Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = gastrointestinal pharmacology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

21 pages, 432 KiB  
Review
Interplay Between Depression and Inflammatory Bowel Disease: Shared Pathogenetic Mechanisms and Reciprocal Therapeutic Impacts—A Comprehensive Review
by Amalia Di Petrillo, Agnese Favale, Sara Onali, Amit Kumar, Giuseppe Abbracciavento and Massimo Claudio Fantini
J. Clin. Med. 2025, 14(15), 5522; https://doi.org/10.3390/jcm14155522 - 5 Aug 2025
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in [...] Read more.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in and functionally linked to the pathogenesis of IBD. Beyond the gastrointestinal manifestations, IBD patients frequently suffer from psychiatric comorbidities, particularly depression and anxiety. It remains unclear whether these disorders arise solely from reduced quality of life or whether they share overlapping biological mechanisms with IBD. This review aims to explore the bidirectional relationship between IBD and depressive disorders (DDs), with a focus on four key shared mechanisms: immune dysregulation, genetic susceptibility, alterations in gut microbiota composition, and dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis. By examining recent literature, we highlight how these interconnected systems may contribute to both intestinal inflammation and mood disturbances. Furthermore, we discuss the reciprocal pharmacologic interactions between IBD and DDs: treatments for IBD, such as TNF-alpha and integrin inhibitors, have demonstrated effects on mood and anxiety symptoms, while certain antidepressants appear to exert independent anti-inflammatory properties, potentially reducing the risk or severity of IBD. Overall, this review underscores the need for a multidisciplinary approach to the care of IBD patients, integrating psychological and gastroenterological assessment. A better understanding of the shared pathophysiology may help refine therapeutic strategies and support the development of personalized, gut–brain-targeted interventions. Full article
Show Figures

Figure 1

28 pages, 2898 KiB  
Review
Chemical Composition and Biological Activities of Pelargonium sp.: A Review with In Silico Insights into Potential Anti-Inflammatory Mechanism
by Diana Celi, Karina Jimenes-Vargas, António Machado, José Miguel Álvarez-Suárez and Eduardo Tejera
Molecules 2025, 30(15), 3198; https://doi.org/10.3390/molecules30153198 - 30 Jul 2025
Viewed by 233
Abstract
The Pelargonium genus, encompassing over 280 species, remains markedly underexplored despite extensive traditional use for respiratory, gastrointestinal, and dermatological disorders. This review of aqueous, alcoholic, and hydroalcoholic extracts reveals critical research gaps: only 10 species have undergone chemical characterization, while 17 have been [...] Read more.
The Pelargonium genus, encompassing over 280 species, remains markedly underexplored despite extensive traditional use for respiratory, gastrointestinal, and dermatological disorders. This review of aqueous, alcoholic, and hydroalcoholic extracts reveals critical research gaps: only 10 species have undergone chemical characterization, while 17 have been evaluated for biological activities. Phytochemical analysis identified 252 unique molecules across all studies, with flavonoids emerging as the predominant class (n = 108). Glycosylated derivatives demonstrated superior bioactivity profiles compared to non-glycosylated analogs. Phenolic acids (n = 43) and coumarins (n = 31) represented additional major classes. Experimental studies primarily documented antioxidant, antibacterial, and anti-inflammatory effects, with emerging evidence for antidiabetic, anticancer, and hepatoprotective activities. However, methodological heterogeneity across studies limits comparative analysis and comprehensive understanding. In silico target prediction analysis was performed on 197 high-confidence molecular structures. Glycosylated flavonols, anthocyanidins, flavones, and coumarins showed strong predicted interactions with key inflammatory targets (ALOX15, ALOX5, PTGER4, and NOS2) and metabolic regulators (GSK3A and PI4KB), providing mechanistic support for observed therapeutic effects and suggesting potential applications in chronic inflammatory and metabolic diseases. These findings underscore the substantial therapeutic potential of underexplored Pelargonium species and advocate for systematic research employing untargeted metabolomics, standardized bioassays, and compound-specific mechanistic validation to fully unlock the pharmacological potential of this diverse genus. Full article
Show Figures

Figure 1

33 pages, 2605 KiB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Viewed by 392
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

