Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,594)

Search Parameters:
Keywords = gas testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1220 KB  
Article
High-Sensitivity Terahertz Biosensor Based on a Multi-Layer Hybrid Structure Consisting of a Defect Mode and Graphene
by Hai Hu, Shiying Mo, Yangbao Deng and Zhengchun Zhao
Biosensors 2025, 15(10), 702; https://doi.org/10.3390/bios15100702 (registering DOI) - 17 Oct 2025
Abstract
A high-sensitivity terahertz (THz) biosensor is proposed in this paper based on a multi-layer hybrid structure consisting of a defect mode and graphene with a truncation layer. This biosensor is based on symmetrical Bragg reflectors with a defect layer and graphene with a [...] Read more.
A high-sensitivity terahertz (THz) biosensor is proposed in this paper based on a multi-layer hybrid structure consisting of a defect mode and graphene with a truncation layer. This biosensor is based on symmetrical Bragg reflectors with a defect layer and graphene with a truncation layer, which effectively comprise a multi-layer hybrid resonance excitation structure. The high sensitivity of this biosensor is developed through defect mode resonance, and the resonance reflection peak is made sharper and more sensitive by using graphene with a truncation layer. After testing and analysis, the sensitivity of this biosensor structure is greatly affected by the refractive index and thickness of the sensing medium. By setting parameters appropriately, the composite structure can be used as both a liquid biosensor and a gas biosensor, the maximum sensitivity of which can surpass 2000°/RIU, while an FOM value of 22,500 RIU−1 can be achieved. At the same time, when the refractive index of the liquid sensing medium changes to 0.01 relative to water (the same applies to changes in the gas sensing medium), the sensitivity of this structure still exceeds 600°/RIU, demonstrating that this biosensor has advantages including high sensitivity, a high FOM, wide applicability, and slow sensitivity attenuation. Therefore, the sensing scheme proposed in this paper has potential application prospects in the field of biosensing based on micro/nanostructures due to its simple structure, low requirements for processing conditions, and high sensitivity. Full article
(This article belongs to the Special Issue Nanophotonics and Surface Waves in Biosensing Applications)
Show Figures

Figure 1

17 pages, 3085 KB  
Article
Three-Dimensionally Ordered Macroporous La2O3-Supported Ni Catalyst for Methane Dry Reforming
by Shoufu Li, Aizhong Ding, Wenchuan Zhang, Zhongdong Xie, Marco Petrangeli Papini, Yuanyan Xuan and Hongguang Zheng
Catalysts 2025, 15(10), 992; https://doi.org/10.3390/catal15100992 (registering DOI) - 17 Oct 2025
Abstract
Three-dimensionally ordered macroporous (3DOM) La2O3-supported Ni catalysts exhibit outstanding performance for methane dry reforming (DRM). The 5Ni/La2O3-3DOM catalyst achieves 79% CH4 and 84% CO2 conversions at 800 °C under the reaction conditions of [...] Read more.
Three-dimensionally ordered macroporous (3DOM) La2O3-supported Ni catalysts exhibit outstanding performance for methane dry reforming (DRM). The 5Ni/La2O3-3DOM catalyst achieves 79% CH4 and 84% CO2 conversions at 800 °C under the reaction conditions of atmospheric pressure, CH4:CO2 molar ratio of 1:1, and gas hourly space velocity (GHSV) = 36,000 mL·gcat−1·h−1, outperforming its counterparts (5Ni/La2O3-PP prepared by means of co-precipitation and 5Ni/La2O3-GNC prepared by means of glycine–nitrate combustion) by 15–20%. Long-term stability tests at 700 °C (same CH4:CO2 ratio and GHSV as above) show that the 5Ni/La2O3-3DOM catalyst maintains CH4 and CO2 conversions at approximately 80% and 85%, respectively, with zero deactivation over 50 h. Meanwhile, its carbon deposition rate plummets to 1.1 mg·g−1·h−1, which is 75% lower than that of the precipitation-derived 5Ni/La2O3-PP catalyst. This excellent performance stems from the synergy of nano-confined Ni particles (11.2 nm in crystallite size after reduction) and abundant surface oxygen species (38 μmol·g−1), establishing 3DOM La2O3 as a superior anti-coking support platform for scalable H2 production via DRM. Full article
Show Figures

Graphical abstract

21 pages, 13386 KB  
Article
Enhanced Gas Sensitivity Characteristics of NO2 Sensor Based on a Silicon Micropillar Design Strategy at Room Temperature
by Zhiyuan Zhang, An Ning, Jian-Jun Zhu, Yi-Yu Yue, Zhi-Qiang Fan and Sai Chen
Sensors 2025, 25(20), 6406; https://doi.org/10.3390/s25206406 (registering DOI) - 17 Oct 2025
Abstract
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact [...] Read more.
In this study, two types of gas sensors—silicone-based interdigital electrode and silicon micropillar sensors based on rGO and rGO/SnO2—were fabricated. Their gas-sensing performance was investigated at room temperature. First, interdigital electrodes of different channel widths were fabricated to investigate the impact of the channel width parameter. Subsequently, the rGO/SnO2 doping ratio in the composite material was varied to identify the optimal composition for gas sensitivity. Additionally, triangular and square-arrayed silicon micropillar substrates were fabricated via photolithography and inductively coupled plasma etching. The rGO/SnO2-based gas sensor on a silicon micropillar substrate exhibited an ultra-high specific surface area. The triangular micropillar arrangement of rGO/SnO2-160 demonstrates the best performance, showing approximately 14% higher response and a 106 s reduction in response time compared with interdigital electrode sensors spray-coated with the same concentration of rGO/SnO2 when tested at room temperature under 250 ppm NO2. The optimized sensor achieves a detection limit as low as 5 ppm and maintains high responsiveness, even in conditions of 60% relative humidity (RH). Additionally, the repeatability, selectivity, and stability of the sensor were evaluated. Finally, structural and morphological characterization was conducted using XRD, SEM, TEM, and Raman spectroscopy, which confirmed the successful modification of rGO with SnO2. Full article
(This article belongs to the Special Issue Recent Advances in Gas Sensors)
Show Figures

Figure 1

29 pages, 6302 KB  
Article
Measurement of Strain and Vibration, at Ambient Conditions, on a Dynamically Pressurised Aircraft Fuel Pump Using Optical Fibre Sensors
by Edmond Chehura, Stephen W. James, Jarryd Braithwaite, James H. Barrington, Stephen Staines, Andrew Keil, Martin Yates, Nicholas John Lawson and Ralph P. Tatam
Sensors 2025, 25(20), 6407; https://doi.org/10.3390/s25206407 (registering DOI) - 17 Oct 2025
Abstract
Ever-increasing demands to improve fuel burn efficiency of aero gas turbines lead to rises in fuel system pressures and temperatures, posing challenges for the structural integrity of the pump housing and creating internal deflections that can adversely affect volumetric efficiency. Non-invasive strain and [...] Read more.
Ever-increasing demands to improve fuel burn efficiency of aero gas turbines lead to rises in fuel system pressures and temperatures, posing challenges for the structural integrity of the pump housing and creating internal deflections that can adversely affect volumetric efficiency. Non-invasive strain and vibration measurements could allow transient effects to be quantified and considered during the design process, leading to more robust fuel pumps. Fuel pumps used on a high bypass turbofan engine were instrumented with optical fibre Bragg grating (FBG) sensors, strain gauges and thermocouples. A hydraulic hand pump was used to facilitate measurements under static conditions, while dynamic measurements were performed on a dedicated fuel pump test rig. The experimental data were compared with the outputs from a finite element (FE) model and, in general, good agreement was observed. Where differences were observed, it was concluded that they arose from the sensitivity of the model to the selection of nodes that best matched the sensor location. Strain and vibration measurements were performed over the frequency range of 0 to 2.5 kHz and demonstrated the ability of surface-mounted FBGs to characterise vibrations originating within the internal sub-components of the pump, offering potential for condition monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

12 pages, 691 KB  
Article
Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks
by Huixia Zhang, Jinhua Qian, Yitong Liu, Xuhui Jiang, Jian Ma, Yaning Xu and Bowen Cai
Appl. Sci. 2025, 15(20), 11125; https://doi.org/10.3390/app152011125 - 17 Oct 2025
Abstract
Liquefied natural gas plays a crucial role in global energy transitions due to its high efficiency and low emissions, especially in long-distance transportation. However, the thermal management of LNG storage tanks remains a significant challenge due to temperature fluctuations, which impact both efficiency [...] Read more.
Liquefied natural gas plays a crucial role in global energy transitions due to its high efficiency and low emissions, especially in long-distance transportation. However, the thermal management of LNG storage tanks remains a significant challenge due to temperature fluctuations, which impact both efficiency and safety. Traditional methods rely on thermodynamic models or computational fluid dynamics simulations but are computationally expensive and time-consuming. This study proposes a hybrid approach that integrates machine learning techniques with CFD data to predict temperature variations inside LNG storage tanks. Several ML models, including Random Forest, XGBoost, and deep learning-based models like CNN and TCN, were tested. Results indicate that CNN and TCN models offer the best performance in predicting temperature changes, showing superior accuracy and computational efficiency. This approach significantly enhances the real-time prediction capability, offering a promising solution for improving LNG tank thermal management, ensuring both operational safety and efficiency. Full article
Show Figures

Figure 1

19 pages, 1476 KB  
Article
The Reliability of Offshore Jacket Platforms Based on Bayesian Calibration
by Fang Zhou, Fansheng Meng, Yuhan Zhao, Jinbo Chen, Rui Zhao, Yongfei Zhang, Zhaolong Han and Yan Bao
J. Mar. Sci. Eng. 2025, 13(10), 1989; https://doi.org/10.3390/jmse13101989 - 17 Oct 2025
Abstract
The safety of offshore structures is a key topic in developing offshore oil and gas and offshore wind energy. Due to the harsh offshore environment and costly offshore field tests, offshore field trials to validate the theoretical models for offshore structures are limited, [...] Read more.
The safety of offshore structures is a key topic in developing offshore oil and gas and offshore wind energy. Due to the harsh offshore environment and costly offshore field tests, offshore field trials to validate the theoretical models for offshore structures are limited, and testing results can rarely be found in the public domain. The Bayesian updating technique combines existing engineering knowledge with the observed performance data about in-service offshore structures to update model uncertainties. Hence, the Bayesian technique overcomes the shortcomings of limited offshore field trials. This paper compiles performance data on offshore jackets in hurricanes in the Gulf of Mexico (GoM) in the past two decades and calibrates the model uncertainties of the API method using the Bayesian technique. With the updated model uncertainty, this paper evaluates the reliability of generic offshore jackets in the GoM and the case study’s offshore wind substation in China. With a typical reserve strength ratio (RSR) of about 2.0 to 2.2, the reliability analysis reveals that the updated annual failure probability of a generic offshore jacket in the GoM is largely less than 1.0×103, indicating that the extreme weather overload is not a major concern. However, the RSR of the case study platform in China is greater than 4.5, and the annual failure probability for the case study offshore wind substation is about 2–3 orders of magnitude lower than typical oil and gas jackets. Hence, from the extreme metocean condition perspective, the substation under investigation has sufficient structural capacity, and the design practice for offshore wind substations in northern China may be improved. Full article
Show Figures

Figure 1

427 KB  
Proceeding Paper
Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm
by Longfei Lian, Haosen Zhang and Yarong Chen
Eng. Proc. 2025, 111(1), 9; https://doi.org/10.3390/engproc2025111009 - 16 Oct 2025
Abstract
To solve the unrelated parallel batch processing machine scheduling problem (UPBPMSP) with dynamic job arrivals, heterogeneous processing times, and machine heterogeneity, this paper presents an improved artificial bee colony (IABC) algorithm aimed at minimizing the makespan. Three improvements include the following: (1) a [...] Read more.
To solve the unrelated parallel batch processing machine scheduling problem (UPBPMSP) with dynamic job arrivals, heterogeneous processing times, and machine heterogeneity, this paper presents an improved artificial bee colony (IABC) algorithm aimed at minimizing the makespan. Three improvements include the following: (1) a hybrid encoding scheme that combines machine allocation coefficients and priority weights, allowing for flexible consideration of machine capabilities and dynamic job priorities; (2) a dual-mode variable neighborhood search strategy to optimize machine allocation and job sequencing simultaneously; (3) a dynamic weight tournament selection mechanism to enhance population diversity and avoid premature convergence. Experimental results show that IABC reduces the makespan by 5% to 25% compared to traditional ABC and genetic algorithms (GAs), with the most significant advantages observed in concentrated job arrival scenarios. Statistical tests confirm that the improvements are statistically significant, validating the effectiveness of the proposed algorithm. Full article
Show Figures

Figure 1

18 pages, 1941 KB  
Article
Deep Learning Model Ensemble Applied to Modulus Back-Calculation of Old Cement Concrete Rubblized Overlay Asphalt Pavement
by Qiang Li and Pai Peng
Appl. Sci. 2025, 15(20), 11115; https://doi.org/10.3390/app152011115 - 16 Oct 2025
Abstract
Accurately determining the modulus of each structural layer remains a key challenge in asphalt pavement design, construction quality control, and bearing capacity assessment. This study introduces an ensemble model combining a genetic algorithm-optimized backpropagation neural network (GA-BP) and a convolutional neural network (CNN) [...] Read more.
Accurately determining the modulus of each structural layer remains a key challenge in asphalt pavement design, construction quality control, and bearing capacity assessment. This study introduces an ensemble model combining a genetic algorithm-optimized backpropagation neural network (GA-BP) and a convolutional neural network (CNN) to back-calculate the dynamic modulus of asphalt pavement layers over rubblized old cement concrete structures. Using a dynamic deflection basin database created by our research team, we built a dataset of 1,552,000 pavement structure samples with Falling Weight Deflectometer (FWD) data. Based on this dataset, we developed regression models, including a backpropagation (BP) neural network, GA-BP, and CNN, to perform the back-calculation of dynamic modulus values. Performance testing revealed that the CNN model outperformed both the GA-BP and BP models in terms of accuracy and stability, as indicated by evaluation metrics (R2, MAE, RMSE, MAPE), with the following ranking: CNN > GA-BP > BP. Nonetheless, the maximum relative error across all three models remained notable. To address this, an ensemble model combining GA-BP and CNN was created, significantly enhancing the accuracy and stability of the back-calculation results. The proposed ensemble model was tested on-site with FWD data to estimate the dynamic modulus of asphalt pavement layers. The results demonstrated strong agreement with actual pavement performance and high consistency with numerical outcomes from three-dimensional (3D) dynamic finite element method simulations. These findings suggest that the GA-BP and CNN ensemble approach offers a reliable method for back-calculating the dynamic modulus of asphalt pavement layers over rubblized old cement concrete structures. Full article
Show Figures

Figure 1

33 pages, 2062 KB  
Article
Deterministic Parameter Control Methods for Genetic Algorithms: Benchmarking on Test Functions and Boost Converter Design Optimisation
by Cagatay Cebeci and Oğuzhan Timur
Appl. Sci. 2025, 15(20), 11093; https://doi.org/10.3390/app152011093 - 16 Oct 2025
Abstract
Genetic Algorithms (GAs) are pillars of evolutionary computing and one of the most well-known population-based metaheuristic optimisation techniques. They are widely used in engineering and applied optimisation problems for their capabilities in finding global solutions. Standard GAs (SGAs) determine probabilities of crossover and [...] Read more.
Genetic Algorithms (GAs) are pillars of evolutionary computing and one of the most well-known population-based metaheuristic optimisation techniques. They are widely used in engineering and applied optimisation problems for their capabilities in finding global solutions. Standard GAs (SGAs) determine probabilities of crossover and mutation by computationally expensive trials. Adaptive Genetic Algorithms (AGAs), on the other hand, improve this process by adjusting the parameters throughout generations. This study proposes three deterministic parameter control functions, ACM1, ACM2 and ACM3, for the regulation of crossover and mutation probabilities. Using advanced test functions, comparisons between four deterministic GAs, an SGA, two fixed-parameter GAs, and an AGA have been made. The fixed-parameter configurations are called FCM1 and FCM2. The AGA is called LTA, and four deterministic methods are called HAM and ACM1–3. Results show that the SGA is mostly inadequate for complex optimisation problems. The LTA performs inconsistently by failing on some functions and succeeding on others. The methods, ACM2, HAM, and FCM2, are highly robust and effective. Unexpectedly, the FCM2 performs the best for smaller population sizes. However, in higher-dimensional problems, the proposed method, ACM2, is superior and shows less variability in finding optimal solutions. The methods are also evaluated using a boost converter implementation. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 3612 KB  
Article
Experimental Study of Air and EGR Dilution in a Pre-Chamber Spark-Ignited Engine Fueled by Methane
by Viktor Dilber, Sara Ugrinić, Rudolf Tomić and Darko Kozarac
Appl. Sci. 2025, 15(20), 11099; https://doi.org/10.3390/app152011099 - 16 Oct 2025
Abstract
Improving the efficiency of spark-ignited (SI) engines while simultaneously reducing emissions remains a critical challenge in meeting global energy demands and increasingly stringent environmental regulations. Lean burn combustion is a proven strategy for increasing efficiency in SI engines. However, the air dilution level [...] Read more.
Improving the efficiency of spark-ignited (SI) engines while simultaneously reducing emissions remains a critical challenge in meeting global energy demands and increasingly stringent environmental regulations. Lean burn combustion is a proven strategy for increasing efficiency in SI engines. However, the air dilution level is limited by the mixture’s ignition ability and poor combustion efficiency and stability. A promising method to extend the dilution limit and ensure stable combustion is the implementation of an active pre-chamber combustion system. The pre-chamber spark-ignited (PCSI) engine facilitates stable and rapid combustion of very lean mixtures in the main chamber by utilizing high ignition energy from multiple flame jets penetrating from the pre-chamber (PC) to the main chamber (MC). Together with the increase in efficiency by dilution of the mixture, nitrogen oxide (NOX) emissions are lowered. However, at peak efficiencies, the NOX emissions are still too high and require aftertreatment. The use of exhaust gas recirculation (EGR) as a dilutant might enable simple aftertreatment by using a three-way catalyst. This study experimentally investigates the use of EGR as a dilution method in a PCSI engine fueled by methane and analyzes the benefits and drawbacks compared to the use of air as a dilution method. The experimental results are categorized into three sets: measurements at wide open throttle (WOT) conditions, at a constant engine load of indicated mean effective pressure (IMEP) of 5 bar, and at IMEP = 7 bar, all at a fixed engine speed of 1600 rpm. The experimental results were further enhanced with numerical 1D/0D simulations to obtain parameters such as the residual combustion products and excess air ratio in the pre-chamber, which could not be directly measured during the experimental testing. The findings indicate that air dilution achieves higher indicated efficiency than EGR, at all operating conditions. However, EGR shows an increasing trend in indicated efficiency with the increase in EGR rates but is limited due to misfires. In both dilution approaches, at peak efficiencies, aftertreatment is required for exhaust gases because they are above the legal limit, but a significant decrease in NOX emissions can be observed. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

21 pages, 3658 KB  
Review
An Overview of Metallic Abradable Coatings in Gas Turbine Engines
by Kaue Bertuol, Bruno Edu Arendarchuck and Pantcho Stoyanov
Coatings 2025, 15(10), 1216; https://doi.org/10.3390/coatings15101216 - 16 Oct 2025
Abstract
This review presents a comprehensive overview of metallic abradable coatings and the advanced testing methodologies used to evaluate their performance in gas turbine engines. Abradable materials are engineered to act as sacrificial coatings, enabling minimal blade tip wear while maintaining tight clearances between [...] Read more.
This review presents a comprehensive overview of metallic abradable coatings and the advanced testing methodologies used to evaluate their performance in gas turbine engines. Abradable materials are engineered to act as sacrificial coatings, enabling minimal blade tip wear while maintaining tight clearances between rotating blades and stationary components. Such functionality is critical in aerospace applications, where engines operate at high rotational speeds and across wide temperature ranges. The review examines the principal factors governing the design and selection of metallic-based abradable coatings, including material composition, thermal stability, and microstructural tailoring through the addition of phase modifiers, porosity formers, and solid lubricants. The performance of various metallic matrix materials is also discussed concerning their operational temperature ranges and wear characteristics. Particular attention is given to abradability evaluation methods, emphasizing the need to replicate engine-representative conditions to capture blade–coating interactions, frictional behavior, and wear mechanisms. This review consolidates advances in material compositions, microstructural engineering, and experimental testing, integrating perspectives from materials science, tribology, and methodology to guide the development of next-generation turbine coatings. It specifically addresses the lack of a unified review linking material design, thermal spray processes, and performance evaluation by summarizing key compositions, microstructures, and testing methods. Full article
Show Figures

Graphical abstract

18 pages, 8775 KB  
Article
Effect of Low-Pressure Gas Oxynitriding on the Microstructural Evolution and Wear Resistance of Ti-6Al-4V Alloy
by Chih-Hao Yang, Chang-Yu Li, Ching-Cheng Chan, Po-Cheng Chi, Jing-Han Shih, Fang-Yu Liao and Shih-Hsien Chang
Lubricants 2025, 13(10), 449; https://doi.org/10.3390/lubricants13100449 (registering DOI) - 16 Oct 2025
Abstract
A Ti-6Al-4V titanium alloy exhibits low hardness and poor wear resistance under sliding contact. This study evaluates the effect of low-pressure gas oxynitriding (LPON) followed by low-temperature oxidation on its microstructure and tribological performance. Specimens were nitrided at 1000 °C for 100 min, [...] Read more.
A Ti-6Al-4V titanium alloy exhibits low hardness and poor wear resistance under sliding contact. This study evaluates the effect of low-pressure gas oxynitriding (LPON) followed by low-temperature oxidation on its microstructure and tribological performance. Specimens were nitrided at 1000 °C for 100 min, then oxidized at 450–600 °C for 120 min. Microstructural and phase changes were characterized by SEM and XRD; surface roughness, hardness, and wear were assessed using 3D laser scanning microscopy, microhardness profiling, and pin-on-disk tests under 2 N and 4 N loads. XRD revealed TiN, Ti2N, Ti2AlN, and TiO2 phases, with oxidation temperature governing TiN grain growth and nitride-to-oxide transformation. Oxidation at 500–550 °C formed a dense TiO2-rich layer over a stable TiN/Ti2N substrate, achieving hardness up to ~670 HV0.025 and the lowest wear volume. At low load (2 N), nitriding alone provided the highest wear resistance, while at higher load (4 N), oxidation yielded only slight improvement due to oxide embrittlement. Excessive oxidation at 600 °C increased roughness, induced spallation, and reduced wear resistance. The optimal condition (550 °C) offered synergistic protection from nitrides and stable oxides, enhancing load-bearing capacity. Overall, duplex nitriding–oxidation is most effective for low-to-moderate load applications, with potential use in biomedical implants, aerospace fasteners, and precision components. Full article
(This article belongs to the Special Issue Tribology of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2529 KB  
Article
Effects of Switching on the 2-DEG Channel in Commercial E-Mode GaN-on-Si HEMT
by Roberto Baca-Arroyo
Micromachines 2025, 16(10), 1173; https://doi.org/10.3390/mi16101173 - 16 Oct 2025
Abstract
In this study, the effects of switching on the two-dimensional electron gas (2-DEG) channel in an E-mode GaN-on-Si HEMT are investigated using a GS-065-004-1-L device that is commercially available for educational practice. A practical prototype with a reduced number of components is proposed, [...] Read more.
In this study, the effects of switching on the two-dimensional electron gas (2-DEG) channel in an E-mode GaN-on-Si HEMT are investigated using a GS-065-004-1-L device that is commercially available for educational practice. A practical prototype with a reduced number of components is proposed, with empirical concepts used to explain its predictive performance when a coreless transformer is series-connected to the E-mode GaN-on-Si HEMT for switching-mode conduction. Conduction modes arising at the p-GaN/n-AlGaN/i-GaN heterojunction in accordance with specifications from the manufacturer’s datasheet were validated using a didactic physical-based model dependent on semiconductor parameters of gallium nitride (GaN). Test circuit-examined waveforms were analyzed, which confirmed that the switching conduction mode of the 2-DEG channel is dependent on physical parameters such as switching operating frequency, temperature, low-field electron mobility, and space charge capacitance. Full article
Show Figures

Figure 1

18 pages, 6653 KB  
Article
Abrupt Transition of Nanothermite Reactivity: The Roles of Loading Density, Microstructure and Ingredients
by Chengbo Ru, Yanchun Zhang, Aoyang Yu, Lihong Chen, Hongxing Wang, Hongguo Zhang, Yiming Shan and Yi Jin
Molecules 2025, 30(20), 4101; https://doi.org/10.3390/molecules30204101 - 15 Oct 2025
Abstract
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of [...] Read more.
Nanothermites are widely applied as specific power sources for microscale initiators and pyrotechnics. Increasing the charge density enhances energy storage within a confined combustion chamber, but it also alters the reaction kinetics. To systemically explore this phenomenon, the combustion and pressurization characteristics of electrosprayed nanothermite-based hybrid energetic materials (THEMs) with different metallic oxides (Fe2O3, CuO, and Bi2O3) and various energetic additives (nitrocellulose (NC), octogen (HMX), ammonium perchlorate (AP), and hexanitrohexaazaisowurtzitane (CL-20)) across various loading densities were tested. The results showed that increasing the loading density decreased the porosity of the loaded nanothermites and then rapidly decreased the convective heat transfer efficiency during the combustion propagation process. When the loading density exceeded a critical value, a dramatic decrease in the peak pressure, several orders-of-magnitude decrease in the pressurization rate, and an order-of-magnitude increase in the combustion duration occurred. Due to the dual effects of the porous microstructure on heat and mass transfer, the critical density of both the electrosprayed Al/CuO/NC/CL-20 composites and their physically mixed counterparts is between 37.9 and 43.9% theoretical maximum density (TMD). Because of the different synergistic catalytic effects, the fast reactivity at the high-loading-density maintaining capacity of the applied additives was AP > HMX ≈ CL-20 > NC. Owing to their intrinsic properties of low ignition temperature and high gas yield, the Bi2O3-THEMs could maintain high-speed reactivity even at 59.7% TMD. These results provide valuable insights into the rational design and tailoring of the reactivity of nanothermites for specific applications. Full article
(This article belongs to the Special Issue Advances in Energetic Materials and Associated Detection Methods)
Show Figures

Graphical abstract

24 pages, 5371 KB  
Article
Non-Contact In Situ Estimation of Soil Porosity, Tortuosity, and Pore Radius Using Acoustic Reflections
by Stuart Bradley
Agriculture 2025, 15(20), 2146; https://doi.org/10.3390/agriculture15202146 - 15 Oct 2025
Abstract
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide [...] Read more.
Productive and healthy soils are essential in agriculture and other economic uses of land which depend on plant growth, and are under increasing pressure globally. The physical properties of soil, its porosity and pore structure, also have a significant impact on a wide range of environmental factors, such as surface water runoff and greenhouse gas exchange. Methods exist for evaluating soil porosity that are applied in a laboratory environment or by inserting sensors into soil in the field. However, such methods do not readily sample adequately in space or time and are labour-intensive. The purpose of the current study is to investigate the potential for estimation of soil porosity and pore size using the strength of reflection of audio pulses from natural soil surfaces. Estimation of porous material properties using acoustic reflections is well established. But because of the complex, viscous interactions between sound waves and pore structures, these methods are generally restricted to transmissions at low audio frequencies or at ultrasonic frequencies. In contrast, this study presents a novel design for an integrated broad band sensing system, which is compact, inexpensive, and which is capable of rapid, non-contact, and in situ sampling of a soil structure from a small, moving, farm vehicle. The new system is shown to have the capability of obtaining soil parameter estimates at sampling distances of less than 1 m and with accuracies of around 1%. In describing this novel design, special care is taken to consider the challenges presented by real agriculture soils. These challenges include the pasture, through which the sound must penetrate without significant losses, and soil roughness, which can potentially scatter sound away from the specular reflection path. The key to this new integrated acoustic design is an extension of an existing theory for acoustic interactions with porous materials and rigorous testing of assumptions via simulations. A configuration is suggested and tested, comprising seven audio frequencies and three angles of incidence. It is concluded that a practical, new operational tool of similar design should be readily manufactured. This tool would be inexpensive, compact, low-power, and non-intrusive to either the soil or the surrounding environment. Audio processing can be conducted within the scope of, say, mobile phones. The practical application is to be able to easily map regions of an agricultural space in some detail and to use that to guide land treatment and mitigation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop