Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review
Abstract
1. Introduction
2. Biology of Cistus sp.
2.1. Ecology and Geographic Distribution
2.2. Morphology
3. Chemical Composition of Cistus sp.
3.1. Phenolic Compounds
3.2. Terpenes
3.3. Essential Oils
3.4. Oleoresin—Labdanum
4. Biological Effects of Cistus Species: Targeting Oxidative Stress, Glycation, Inflammation, and Cancer
4.1. Traditional and Ethnopharmacological Applications of Cistus Species
4.2. Oxidative Stress and the Therapeutic Potential of Cistus Species
4.3. Cellular and Molecular Insights into the Antioxidant and Anti-Inflammatory Effects of Cistus Extracts
4.4. Anticancer Properties
4.5. Antimicrobial Properties
4.5.1. Antibacterial Activity
4.5.2. Antifungal Activity
4.5.3. Antiviral Activity
4.6. From Infusions to Pharmaceuticals: Multifunctional Uses of Cistus Extracts
5. Research Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starzec, A.; Włodarczyk, M.; Urbanowicz, I.; Fecka, I. Characteristics, Therapeutic and Health-Promoting Potential of Cistus × incanus L. Farm. Pol. 2020, 76, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, B.; Vargas, P. Systematics, Character Evolution, and Biogeography of Cistus L. (Cistaceae) Based on ITS, trnL-trnF, and matK Sequences. Mol. Phylogenet. Evol. 2005, 37, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, B.; Vargas, P. Historical Biogeography and Character Evolution of Cistaceae (Malvales) Based on Analysis of Plastid rbcL and trnL-trnF Sequences. Org. Divers. Evol. 2009, 9, 83–99. [Google Scholar] [CrossRef]
- Paolini, J.; Falchi, A.; Quilichini, Y.; Desjobert, J.-M.; Cian, M.-C.D.; Varesi, L.; Costa, J. Morphological, Chemical and Genetic Differentiation of Two Subspecies of Cistus creticus L. (C. creticus subsp. Eriocephalus and C. creticus subsp. Corsicus). Phytochemistry 2009, 70, 1146–1160. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Ekiert, R.; Ekiert, H. Species of the Genus Cistus sp.—Taxonomy, Distribution, Chemical Composition and Therapeutic Applications and Biotechnological Studies. Postępy Fitoter. 2016, 3, 179–188. [Google Scholar]
- Barrajón-Catalán, E.; Tomás-Menor, L.; Morales-Soto, A.; Martí, N.; Saura, D.; Segura Carretero, A.; Micol, V. Rockroses (Cistus sp.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 649–658. ISBN 978-0-12-416641-7. [Google Scholar]
- Ellul, P.; Boscaiu, M.; Vicente, O.; Moreno, V.; Rosselló, J.A. Intra- and Interspecific Variation in DNA Content in Cistus (Cistaceae). Ann. Bot. 2002, 90, 345–351. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Fernández-Arroyo, S.; Roldán, C.; Guillén, E.; Saura, D.; Segura-Carretero, A.; Micol, V. A Systematic Study of the Polyphenolic Composition of Aqueous Extracts Deriving from Several Cistus Genus Species: Evolutionary Relationship. Phytochem. Anal. 2011, 22, 303–312. [Google Scholar] [CrossRef]
- Thanos, C.; Georghiou, K. Ecophysiology of Fire-Stimulated Seed Germination in Cistus incanus ssp. Creticus (L.) Heywood and C. salvifolius L. Plant Cell Environ. 1988, 11, 841–849. [Google Scholar] [CrossRef]
- Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: A Model for Exploring Labdane-Type Diterpenes’ Biosynthesis and a Natural Source of High Value Products with Biological, Aromatic, and Pharmacological Properties. Front. Chem. 2014, 2, 35. [Google Scholar] [CrossRef]
- Schwarzer, U.; Schwarzer, C. Checklist of the Cistus Hybrids Occurring in Southern Portugal. Mediterr. Bot. 2025, 46, e82635. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Ekiert, H. In Vitro Shoot Cultures of Pink Rock-Rose (Cistus × incanus L.) as a Potential Source of Phenolic Compounds. Acta Soc. Bot. Pol. 2017, 86, 3563. [Google Scholar] [CrossRef]
- Heywood, V.H. Flora Europaea Notulae Systematicae Ad Floram Europaeam Spectantes. Feddes Repert. 1968, 79, 1–68. [Google Scholar] [CrossRef]
- Cistaceae Juss.|Plants of the World Online|Kew Science. Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30002304-2 (accessed on 6 May 2025).
- Guzmán, B.; Lledó, M.D.; Vargas, P. Adaptive Radiation in Mediterranean Cistus (Cistaceae). PLoS ONE 2009, 4, e6362. [Google Scholar] [CrossRef]
- Fernández-Mazuecos, M.; Vargas, P. Ecological Rather than Geographical Isolation Dominates Quaternary Formation of Mediterranean Cistus Species. Mol. Ecol. 2010, 19, 1381–1395. [Google Scholar] [CrossRef]
- Bernacka, K.; Bednarska, K.; Starzec, A.; Mazurek, S.; Fecka, I. Antioxidant and Antiglycation Effects of Cistus × incanus Water Infusion, Its Phenolic Components, and Respective Metabolites. Molecules 2022, 27, 2432. [Google Scholar] [CrossRef]
- Ahmed, S.; Zengin, G.; Selvi, S.; Ak, G.; Cziáky, Z.; Jekő, J.; Rodrigues, M.J.; Custodio, L.; Venanzoni, R.; Flores, G.A.; et al. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024, 13, 795. [Google Scholar] [CrossRef]
- Mastino, P.M.; Marchetti, M.; Costa, J.; Juliano, C.; Usai, M. Analytical Profiling of Phenolic Compounds in Extracts of Three Cistus Species from Sardinia and Their Potential Antimicrobial and Antioxidant Activity. Chem. Biodivers. 2021, 18, e2100053. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Zgoła-Grześkowiak, A.; Frankowski, R. Cistus incanus a Promising Herbal Tea Rich in Bioactive Compounds: LC–MS/MS Determination of Catechins, Flavonols, Phenolic Acids and Alkaloids—A Comparison with Camellia Sinensis, Rooibos and Hoan Ngoc Herbal Tea. J. Food Compos. Anal. 2018, 74, 71–81. [Google Scholar] [CrossRef]
- Valares Masa, C.; Sosa Díaz, T.; Alías Gallego, J.C.; Chaves Lobón, N. Quantitative Variation of Flavonoids and Diterpenes in Leaves and Stems of Cistus ladanifer L. at Different Ages. Molecules 2016, 21, 275. [Google Scholar] [CrossRef]
- Dixon, R.; Paiva, N. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Saracini, E.; Tattini, M.; Traversi, M.L.; Vincieri, F.F.; Pinelli, P. Simultaneous LC-DAD and LC-MS Determination of Ellagitannins, Flavonoid Glycosides, and Acyl-Glycosyl Flavonoids in Cistus salvifolius L. Leaves. Chroma 2005, 62, 245–249. [Google Scholar] [CrossRef]
- Stephanou, M.; Manetas, Y. The Effects of Seasons, Exposure, Enhanced UV-B Radiation, and Water Stress on Leaf Epicuticular and Internal UV-B Absorbing Capacity of Cistus creticus: A Mediterranean Field Study. J. Exp. Bot. 1997, 48, 1977–1985. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, C.; Jordán Bueso, M.J.; del Carmen Rodríguez-Molina, M.; Pulido, F. Spatial Variation in Yield, Chemical Composition, and Phytotoxic Activity of Cistus ladanifer Essential Oils. Chem. Biodivers. 2023, 20, e202300995. [Google Scholar] [CrossRef]
- Pérez-Izquierdo, C.; Bueso, M.J.J.; Serrano-Pérez, P.; del Carmen Rodríguez-Molina, M.; Pulido, F. Unravelling the Impact of Plant Ontogenic Factors on the Content and Phytotoxic Potential of Cistus ladanifer L. (Rockrose) Essential Oils. Sci. Hortic. 2024, 331, 113127. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Nouioura, G.; Abdallah, E.M.; Abdnim, R.; Bnouham, M.; Al-Mijalli, S.H.; Naceiri Mrabti, H.; et al. Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In Vitro Pharmacological Activities, and Molecular Docking. Separations 2024, 11, 199. [Google Scholar] [CrossRef]
- El Karkouri, J.; Bouhrim, M.; Al Kamaly, O.M.; Mechchate, H.; Kchibale, A.; Adadi, I.; Amine, S.; Alaoui Ismaili, S.; Zair, T. Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants 2021, 10, 2068. Plants 2021, 10, 2068. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Taibi, M.; Laaraj, S.; Loukili, E.H.; Haddou, M.; El Hachlafi, N.; Naceiri Mrabti, H.; Baraich, A.; Bellaouchi, R.; Asehraou, A.; et al. Chemical Profiling of Volatile Compounds of the Essential Oil of Grey-Leaved Rockrose (Cistus albidus L.) and Its Antioxidant, Anti-Inflammatory, Antibacterial, Antifungal, and Anticancer Activity in Vitro and in Silico. Front. Chem. 2024, 12, 1334028. [Google Scholar] [CrossRef]
- Frazão, D.F.; Martins-Gomes, C.; Díaz, T.S.; Delgado, F.; Gonçalves, J.C.; Silva, A.M. Labdanum Resin from Cistus ladanifer L. as a Source of Compounds with Anti-Diabetic, Neuroprotective and Anti-Proliferative Activity. Molecules 2024, 29, 2222. [Google Scholar] [CrossRef]
- Frazão, D.F.; Martins-Gomes, C.; Steck, J.L.; Keller, J.; Delgado, F.; Gonçalves, J.C.; Bunzel, M.; Pintado, C.M.B.S.; Díaz, T.S.; Silva, A.M. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. Plants 2022, 11, 1477. [Google Scholar] [CrossRef] [PubMed]
- Rauwald, H.W.; Liebold, T.; Grötzinger, K.; Lehmann, J.; Kuchta, K. Labdanum and Labdanes of Cistus creticus and C. Ladanifer: Anti-Borrelia Activity and Its Phytochemical Profiling. Phytomedicine 2019, 60, 152977. [Google Scholar] [CrossRef] [PubMed]
- Stępień, A.; Aebisher, D.; Bartusik-Aebisher, D. Biological Properties of Cistus Species. Eur. J. Clin. Exp. Med. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Stępień, A.E. Cytotoxic and Anti-Cancer Activity of the Cistus Species of Herbal Plants. Eur. J. Clin. Exp. Med. 2017, 15, 165–168. [Google Scholar] [CrossRef]
- Attaguile, G.; Perticone, G.; Mania, G.; Savoca, F.; Pennisi, G.; Salomone, S. Cistus incanus and Cistus monspeliensis Inhibit the Contractile Response in Isolated Rat Smooth Muscle. J. Ethnopharmacol. 2004, 92, 245–250. [Google Scholar] [CrossRef]
- Raus de Baviera, D.; Ruiz-Canales, A.; Barrajón-Catalán, E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. Plants 2023, 12, 2988. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Chandimali, N.; Bak, S.G.; Park, E.H.; Lim, H.-J.; Won, Y.-S.; Kim, E.-K.; Park, S.-I.; Lee, S.J. Free Radicals and Their Impact on Health and Antioxidant Defenses: A Review. Cell Death Discov. 2025, 11, 19. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen Species and Prevention by Antioxidants. Brain Commun. 2024, 6, fcad356. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of Oxidative Stress, Cellular Communication and Signaling Pathways in Cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Valaitienė, J.; Laučytė-Cibulskienė, A. Oxidative Stress and Its Biomarkers in Cardiovascular Diseases. Artery Res. 2024, 30, 18. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. An In Vitro Study on the Antioxidant Properties of Cistus incanus Extracts. Agriculture 2024, 14, 1559. [Google Scholar] [CrossRef]
- Lukas, B.; Bragagna, L.; Starzyk, K.; Labedz, K.; Stolze, K.; Novak, J. Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species. Plants 2021, 10, 615. [Google Scholar] [CrossRef]
- Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. Cistus incanus L. Commercial Products as a Good Source of Polyphenols in Human Diet. Ind. Crops Prod. 2017, 107, 297–304. [Google Scholar] [CrossRef]
- Guzelmeric, E.; Reis, R.; Sen, N.B.; Celik, C.; Özhan, Y.; Petrikaite, V.; Sipahi, H.; Aydın, A.; Yesilada, E. Insights into the Anti-Inflammatory, Analgesic, and Anticancer Potentials of the Standardized Extracts from Three Cistus L. Species. J. Herbal. Med. 2023, 41, 100724. [Google Scholar] [CrossRef]
- Starzec, A.; Włodarczyk, M.; Kunachowicz, D.; Dryś, A.; Kepinska, M.; Fecka, I. Polyphenol Profile of Cistus × incanus L. and Its Relevance to Antioxidant Effect and α-Glucosidase Inhibition. Antioxidants 2023, 12, 553. [Google Scholar] [CrossRef]
- Attaguile, G.; Russo, A.; Campisi, A.; Savoca, F.; Acquaviva, R.; Ragusa, N.; Vanella, A. Antioxidant Activity and Protective Effect on DNA Cleavage of Extracts from Cistus incanus L. and Cistus monspeliensis L. Cell Biol. Toxicol. 2000, 16, 83–90. [Google Scholar] [CrossRef]
- Pamuk, A.; Gedikoğlu, A.; Sökmen, M. Use of a Natural Antioxidant, Cistus creticus Extract, on Lipid Oxidation and Shelf Life of Ready-to-Eat Beef Cocktail Sausages. J. Food Process. Preserv. 2022, 46, e16913. [Google Scholar] [CrossRef]
- Kilic, D.D.; Siriken, B.; Erturk, O.; Tanrikulu, G.; Gül, M. Antibacterial, Antioxidant and DNA Interaction Properties of Cistus creticus L. Extracts. J. Int. Environ. Appl. Sci. 2019, 14, 110–115. [Google Scholar]
- Bouothmany, K.; Bourhia, M.; Aoussar, N.; Attaleb, M.; Salamatullah, A.M.; Nafidi, H.-A.; Mellouki, F.; El Mzibri, M.; Aboul-Soud, M.A.M.; Benbacer, L. Leaf Extracts of Cistus ladanifer Exhibit Potent Antioxidant and Antiproliferative Activities against Liver, Prostate and Breast Cancer Cells. Appl. Sci. 2022, 12, 8603. [Google Scholar] [CrossRef]
- İnan, Y.; Akyüz, S.; Kurt-Celep, I.; Celep, E.; Yesilada, E. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish Cistus Species. Molecules 2021, 26, 5322. [Google Scholar] [CrossRef] [PubMed]
- Budak, Y.; Karayel, H.B.; Özbek, O. DNA Cleavage, Cytotoxic and Antioxidant Properties of Cistus laurifolius L. Extracts. J. Indian. Chem. Soc. 2022, 99, 100569. [Google Scholar] [CrossRef]
- Kuchta, A.; Konopacka, A.; Waleron, K.; Viapiana, A.; Wesołowski, M.; Dąbkowski, K.; Ćwiklińska, A.; Mickiewicz, A.; Śledzińska, A.; Wieczorek, E.; et al. The Effect of Cistus incanus Herbal Tea Supplementation on Oxidative Stress Markers and Lipid Profile in Healthy Adults. Cardiol. J. 2021, 28, 534–542. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and Functional Properties in Prevention of Neurodegenerative Disorders of Five Cistus Species Essential Oils. Food Chem. Toxicol. 2013, 59, 586–594. [Google Scholar] [CrossRef]
- Jerónimo, E.; Soldado, D.; Sengo, S.; Francisco, A.; Fernandes, F.; Portugal, A.P.V.; Alves, S.P.; Santos-Silva, J.; Bessa, R.J.B. Increasing the α-Tocopherol Content and Lipid Oxidative Stability of Meat through Dietary Cistus ladanifer L. in Lamb Fed Increasing Levels of Polyunsaturated Fatty Acid Rich Vegetable Oils. Meat Sci. 2020, 164, 108092. [Google Scholar] [CrossRef]
- Tsolakou, A.; Konstantinidis, D.; Economou, V.; Boulis, S.; Koutsogiannouli, E.; Tsioufis, C.P.; Drakoulis, N. Evaluation of the Efficacy of the Combination of Citrus Aurantium, Cistus creticus and Olea europaea Leaf Extract on the Lipid Profiles of Individuals with Marginally Elevated Lipid Levels. Int. J. Funct. Nutr. 2023, 4, 2. [Google Scholar] [CrossRef]
- Mac Sweeney, E.; Chiocchio, I.; Mandrone, M.; Sanna, C.; Bilo, F.; Maccarinelli, G.; Popescu, V.S.; Pucci, M.; Morandini, S.; Memo, M.; et al. Exploring the Anti-Inflammatory and Antioxidant Potential, Metabolite Composition and Inorganic Profile of Cistus monspeliensis L. Aerial Parts and Roots. Antioxidants 2024, 13, 753. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Carvalho, L.C.; Santos, E.S.; Abreu, M.M. The Physiological Mechanisms Underlying the Ability of Cistus monspeliensis L. from São Domingos Mine to Withstand High Zn Concentrations in Soils. Ecotoxicol. Environ. Saf. 2016, 129, 219–227. [Google Scholar] [CrossRef]
- Brossa, R.; Pintó-Marijuan, M.; Francisco, R.; López-Carbonell, M.; Chaves, M.M.; Alegre, L. Redox Proteomics and Physiological Responses in Cistus albidus Shrubs Subjected to Long-Term Summer Drought Followed by Recovery. Planta 2015, 241, 803–822. [Google Scholar] [CrossRef] [PubMed]
- Uceda, A.B.; Mariño, L.; Casasnovas, R.; Adrover, M. An Overview on Glycation: Molecular Mechanisms, Impact on Proteins, Pathogenesis, and Inhibition. Biophys. Rev. 2024, 16, 189–218. [Google Scholar] [CrossRef] [PubMed]
- Sayah, K.; Marmouzi, I.; Naceiri Mrabti, H.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed. Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef]
- Yildiz, F.; Eciroglu Sarban, H.; Kocanci, F.G.; Gungor, M.; Yucel, E.; Yucel, D. Phytochemical Examination of Cistus laurifolius Extract and Its Impact on Cytotoxicity, Apoptosis and Oxidative Stress in Colorectal and Breast Cancer Cell Lines. J. Herbal. Med. 2024, 48, 100966. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Bigagli, E.; Cinci, L.; Gori, A.; Brunetti, C.; Ferrini, F.; Luceri, C. Ethyl Acetate Extract from Cistus × Incanus L. Leaves Enriched in Myricetin and Quercetin Derivatives, Inhibits Inflammatory Mediators and Activates Nrf2/HO-1 Pathway in LPS-Stimulated RAW 264.7 Macrophages. Z. Naturforsch C J. Biosci. 2021, 76, 79–86. [Google Scholar] [CrossRef]
- Moreira, H.; Slezak, A.; Szyjka, A.; Oszmianski, J.; Gasiorowski, K. Antioxidant and cancer chemopreventive activities of cistus and pomegranate polyphenols. Acta Pol. Pharm. 2017, 74, 688–698. [Google Scholar]
- Al-Naqeb, G.; Zorzi, G.; Oldani, A.; Azzalin, A.; Avesani, L.; Guzzo, F.; Pascale, A.; De Giuseppe, R.; Cena, H. Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. Int. J. Mol. Sci. 2024, 25, 13707. [Google Scholar] [CrossRef]
- Ben Jemia, M.; Kchouk, M.E.; Senatore, F.; Autore, G.; Marzocco, S.; De Feo, V.; Bruno, M. Antiproliferative Activity of Hexane Extract from Tunisian Cistus Libanotis, Cistus monspeliensis and Cistus Villosus. Chem. Cent. J. 2013, 7, 47. [Google Scholar] [CrossRef]
- Yücel, E.; Ak, A.; Şengün, İ.Y.; Genç, H.; Koparal, T.; Sivas, H. Potential Therapeutic Applications of Cistus laurifolius Extract: Anti-Proliferative, Anti-Cancer Activity on MCF-7, and Anti-Microbial Effects. South. Afr. J. Bot. 2024, 169, 499–505. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M.; Strzępek-Gomółka, M.; Antosiewicz, B. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef]
- Ammendola, M.; Haponska, M.; Balik, K.; Modrakowska, P.; Matulewicz, K.; Kazmierski, L.; Lis, A.; Kozlowska, J.; Garcia-Valls, R.; Giamberini, M.; et al. Stability and Anti-Proliferative Properties of Biologically Active Compounds Extracted from Cistus L. after Sterilization Treatments. Sci. Rep. 2020, 10, 6521. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Fernandes, Â.; Calhelha, R.C.; Gavrilaş, L.; Ferreira, I.C.F.R.; Ivanov, M.; Sokovic, M.; Barros, L.; Babotă, M. Bioactive Compounds and Functional Properties of Herbal Preparations of Cystus creticus L. Collected from Rhodes Island. Front. Nutr. 2022, 9, 881210. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, A.; D’Amelia, V.; Folliero, V.; Zannella, C.; Franci, G.; Galdiero, M.; Di Loria, A.; Laezza, C.; Monti, S.M.; Piccinelli, A.L.; et al. Cistus incanus: A Natural Source of Antimicrobial Metabolites. Nat. Prod. Res. 2024, 39, 3396–3409. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, G.; Fumagalli, M.; Pozzoli, C.; Nicotra, G.; Vicentini, S.F.; Maranta, N.; Sangiovanni, E.; Dell’Agli, M.; Piazza, S. Exploring In Vitro the Combination of Cistus × incanus L. and Castanea sativa Mill. Extracts as Food Supplement Ingredients against H. pylori Infection. Foods 2023, 13, 40. [Google Scholar] [CrossRef]
- Carev, I.; Maravić, A.; Ilić, N.; Čikeš Čulić, V.; Politeo, O.; Zorić, Z.; Radan, M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life 2020, 10, 112. [Google Scholar] [CrossRef]
- Benayad, N.; Mennane, Z.; Charof, R.; Hakiki, A.; Mosaddak, M. Antibacterial Activity of Essential Oil and Some Extracts of Cistus ladaniferus from Oulmes in Morocco. J. Mater. Environ. Sci. 2013, 4, 1066–1071. [Google Scholar]
- Zeouk, I.; Balouiri, M.; Bekhti, K. Antistaphylococcal Activity and Phytochemical Analysis of Crude Extracts of Five Medicinal Plants Used in the Center of Morocco against Dermatitis. Int. J. Microbiol. 2019, 2019, 1803102. [Google Scholar] [CrossRef]
- Zalegh, I.; Bourhia, M.; Zerouali, K.; Katfy, K.; Nayme, K.; Khallouki, F.; Benzaarate, I.; Mohammad Salamatullah, A.; Alzahrani, A.; Nafidi, H.-A.; et al. Molecular Characterization of Gene-Mediated Resistance and Susceptibility of ESKAPE Clinical Isolates to Cistus monspeliensis L. and Cistus salviifolius L. Extracts. Evid.-Based Complement. Altern. Med. 2022, 2022, 7467279. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Rodríguez, J.C.; Borrás-Rocher, F.; Barrajón-Catalán, E.; Micol, V. The Antimicrobial Capacity of Cistus salviifolius and Punica Granatum Plant Extracts against Clinical Pathogens Is Related to Their Polyphenolic Composition. Sci. Rep. 2021, 11, 588. [Google Scholar] [CrossRef]
- Tomás-Menor, L.; Morales-Soto, A.; Barrajón-Catalán, E.; Roldán-Segura, C.; Segura-Carretero, A.; Micol, V. Correlation between the Antibacterial Activity and the Composition of Extracts Derived from Various Spanish Cistus Species. Food Chem. Toxicol. 2013, 55, 313–322. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial Plant Compounds, Extracts and Essential Oils: An Updated Review on Their Effects and Putative Mechanisms of Action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- Walencik, P.K.; Choińska, R.; Gołębiewska, E.; Kalinowska, M. Metal–Flavonoid Interactions—From Simple Complexes to Advanced Systems. Molecules 2024, 29, 2573. [Google Scholar] [CrossRef]
- Tarabishi, A.A.; Mashhoud, J.; Tahan, Z.S. Quercetin and Rutin as a Dual Approach to Antibacterial and Anti-Biofilm Activity via Iron Chelation Mechanism. Discov. Food 2024, 4, 189. [Google Scholar] [CrossRef]
- Karim, H.; Boubaker, H.; Askarne, L.; Cherifi, K.; Lakhtar, H.; Msanda, F.; Boudyach, E.H.; Ait Ben Aoumar, A. Use of Cistus Aqueous Extracts as Botanical Fungicides in the Control of Citrus Sour Rot. Microb. Pathog. 2017, 104, 263–267. [Google Scholar] [CrossRef]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Ben Aoumar, A.A. Antifungal Activity of Moroccan Medicinal Plants against Citrus Sour Rot Agent Geotrichum Candidum. Lett. Appl. Microbiol. 2012, 55, 155–161. [Google Scholar] [CrossRef]
- Tan, L.F.; Yap, V.L.; Rajagopal, M.; Wiart, C.; Selvaraja, M.; Leong, M.Y.; Tan, P.L. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. Plants 2022, 11, 3009. [Google Scholar] [CrossRef]
- Rebensburg, S.; Helfer, M.; Schneider, M.; Koppensteiner, H.; Eberle, J.; Schindler, M.; Gürtler, L.; Brack-Werner, R. Potent in Vitro Antiviral Activity of Cistus incanus Extract against HIV and Filoviruses Targets Viral Envelope Proteins. Sci. Rep. 2016, 6, 20394. [Google Scholar] [CrossRef]
- Okumuş, N.; Erdoğmuş, S.F.; Doğan, H.H.; Altintaş, Ö.E.; Çelik, S.; Duman, R.; Ünlü, Ü. Anti HSV-1 Activity of Cistus laurifolius and Development of Antiviral Herbal Lip Balm. Rev. Bras. Farmacogn. 2024, 34, 625–636. [Google Scholar] [CrossRef]
- Angelova, P.; Hinkov, A.; Gerasimova, V.; Staleva, P.; Kamenova-Nacheva, M.; Alipieva, K.; Shivachev, D.; Shishkov, S.; Shishkova, K. Antiviral Activity of Water-Alcoholic Extract of Cistus incanus L. Int. J. Mol. Sci. 2025, 26, 947. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Różyło, R.; Dziki, D.; Gawlik-Dziki, U.; Sułek, A.; Biernacka, B. Cistus incanus L. as an Innovative Functional Additive to Wheat Bread. Foods 2019, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Lisiecka, K.; Wójtowicz, A.; Dziki, D.; Gawlik-Dziki, U. The Influence of Cistus incanus L. Leaves on Wheat Pasta Quality. J. Food Sci. Technol. 2019, 56, 4311–4322. [Google Scholar] [CrossRef] [PubMed]
- Riehle, P.; Vollmer, M.; Rohn, S. Phenolic Compounds in Cistus incanus Herbal Infusions—Antioxidant Capacity and Thermal Stability during the Brewing Process. Food Res. Int. 2013, 53, 891–899. [Google Scholar] [CrossRef]
- Aziz, M.; Tab, N.; Karim, A.; Mekhfi, H.; Bnouham, M.; Ziyyat, A.; Melhaoui, A.; Legssyer, A. Relaxant Effect of Aqueous Extract of Cistus ladaniferus on Rodent Intestinal Contractions. Fitoterapia 2006, 77, 425–428. [Google Scholar] [CrossRef]
- Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In Vivo Anti-Inflammatory and Analgesic Activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aqueous Extracts. South. Afr. J. Bot. 2017, 113, 160–163. [Google Scholar] [CrossRef]
- Eciroğlu, H.; Yıldız, F.; Yücel, E. Neuroprotective Effect of Cistus laurifolius on Hydrogen Peroxide-Induced Neurodegeneration in Differentiated SH-SY5Y Cells. BioDiCon 2023, 16, 229–236. [Google Scholar] [CrossRef]
- Havas, F.; Cohen, M.; Krispin, S.; Loing, E.; Attia-Vigneau, J. A Cistus incanus Extract Blocks Psychological Stress Signaling and Reduces Neurogenic Inflammation and Signs of Aging in Skin, as Shown in In-Vitro Models and a Randomized Clinical Trial. Cosmetics 2023, 10, 4. [Google Scholar] [CrossRef]
- Attaguile, G.; Caruso, A.; Pennisi, G.; Savoca, F. Gastroprotective Effect of Aqueous Extract of Cistus incanus L. in Rats. Pharmacol. Res. 1995, 31, 29–32. [Google Scholar] [CrossRef]
- Belmokhtar, M.; Bouanani, N.E.; Ziyyat, A.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Matéo, P.; Fischmeister, R.; Legssyer, A. Antihypertensive and Endothelium-Dependent Vasodilator Effects of Aqueous Extract of Cistus ladaniferus. Biochem. Biophys. Res. Commun. 2009, 389, 145–149. [Google Scholar] [CrossRef]
- Kalus, U.; Grigorov, A.; Kadecki, O.; Jansen, J.-P.; Kiesewetter, H.; Radtke, H. Cistus incanus (CYSTUS052) for Treating Patients with Infection of the Upper Respiratory Tract: A Prospective, Randomised, Placebo-Controlled Clinical Study. Antivir. Res. 2009, 84, 267–271. [Google Scholar] [CrossRef]
Species | Natural Occurrence | References |
---|---|---|
C. albanicus Heywood | Albania, Greece | [14] |
C. albidus L. | Mediterranean region (Canarian), Iberia, France, Italy, North Africa, Corsica, Sardinia | [4] |
C. asper Demoly & R. Mesa | Canarian region | [15] |
C. atlanticus (Humbert & Maire) Demoly | Morocco | [15] |
C. atriplicifolius Lam. | Morocco, Spain | [15] |
C. calycinus L. | Morocco, Portugal, Spain | [15] |
C. chinamadensis Bañares & P. Romero | Canarian region | [15] |
C. clusii Dunal | Algeria, Baleares, Italy, Morocco, Portugal, Sicilia, Spain, Tunisia | [15] |
C. creticus L. | central-eastern Mediterranean (Corsica, Sardinia), Morocco | [15] |
C. crispus L. | Endemic in France, Spain, the Iberian and Apennine Peninsulas, and northwest Africa | [16] |
C. grancanariae Marrero Rodr. & al. | Canarian region | [15] |
C. halimifolius L. | Canarian region | [15] |
C. heterophyllus Desf. | Spain, North Africa | [15] |
C. horrens Demoly | Canarian region | |
C. inflatus Demoly | France, Portugal, Spain | [15] |
C. ladanifer L. | western Mediterranean region | |
C. lasianthus Lam. | France, Morocco, Portugal, Spain | [15] |
C. laurifolius L. | Mediterranean mountains | [17] |
C. libanotis L. | Portugal, Spain, Argelia | [15] |
C. monspeliensis L. | western Mediterranean to the Canary Islands and Madeira | [4,11] |
C. munbyi Pomel | Algeria, Morocco | [15] |
C. ocymoides Lam. | Morocco, Portugal, Spain | [15] |
C. osbeckiifolius Webb | Canarian region | [15] |
C. palmensis Bañares & Demoly | Canarian region | [15] |
C. parviflorus Lam. | eastern Mediterranean, Greece, Turkey, Italy, Cyprus, Libya | [15] |
C. populifolius L. | France, Morocco, Portugal, Spain | [16] |
C. pouzolzii Delile | Algeria, Morocco, France | [15] |
C. psilosepalus Sweet | Iberia, France | [15] |
C. salviifolius L. | Mediterranean Basin | [4,11,17] |
C. symphytifolius Lam. | Canarian region | [15] |
C. umbellatus L. | Algeria, France, Greece, Lebanon–Syria, Morocco, Portugal, Spain | [15] |
Study Type | Species of Cistus | Model | Key Findings | References |
---|---|---|---|---|
in vitro | C. laurifolius | human pancreatic cancer cells (MIA PaCa-2) | anticancer effects, indicating high cytotoxicity selectively toward cancer cells with minimal effect on healthy dermal fibroblasts | [49] |
in vitro | C. salviifolius | human pancreatic cancer cells (MIA PaCa-2) | anticancer effects | [49] |
in vitro | C. creticus | human pancreatic cancer cells (MIA PaCa-2) | anticancer effects | [49] |
in vitro | C. ladanifer | human liver (HepG2) cancer cell lines, human prostate (22Rv1) cancer cell lines, breast (MDA-MB-231) cancer cell lines | antiproliferative activity | [54] |
in vitro | C. monspeliensis | neuroblastoma cells (SH-SY5Y) | increased viability of cells exposed to H2O2 | [61] |
in vitro | C. laurifolius | colorectal (Caco-2) cell lines, breast (MCF-7) cancer cell lines | increased TAC, reduction in total oxidant capacity and oxidative stress index | [66] |
in vitro | C. incanus | human breast (MCF-7) cell lines, colon cancer (LOVO) cell lines | reduced intracellular ROS levels and inhibited the growth | [68] |
in vitro | C. monspeliensis | Chinese hamster ovarian K1 (CHO-K1) cell | cytotoxicity | [69] |
in vitro | C. monspeliensis | human melanoma A-375 cells | antiproliferative activity | [70] |
in vitro | C. laurifolius | breast (MCF-7) cancer cell lines | cytotoxic and pro-apoptotic effects | [71] |
in vitro | C. incanus, C. ladanifer | human melanoma cells (A375) | anticancer activity, cytotoxic effects | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kielar, P.; Kobylińska, Z.; Biesiadecki, M.; Mołoń, M.; Galiniak, S. Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 6400. https://doi.org/10.3390/ijms26136400
Kielar P, Kobylińska Z, Biesiadecki M, Mołoń M, Galiniak S. Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review. International Journal of Molecular Sciences. 2025; 26(13):6400. https://doi.org/10.3390/ijms26136400
Chicago/Turabian StyleKielar, Patrycja, Zofia Kobylińska, Marek Biesiadecki, Mateusz Mołoń, and Sabina Galiniak. 2025. "Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review" International Journal of Molecular Sciences 26, no. 13: 6400. https://doi.org/10.3390/ijms26136400
APA StyleKielar, P., Kobylińska, Z., Biesiadecki, M., Mołoń, M., & Galiniak, S. (2025). Biology, Antioxidant Activity, and Therapeutic Potential of Cistus sp.—A Comprehensive Review. International Journal of Molecular Sciences, 26(13), 6400. https://doi.org/10.3390/ijms26136400