13 pages, 449 KiB  
Article
Effects of Polysaccharides Extracted from Stem Barks on the Spontaneous Contractile Activity of the Ileal Smooth Muscle
by Ericka Lorleil Mayindza Ekaghba, Olivier Perruchon, Patrice Lerouge and Line Edwige Mengome
Molecules 2025, 30(15), 3156; https://doi.org/10.3390/molecules30153156 - 28 Jul 2025
Viewed by 172
Abstract
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to [...] Read more.
Decoctions of stem barks from Aucoumea klaineana, Canarium schweinfurthii, Pentadesma butyracea and Scorodophloeus zenkeri are used against affections of irritable bowel syndrome in Gabonese traditional medicine. In the present study, we aim to determine whether the bark polysaccharides may contribute to the activity of these plants against the symptoms of gastrointestinal disorders. To this end, we investigated the structure and the pharmacological activity of polysaccharides extracted from their stem barks. The pectic and hemicellulose polysaccharides were isolated, and their sugar compositions were determined by gas chromatography. In addition, analysis by MALDI-TOF mass spectrometry of oligosaccharides released after digestion with an endo-xylanase indicated that glucuronoarabinoxylans are the main hemicellulose of stem barks. We then evaluated the influence of the polysaccharide fractions on the spontaneous contractile activity of rat ileal smooth muscle and the cholinergic system. Spasmolytic activity of pectic fractions from all stem barks, as well as lemon polygalacturonic acid, were observed, indicating that these extracts exhibit a myorelaxant activity. In contrast, the bark hemicellulose fractions, as well as commercially available beechwood glucuronoxylan and wheat arabinoxylan, were demonstrated to be able to increase the basal contractile activity of smooth muscle. These data show that, beyond physicochemical effects affecting the bowel water content, plant polysaccharides have also an impact on the spontaneous smooth muscle contractility, the main mechanism involved in the pathophysiology of gastrointestinal disorders. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 724
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

39 pages, 1246 KiB  
Review
Gaultherin, a Natural Alternative to Aspirin: A Comprehensive Review of Molecular Mechanisms, Pharmacokinetics, Biocompatibility, Isolation Techniques, and Plant Sources
by Piotr Michel
Int. J. Mol. Sci. 2025, 26(15), 7280; https://doi.org/10.3390/ijms26157280 - 28 Jul 2025
Viewed by 354
Abstract
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various [...] Read more.
Gaultherin [methyl salicylate 2-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside] is a natural salicylate found in some plant species belonging primarily to the Ericaceae and Rosaceae families. Biological studies conducted since the beginning of the 21st century have suggested the potential use of gaultherin in treating various diseases related to inflammation and oxidative stress, including rheumatoid arthritis, sciatica, neuralgia, and muscular pain. The accumulated results indicated a targeted range of biological effects, particularly anti-inflammatory, antipyretic, and anti-rheumatic properties associated with reduced adverse outcomes. The molecular mechanisms involve the influence on several signalling pathways, including NF-κB, MAPK, and potentially AMPK, as well as the inhibition of critical pro-inflammatory enzymes, such as COX-2. This inhibition is achieved without affecting the COX-1 isoform, thereby preventing side effects such as bleeding ulcers or intracranial haemorrhage. This overview summarises the current knowledge about pharmacokinetics, molecular mechanisms, pharmacology, and biocompatibility of gaultherin. Additionally, four methods for isolating gaultherin from plant material and its distribution within the plant kingdom were the focal points of review and discussion. The paper also describes significant differences between synthetic aspirin and natural gaultherin in their biological potential and side effects, resulting from their different mechanisms of action. As a prodrug of salicylic acid, gaultherin releases salicylic acid gradually through enzymatic hydrolysis in the gastrointestinal tract. This controlled release minimises direct gastric irritation and accounts for its superior gastrointestinal safety profile compared to aspirin. Unlike aspirin, which irreversibly inhibits COX-1 and can lead to serious side effects with chronic use, gaultherin selectively inhibits COX-2 while sparing COX-1. These properties position gaultherin as a compelling natural alternative for patients requiring long-term anti-inflammatory therapy with reduced risk of gastrointestinal or bleeding complications. Full article
(This article belongs to the Special Issue The Role of Natural Products in Inflammation)
Show Figures

Figure 1

25 pages, 8335 KiB  
Article
Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways
by Woo-Gyun Choi, Seok-Jae Ko, Jung-Ha Shim, Chang-Hwan Bae, Seungtae Kim, Jae-Woo Park and Byung-Joo Kim
Pharmaceuticals 2025, 18(8), 1123; https://doi.org/10.3390/ph18081123 - 27 Jul 2025
Viewed by 445
Abstract
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS [...] Read more.
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS using a combination of network pharmacology, molecular docking, molecular dynamics simulations, and in vivo validation. Methods: Active compounds in BHSST were screened based on drug-likeness and oral bioavailability. Potential targets were predicted using ChEMBL, and IBS-related targets were obtained from GeneCards and DisGeNET. A compound–target–disease network was constructed and analyzed via Gene Ontology and KEGG pathway enrichment. Compound–target interactions were further assessed using molecular docking and molecular dynamics simulations. The in vivo effects of eudesm-4(14)-en-11-ol, elemol, and BHSST were evaluated in a zymosan-induced IBS mouse model. Results: Twelve BHSST-related targets were associated with IBS, with enrichment analysis identifying TNF signaling and apoptosis as key pathways. In silico simulations suggested stable binding of eudesm-4(14)-en-11-ol to TNF-α and kanzonol T to PIK3CD, whereas elemol showed weak interaction with PRKCD. In vivo, eudesm-4(14)-en-11-ol improved colon length, weight, stool consistency, TNF-α levels, and pain-related behaviors—effects comparable to those of BHSST. Elemol, however, showed no therapeutic benefit. Conclusions: These findings provide preliminary mechanistic insight into the anti-inflammatory potential of BHSST in IBS. The integrated in silico and in vivo approaches support the contribution of specific components, such as eudesm-4(14)-en-11-ol, to its observed effects, warranting further investigation. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

17 pages, 659 KiB  
Review
Insights into the Molecular Mechanisms and Novel Therapeutic Strategies of Stenosis Fibrosis in Crohn’s Disease
by Yuan Zhou, Huiping Chen, Qinbo Wang, Guozeng Ye, Yingjuan Ou, Lihong Huang, Xia Wu and Jiaxi Fei
Biomedicines 2025, 13(7), 1777; https://doi.org/10.3390/biomedicines13071777 - 21 Jul 2025
Viewed by 435
Abstract
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical [...] Read more.
Crohn’s disease (CD), characterized by chronic gastrointestinal inflammation, is complicated by intestinal stenosis resulting from dysregulated fibrogenesis and is marked by excessive extracellular matrix (ECM) deposition, fibroblast activation, and luminal obstruction. While biologics control inflammation, their failure to halt fibrosis underscores a critical therapeutic void. Emerging evidence highlights the multifactorial nature of stenosis-associated fibrosis, driven by profibrotic mediators and dysregulated crosstalk among immune, epithelial, and mesenchymal cells. Key pathways, including transforming growth factor (TGF-β), drosophila mothers against decapentaplegic protein (Smad) signaling, Wnt/β-catenin activation, epithelial–mesenchymal transition (EMT), and matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP)-mediated ECM remodeling, orchestrate fibrotic progression. Despite the current pharmacological, endoscopic, and surgical interventions for fibrostenotic CD, their palliative nature and inability to reverse fibrosis highlight an unmet need for disease-modifying therapies. This review synthesizes mechanistic insights, critiques therapeutic limitations with original perspectives, and proposes a translational roadmap prioritizing biomarker-driven stratification, combinatorial biologics, and mechanistically targeted antifibrotics. Full article
Show Figures

Figure 1

30 pages, 11312 KiB  
Article
Study on the Mechanism and Dose–Effect Relationship of Flavonoids in Different Extracts of Radix Hedysari Against Gastrointestinal Injury Induced by Chemotherapy
by Shasha Zhao, Miaomiao Yang, Zimu Yang, Hai He, Ziyang Wang, Xinyu Zhu, Zhijia Cui and Jing Shao
Pharmaceuticals 2025, 18(7), 1072; https://doi.org/10.3390/ph18071072 - 20 Jul 2025
Viewed by 375
Abstract
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified [...] Read more.
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified eight flavonoids via HPLC. Network pharmacology screened targets/pathways using TCMSP, GeneCards databases. In vivo validation employed cisplatin–induced injury models in Wistar rats (n = 10/group). Assessments included: behavioral monitoring; organ indices; ELISA (MTL, VIP, IFN–γ, IgG, IL–6, TNF–α etc.); H&E; and Western blot:(SCF, c–Kit, p65). Dose–effect correlations were analyzed by PLS–DA. Results: Content determination indicated that Calycosin–7–glucoside and Ononin were notably enriched on both the n–BuOH part and the EtOAc part. Network pharmacology identified 5 core flavonoids and 8 targets enriched in IL–17/TNF signaling pathways. n–BuOH treatment minimized weight loss vs. MCG, increased spleen/thymus indices. n–BuOH and HPS normalized gastrointestinal, immune, inflammatory biomarkers (p < 0.01 vs. MCG). Histopathology confirmed superior mucosal protection in n–BuOH group vs. MCG. Western blot revealed n–BuOH significantly downregulated SCF, c–kit, and p65 expressions in both gastric and intestinal tissues (p < 0.001 vs. MCG). PLS–DA demonstrated Calycosin–7–glucoside had the strongest dose–effect correlation (VIP > 1) with protective outcomes. Conclusions: The n–BuOH fraction of RH is the primary bioactive component against chemotherapy–induced gastrointestinal injury, with Calycosin–7–glucoside as its key effector. Protection is mediated through SCF/c–Kit/NF–κB pathway inhibition, demonstrating significant dose–dependent efficacy. These findings support RH’s potential as a complementary therapy during chemotherapy. Full article
Show Figures

Graphical abstract

23 pages, 1809 KiB  
Review
Pediatric Familial Hypercholesterolemia: Targeting Intestinal Absorption and Other Therapeutic Strategies
by Konstantinos Arvanitakis, Elena Chatzikalil, Christina Antza, Christos Topalidis, Georgios Kalopitas, Elena Solomou, Vasilios Kotsis, Georgios Germanidis, Theocharis Koufakis and Michael Doumas
Nutrients 2025, 17(14), 2357; https://doi.org/10.3390/nu17142357 - 18 Jul 2025
Viewed by 1312
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract [...] Read more.
Familial hypercholesterolemia (FH) is a genetic disorder marked by significantly elevated levels of low-density lipoprotein cholesterol (LDL-C) since childhood, substantially increasing the risk of premature atherosclerosis and cardiovascular disease. While dysfunction of hepatic LDL-C receptors is the main underlying cause, the gastrointestinal tract plays a key role in cholesterol homeostasis and represents an important therapeutic target. Inhibition of intestinal cholesterol absorption has emerged as an effective strategy in the management of pediatric FH, particularly in patients for whom statins may not be the ideal first-line treatment. Ezetimibe, an inhibitor of the Niemann-Pick C1-like 1 (NPC1L1) protein, has been shown to reduce LDL-C levels in children with FH, with a greater efficacy observed when used in combination with statins. Bile acid sequestrants also enhance cholesterol excretion but are often limited by gastrointestinal side effects, while dietary interventions, such as phytosterol supplementation and fiber-enriched diets, provide additional benefits in lowering LDL-C and are generally well tolerated. Emerging therapies, including microbiota-targeted strategies and novel cholesterol absorption inhibitors, show promise for expanding future treatment options. This review explores the mechanisms of intestinal cholesterol absorption and their relevance to pediatric FH. We examine key pathways, including dietary cholesterol uptake through NPC1L1, bile acid reabsorption, and cholesterol efflux mediated by ATP-binding cassette transporters, while also discussing clinical and experimental evidence on pharmacological and dietary interventions that modulate these pathways. A deeper understanding of cholesterol metabolism, the emerging role of the gut microbiota, and innovative therapeutic agents can support the development of more effective and personalized approaches to the treatment of children with FH. Full article
Show Figures

Figure 1

30 pages, 2664 KiB  
Article
Comparative Phytochemical Analysis and Antimicrobial Properties of Ethanol and Macerated Extracts from Aerial and Root Parts of Achillea nobilis
by Aiman Berdgaleeva, Zere Zhalimova, Akzharkyn Saginbazarova, Gulbanu Tulegenova, Dana Zharylkassynova, Aliya Bazargaliyeva, Zhaidargul Kuanbay, Svetlana Sakhanova, Akmaral Ramazanova, Akzhamal Bilkenova and Aigul Sartayeva
Molecules 2025, 30(14), 2957; https://doi.org/10.3390/molecules30142957 - 14 Jul 2025
Viewed by 389
Abstract
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of [...] Read more.
Achillea nobilis represents a species of considerable medicinal importance within the Asteraceae family, historically employed in Central Asia and various Eurasian territories for the management of inflammatory, microbial, and gastrointestinal ailments. Notwithstanding its extensive ethnopharmacological significance, the phytochemical profile and pharmacological attributes of its various anatomical components have not been comprehensively investigated. This research endeavor sought to delineate the phytochemical constituents and evaluate the antimicrobial efficacy of ethanol extracts derived from both the aerial and root segments of A. nobilis. Qualitative phytochemical analysis and GC–MS characterization unveiled a diverse array of bioactive compounds, encompassing flavonoids, phenolic compounds, organic acids, lactones, alcohols, and heterocyclic derivatives. In particular, the aerial oil extract exhibited the presence of terpenoids, fatty acids and their esters, sterols, hydrocarbons, and minor organosilicon and cyclobutanone derivatives, with notable compounds such as linoleic acid (8.08%), 6-tetradecyne (14.99%), isopropyl linoleate (14.64%), and E,Z-1,3,12-nonadecatriene (22.25%). In vitro antimicrobial activity was assessed against eight clinically relevant microbial strains employing the broth microdilution technique. The aerial ethanol extract exhibited pronounced antimicrobial properties, particularly against MRSA and C. albicans, with MICs ranging from 0.5 to 2 mg/mL, whereas the root ethanol extract displayed MICs of 1 to 3 mg/mL. Additionally, the aerial oil extract showed moderate inhibitory activity, with MIC values ranging from 1.5 to 3 mg/mL, demonstrating effectiveness particularly against C. albicans, C. neoformans, and MRSA. These findings underscore the therapeutic potential of A. nobilis, particularly its aerial component, as a viable natural source of antimicrobial agents. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

15 pages, 463 KiB  
Article
Impaired Quality of Life in Croatian IBD Patients in the Era of Advanced Treatment Options
by Alen Bišćanin, Leon Palac, Zdravko Dorosulić, Dominik Kralj, Petra Ćaćić, Filip Babić, Doris Ogresta, Davor Hrabar and Vedran Tomašić
Healthcare 2025, 13(14), 1681; https://doi.org/10.3390/healthcare13141681 - 12 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder marked by relapsing episodes of gastrointestinal inflammation, potentially causing severe symptoms. These unpredictable acute episodes, paired with chronic disabilities, such as fatigue and malabsorption, and extensive pharmacological and surgical treatments, can severely impact [...] Read more.
Background/Objectives: Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder marked by relapsing episodes of gastrointestinal inflammation, potentially causing severe symptoms. These unpredictable acute episodes, paired with chronic disabilities, such as fatigue and malabsorption, and extensive pharmacological and surgical treatments, can severely impact patients’ quality of life. This study aimed to assess which aspects of the patients’ lives IBD impacts, and how IBD patients perceive their disease. Methods: All IBD patients who had an appointment in our tertiary centre from 10 October 2022 to 21 February 2023, were invited to complete anonymous questionnaires. The questionnaires used were IBDQ-32, WPAI, and IBD Disk, all designed specifically to assess the IBD patients’ quality of life. Results: The questionnaires were completed by a total of 159 participants, 51% of whom were males, 47.9% who had UC, and 49.4% who had been or were currently treated with biologics. There was no statistically significant difference in the answers from patients with CD compared to UC, as well as those treated with conventional therapies compared to those with advanced options. Most of them considered their health to be good, but only a few (12.8%) claimed, with absolute certainty, that their health was at the level of healthy individuals, and only 13 (8.3%) claimed their health was excellent. A total of 95 (60.1%) participants expressed at least minor limitations when performing strenuous activities, but lighter forms of activities were not affected as much by the disease. A significant portion (48.7%) of the participants believed they were exposed to more stress than others, and their current pharmacological therapy was the cause of fear in 26.5%. A total of 119 (75.3%) participants believed that the disease affected their lives at least mildly during remission. Conclusions: Our study showed that IBD patients have diminished quality of life, not only in the periods of active disease but also during clinical remission. The decline in quality of life was not solely attributed to physical symptoms, as previously thought. Other factors, such as mental health issues, were found to impact quality of life as well. We firmly believe that restoring quality of life should be emphasised in guidelines as one of the most important therapeutic goals. Full article
Show Figures

Figure 1

17 pages, 593 KiB  
Review
Patent-Based Technological Overview of Propolis–Cyclodextrin Inclusion Complexes with Pharmaceutical Potential
by Salvana Costa, Ighor Costa Barreto, Nataly Gama, Kathylen Santos, Cleomárcio Miguel de Oliveira, Isabela Silva Costa, Monique Vila Nova, Ruane Santos, Arthur Borges, José Marcos Teixeira de Alencar Filho and Ticiano Gomes do Nascimento
Pharmaceutics 2025, 17(7), 898; https://doi.org/10.3390/pharmaceutics17070898 - 11 Jul 2025
Viewed by 458
Abstract
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, [...] Read more.
Background/objectives: Propolis, known for its medicinal properties, faces challenges in pharmaceutical applications due to its low aqueous solubility, attributed to its resinous and hydrophobic nature. This limits oral administration, reducing its bioavailability and pharmacological activities. To overcome these barriers, cyclodextrins (CDs), cyclic oligosaccharides, are widely studied as carrier systems that enhance the solubility and bioavailability of propolis and other nonpolar compounds. This study aimed to review patents that developed innovative therapeutic approaches to improve the physicochemical and biological properties of propolis through complexation with CDs. Methods: Active and application patents registered over the last 17 years were searched across multiple databases, resulting in the selection of eight inventions for detailed analysis. Results: These patents highlight therapeutic applications of propolis–CD systems for conditions such as diabetes and skin and gastrointestinal cancers, as well as antimicrobial, immunostimulant, and antioxidant effects. Additionally, novel extraction processes free of organic solvents, including nanometric-scale powder extracts, are described. Conclusions: Findings from scientific articles support the patent data, demonstrating that CD complexation significantly enhances the solubility and therapeutic efficacy of propolis. Thus, these patents present an innovative and promising strategy for developing propolis-based pharmaceutical products. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

20 pages, 1130 KiB  
Review
Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review
by Patrycja Kielar, Zofia Kobylińska, Marek Biesiadecki, Mateusz Mołoń and Sabina Galiniak
Int. J. Mol. Sci. 2025, 26(13), 6400; https://doi.org/10.3390/ijms26136400 - 3 Jul 2025
Viewed by 541
Abstract
For centuries, traditional medical systems have utilized Cistus leaf infusions, extracts, and essential oils in the treatment of inflammatory conditions, respiratory infections, febrile illnesses, and gastrointestinal disorders. Contemporary research has increasingly focused on the identification and characterization of biologically active constituents—particularly polyphenols and [...] Read more.
For centuries, traditional medical systems have utilized Cistus leaf infusions, extracts, and essential oils in the treatment of inflammatory conditions, respiratory infections, febrile illnesses, and gastrointestinal disorders. Contemporary research has increasingly focused on the identification and characterization of biologically active constituents—particularly polyphenols and other antioxidants—that may modulate key physiological and cellular processes in the human body. These include mechanisms related to oxidative stress, inflammation, aging, and carcinogenesis. The therapeutic relevance of Cistus-derived compounds is further supported by their generally favorable safety profile and high tolerability, which distinguishes them from many synthetic pharmaceuticals. Moreover, the accessibility of Cistus preparations as dietary supplements or herbal infusions allows for their regular consumption without the need for complex therapeutic regimens. This positions Cistus as a promising candidate for integrative health strategies aimed at disease prevention and health maintenance. This review provides a comprehensive overview of the pharmacological potential and therapeutic applications of Cistus extracts, with particular emphasis on their antioxidant and bioactive properties. Full article
(This article belongs to the Special Issue New Perspective on Inflammatory Diseases: Role of Natural Compounds)
Show Figures

Figure 1

Back to TopTop