% in the treatment group and 19.4% in the control group, with a significant difference between groups (p < 0.001). Moreover, the clearance rate of HPV types was found to be significantly higher in the group using the vaginal adsorbent gel. Conclusions: The findings of this study suggest that the outpatient treatment approach can effectively prevent the oncogenic progression of cervical dysplasia. This alternative method has been shown to be efficacious in preventing the progression of cervical dysplasia and promoting regression. Furthermore, the efficacy of this gel in eradicating HPV has been demonstrated within a 12-month period. Full article
Show Figures

Figure 1

17 pages, 1876 KiB  
Article
Seroprevalence and Molecular Analysis of Bovine Leukemia Virus in Kazakhstan
by Saltanat Mamanova, Ainur Nurpeisova, Elvira Bashenova, Saira Kaimoldina, Vladimir Kirpichenko, Perizat Akshalova, Aiken Karabassova, Malik Yussupov, Akzhigit Mashzhan, Dauriya Tazhbayeva, Zhandos Abay, Marzena Rola-Luszczak, Jacek Kuzmak, Raikhan Nissanova and Markhabat Kassenov
Viruses 2025, 17(7), 956; https://doi.org/10.3390/v17070956 - 7 Jul 2025
Viewed by 356
Abstract
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics [...] Read more.
Bovine leukemia virus (BLV) remains a major concern for cattle industries worldwide due to its persistent nature, economic impact, and challenges in control. In this study, we conducted a comprehensive nationwide survey of BLV in Kazakhstan between 2014 and 2024, utilizing serological diagnostics to assess prevalence and characterize viral genotypes (2024). A total of 433,537 serum samples were screened by agar gel immunodiffusion (AGID), revealing an overall seroprevalence of 5.87%, with the highest rates observed in the North Kazakhstan, Kostanay, and East Kazakhstan regions. In 2024, a targeted analysis of 3736 serum and 536 whole blood samples across 17 regions was performed using AGID, ELISA, real-time PCR, and nested PCR. ELISA demonstrated higher sensitivity than AGID (10.4% vs. 8.2%), confirmed by statistical correlation (r = 0.97, p < 0.001) and a Wilcoxon signed-rank test (p = 0.026). Real-time PCR detected BLV DNA in 4.7% of samples, with the highest positivity in the East Kazakhstan and Abai regions, confirming active viral circulation. Validation of a domestically developed AGID diagnostic kit showed full concordance with commercial assays (IDEXX, IDvet), supporting its use in national surveillance programs. These findings highlight the endemic status of BLV in Kazakhstan. Molecular analysis of sequenced isolates revealed the presence of genotype G-7, consistent with strains circulating in neighboring countries. Together, these results underscore the importance of integrated serological and molecular approaches for effective monitoring and control. Full article
(This article belongs to the Special Issue Viral Diseases of Domestic Animals)
Show Figures

Figure 1

17 pages, 1758 KiB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 439
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

15 pages, 1140 KiB  
Article
Serum Proteomic Changes in Pet Rabbits with Subclinical and Clinical Encephalitozoonosis in Thailand
by Taksaon Duangurai, Onrapak Reamtong, Tipparat Thiangtrongjit, Siriluk Jala, Peerut Chienwichai and Naris Thengchaisri
Animals 2025, 15(13), 1962; https://doi.org/10.3390/ani15131962 - 3 Jul 2025
Viewed by 403
Abstract
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits [...] Read more.
Encephalitozoon cuniculi causes both clinical and subclinical infections in rabbits, complicating a diagnosis due to the limitations of conventional tools like ELISA. This study analyzes serum proteomic profiles across clinical, subclinical, and healthy rabbits to identify discriminatory biomarkers. Serum from 90 pet rabbits (30 per group) was pooled (10 samples per pool, 3 pools per group) and analyzed using one-dimensional gel electrophoresis and mass spectrometry. The proteomic analysis revealed 109, 98, and 74 proteins expressed in healthy, subclinical, and clinical groups, respectively. Of these, 50, 40, and 33 proteins were unique to the healthy, subclinical, and clinical groups, respectively, with only 10 proteins shared across all. A total of 88 proteins were differentially expressed in infected groups compared to healthy controls. Importantly, 12 proteins were consistently upregulated in both subclinical and clinical infections. These include markers related to the immune response (beta-2-microglobulin, alpha-2-HS-glycoprotein), coagulation (antithrombin-III, alpha-1-antiproteinase S-1), vitamin A transport (retinol-binding proteins), lipid metabolism (apolipoprotein C-III), cytoskeletal regulation (actin-depolymerizing factor), extracellular matrix integrity (fibrillin 2), and oxidative stress (monooxygenase DBH-like 1). Additionally, Gc-globulin and ER lipid-raft-associated 1 were linked to immune modulation and signaling. These findings identify specific serum proteins as promising biomarkers for distinguishing subclinical from clinical encephalitozoonosis in rabbits, enabling an early diagnosis and effective disease monitoring. Full article
(This article belongs to the Special Issue Advances in Exotic Pet Medicine)
Show Figures

Figure 1

23 pages, 1943 KiB  
Article
Potentials and Challenges in Development of Vesicular Phospholipid Gel as a Novel Dermal Vehicle for Thymol
by Sabina Keser, Zora Rukavina, Marica Jozić, Lea Pavlović-Mitrović, Magda Vodolšak, Kristina Kranjčec, Darija Stupin Polančec, Gordana Maravić-Vlahoviček, Jasmina Lovrić, Maja Šegvić Klarić and Željka Vanić
Pharmaceutics 2025, 17(7), 854; https://doi.org/10.3390/pharmaceutics17070854 - 29 Jun 2025
Viewed by 364
Abstract
Background/Objectives: Thymol, one of the main compounds of thyme essential oil, has shown promising effects in treating various skin disorders owing to its anti-inflammatory, antimicrobial and antioxidative activities. Due to its limited solubility in water, thymol is commonly used in higher concentrations to [...] Read more.
Background/Objectives: Thymol, one of the main compounds of thyme essential oil, has shown promising effects in treating various skin disorders owing to its anti-inflammatory, antimicrobial and antioxidative activities. Due to its limited solubility in water, thymol is commonly used in higher concentrations to achieve a suitable therapeutic effect, which can consequently lead to skin irritation. To overcome these limitations, we incorporated thymol into a vesicular phospholipid gel (VPG), a novel semisolid dermal vehicle consisting of highly concentrated dispersion of phospholipid vesicles (liposomes). Methods: Thymol was successfully loaded into two VPGs differing in bilayer fluidity, which were characterized for the physicochemical and rheological properties, storage stability, in vitro release, ex vivo skin permeability, in vitro compatibility with epidermal cells, wound healing potential, and antibacterial activity against skin-relevant bacterial strains. Results: High pressure homogenization method enabled preparation of VPG-liposomes of neutral surface charge in the size range 140–150 nm with polydispersity indexes below 0.5. Both types of VPGs exhibited viscoelastic solid-like structures appropriate for skin administration and ensured skin localization of thymol. Although both types of VPGs enabled prolonged release of thymol, the presence of cholesterol in the VPG increased the rigidity of the corresponding liposomes and further slowed down thymol release. Conclusions: Loading of thymol into VPGs significantly reduced its cytotoxicity toward human keratinocytes in vitro even at very high concentrations, compared to free thymol. Moreover, it facilitated in vitro wound healing activity, proving its potential as a vehicle for herbal-based medicines. However, the antibacterial activity of thymol against Staphylococcus aureus and methicillin-resistant S. aureus was hindered by VPGs, which represents a challenge in their development. Full article
(This article belongs to the Special Issue Skin Care Products for Healthy and Diseased Skin)
Show Figures

Graphical abstract

16 pages, 2069 KiB  
Article
Natural-Origin Edible Gels as Delivery Systems for Green Tea Extract: Formulation, Physicochemical, and Biopharmaceutic Profile Assessment
by Andreja Poceviciute, Agne Mazurkeviciute and Lina Raudone
Molecules 2025, 30(13), 2789; https://doi.org/10.3390/molecules30132789 - 28 Jun 2025
Viewed by 257
Abstract
Natural-origin edible gels are gaining attention as innovative carriers for bioactive compounds, offering consumer-friendly formats and potential to enhance stability and bioavailability. This study aimed to develop and characterize edible gels incorporating Camellia sinensis (L.) Kuntze extract using different plant-based gelling agents, including [...] Read more.
Natural-origin edible gels are gaining attention as innovative carriers for bioactive compounds, offering consumer-friendly formats and potential to enhance stability and bioavailability. This study aimed to develop and characterize edible gels incorporating Camellia sinensis (L.) Kuntze extract using different plant-based gelling agents, including whole flaxseeds, ground flaxseeds, medium-size oatmeal, and coarse oatmeal. The physical properties of the gels were evaluated by rheological (flow curve) and pH studies. The phytochemical composition of the green tea extract and gels with this extract and the main phenolic compounds, including catechins, gallic acid, and caffeine, were evaluated by high-performance liquid chromatography. The biopharmaceutical properties of the prepared gels were evaluated by dissolution testing. Rheological analysis revealed that oat-based gels exhibited higher viscosity (up to 24.33 Pa·s) compared to flaxseed-based gels. Despite differences in consistency, no statistically significant differences were found in total phenolic release among gel formulations (p > 0.05), except for epigallocatechin, which showed significantly higher release from coarse oatmeal gels (p > 0.05). The findings suggest that both flaxseed- and oatmeal-based gels are promising natural carriers for green tea phytochemicals, offering standardized dosing and potential cognitive health benefits. Further studies are warranted to assess the in vivo bioavailability and long-term stability of these formulations. Full article
Show Figures

Figure 1

16 pages, 2521 KiB  
Article
Tuning the Gel Network Structure and Rheology of Acid-Induced Casein Gels via Thiol Blocking
by Thomas Pütz and Ronald Gebhardt
Int. J. Mol. Sci. 2025, 26(13), 6206; https://doi.org/10.3390/ijms26136206 - 27 Jun 2025
Viewed by 255
Abstract
This study systematically investigates how thiol–disulfide interactions influence the structure and mechanical properties of casein gels. Acid gels were prepared from suspensions of micellar casein (MC) powder that were heat-treated at 70 °C. Thiol groups were variably blocked with N-ethylmaleimide (NEM). The gels [...] Read more.
This study systematically investigates how thiol–disulfide interactions influence the structure and mechanical properties of casein gels. Acid gels were prepared from suspensions of micellar casein (MC) powder that were heat-treated at 70 °C. Thiol groups were variably blocked with N-ethylmaleimide (NEM). The gels were characterized using stress–strain measurements, rheological analyses, and confocal microscopy. The stress–strain curves exhibited a biphasic behavior, with an initial linear elastic phase followed by a linear plastic region and a nonlinear failure zone. Compared to control samples, the addition of 100 mM NEM reduced the gel strength by 50%, while G′ and G″ increased by around 100%, unexpectedly. NEM-treated gels consist of uniformly sized building blocks coated with a whey protein layer. Strong physical interactions and dense packing enhance viscoelasticity under short deformations but reduce the compressive strength during prolonged loading. In contrast, control samples without NEM demonstrate weak viscoelasticity and increased compressive strength. The former is attributed to a broader particle size distribution from lower acid stability in the untreated gels, while the particularly high compressive strength of heat-treated gels additionally results from disulfide cross-links. The results show that thiol blocking and heating enable the targeted formation of acid casein gels with high shear stability but a low compressive strength. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Graphical abstract

15 pages, 1927 KiB  
Article
Evaluating a Novel Hydrocolloid Alternative for Yogurt Production: Rheological, Microstructural, and Sensory Properties
by F. N. U. Akshit, Ting Mao, Shwetha Poojary, Venkata Chelikani and Maneesha S. Mohan
Foods 2025, 14(13), 2252; https://doi.org/10.3390/foods14132252 - 25 Jun 2025
Viewed by 392
Abstract
This study aimed to assess the viability of a new gelling agent, formed by a combination of disodium 5-guanylate and lactic acid, as a potential substitute for conventional hydrocolloids in yogurt production. Six different yogurt samples containing novel gel (combination of lactic acid [...] Read more.
This study aimed to assess the viability of a new gelling agent, formed by a combination of disodium 5-guanylate and lactic acid, as a potential substitute for conventional hydrocolloids in yogurt production. Six different yogurt samples containing novel gel (combination of lactic acid and disodium 5-guanylate), disodium 5-guanylate, gelatin, agar-agar, lactic acid, and a control yogurt without any hydrocolloid or other additives, were studied. As expected, all the yogurt samples exhibited shear-thinning behavior. The novel gel yogurt, when compared to the control yogurt, displayed similar viscosity at a low shear rate of 4.5 s−1 (mimicking the shearing during manual scooping with a spoon) and lower viscosity at a shear rate of 60.8 s−1 (mimicking the agitation in the mouth). Notably, the novel gel yogurt demonstrated a lower flow behavior index (0.13 vs. 0.40 on day 1), reduced syneresis (23.37% vs. 33.75%), and had a higher consistency coefficient (9.2 vs. 7.25 on day 1) compared to the control yogurt. The novel gel yogurt exhibited superior rupture strength compared to yogurt with other hydrocolloids, such as gelatin and agar-agar, and similar brittleness to yogurt with gelatin. Microstructural analysis revealed an aggregated and compact protein network in the novel gel yogurt, analogous to the yogurt with gelatin. Sensory evaluations indicated no significant differences between the control and the novel gel yogurt. Therefore, the novel gelling agent studied can serve as a cost-effective alternative in yogurt production, compared to conventional hydrocolloids that are in short supply, in high demand, and expensive in the market. Full article
Show Figures

Graphical abstract

16 pages, 3042 KiB  
Article
Development and Evaluation of Modified Rotor–Stator Knives for Enhanced Fine Grinding of Chicken Meat–Bone Raw Material in Colloid Mill
by Zhanibek Yessimbekov, Rasul Turagulov, Aitbek Kakimov, Anuarbek Suychinov, Eleonora Okuskhanova and Assemgul Baikadamova
Appl. Sci. 2025, 15(13), 7106; https://doi.org/10.3390/app15137106 - 24 Jun 2025
Viewed by 281
Abstract
The growing demand for cost-effective, high-quality protein ingredients in the meat industry highlights the need for advanced processing methods capable of producing uniform, functional meat–bone pastes from poultry by-products. This study investigates the optimization of colloid milling parameters for the fine grinding of [...] Read more.
The growing demand for cost-effective, high-quality protein ingredients in the meat industry highlights the need for advanced processing methods capable of producing uniform, functional meat–bone pastes from poultry by-products. This study investigates the optimization of colloid milling parameters for the fine grinding of chicken meat–bone by-products, with a focus on improving particle size distribution, rheological properties, and processing efficiency. A modified rotor–stator system with teeth inclined at 20° and a reduced pitch (0.5 mm) was compared to a conventional configuration (45° inclination, 1.5 mm pitch). Experiments were conducted at rotor speeds ranging from 1000 to 4000 rpm, with a fixed clearance of 0.1 mm. The results showed that the modified design significantly enhanced grinding efficiency, reducing the proportion of bone fragments > 1 mm and yielding over 70% of particles under 0.1 mm at 3000 rpm. Viscosity and shear stress measurements indicated that grinding at 3000 rpm yielded a dynamic viscosity of 71,507 Pa·s and a shear stress of 43,531 mPa·s, values that were significantly lower (p < 0.05) than those observed at other tested speeds, thereby producing a paste consistency with the most favorable balance of elasticity and flowability. At 4000 rpm, the temperature rise (up to 32 °C) led to partial denaturation of muscle proteins, accompanied by emulsion destabilization and disruption of the protein gel matrix, resulting in reductions in the viscosity and water-binding capacity of the paste. Comparative analysis confirmed that tool geometry and rotor speed have critical effects on grinding quality, energy use, and thermal load. The optimal operating parameters, 3000 rpm with modified rotor–stator teeth, achieve the finest, most homogeneous bone paste while preserving protein functionality and minimizing energy losses. These findings support the development of energy-efficient grinding equipment for the valorization of poultry by-products in emulsified meat formulations. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

20 pages, 1918 KiB  
Article
A Scientific Framework for Comparing Hyaluronic Acid Filler Crosslinking Technologies
by Anto Puljic, Konstantin Frank, Joel Cohen, Karine Otto, Josef Mayr, Andreas Hugh-Bloch and David Kuroki-Hasenöhrl
Gels 2025, 11(7), 487; https://doi.org/10.3390/gels11070487 - 23 Jun 2025
Viewed by 438
Abstract
Hyaluronic acid (HA) dermal fillers represent a cornerstone of modern esthetic medicine, providing a minimally invasive solution for facial volume restoration and skin rejuvenation. However, the diversity of available products, each utilizing distinct crosslinking technologies, presents a challenge for objective comparison and clinical [...] Read more.
Hyaluronic acid (HA) dermal fillers represent a cornerstone of modern esthetic medicine, providing a minimally invasive solution for facial volume restoration and skin rejuvenation. However, the diversity of available products, each utilizing distinct crosslinking technologies, presents a challenge for objective comparison and clinical decision making. This study introduces a scientific framework to evaluate and categorize the physicochemical properties of HA fillers based on two key parameter groups: dynamic parameters (e.g., rheology and gel content) and consistency parameters (e.g., extrusion force, water uptake, and gel particle size). Using standardized methodologies, 23 commercially available fillers from five major manufacturers were analyzed, enabling cross-technology comparisons. The findings reveal how specific crosslinking approaches influence the rheological behavior, handling characteristics, and potential clinical applications. By offering an integrated and reproducible assessment, this work helps practitioners select the most suitable filler for individualized treatment plans and encourages manufacturers to enhance product transparency through harmonized testing protocols. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop