Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Data Acquisition
3.2. Machine Learning Algorithm Selection
4. Model Development and Validation
4.1. Predictive Model Development
4.2. Model Training Procedure
4.3. Model Performance Metrics
4.4. Data Partitioning
5. Results and Discussion
5.1. Model Performance Comparison
5.2. Advantages and Limitations of the Method
- (1)
- Time Advantage
- (2)
- Model Advantage
5.3. Limitations
5.4. Practical Applications of the Method
6. Future Research and Development Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Mao, L.; Tao, F. Calculation and Finite Element Analysis of the Independent Tank Structure of Liquefied Natural Gas Carriers. Mech. Manuf. 2018, 56, 43–46+53. [Google Scholar]
- Wu, D. Study on Heat Transfer and Evaporation Rate of Independent C-Type LNG Tanks on LNG Carriers. Master’s Thesis, Dalian University of Technology, Dalian, China, 2018. [Google Scholar]
- Li, M. Temperature Field and Stress Field Analysis of C-Type Independent Cargo Tanks for Small and Medium-Sized LNG Carriers. Master’s Thesis, South China University of Technology, Guangzhou, China, 2013. [Google Scholar]
- Guan, G.; Lin, Y.; Yang, Q. Simulation Experiment on the Steady-State Boil-Off Rate of LNG Storage Tanks Based on ANSYS. Exp. Technol. Manag. 2017, 34, 129–131, 142. [Google Scholar]
- Yu, X.; Hu, Y.; Hua, J. Finite Element Analysis of Temperature and Stress Fields in LNG Ship Cargo Tanks. Ship Ocean Eng. 2010, 2, 47–50. [Google Scholar]
- Jeong, H.; Park, A.; Chung, J.; Lee, D.; Lee, D.; Lee, H.; Lee, D.; Lim, Y. Modeling and simulation of thermodynamic behavior of an LNG fuel tank by using artificial neural network based on operational data. Energy 2025, 314, 134340. [Google Scholar] [CrossRef]
- Marques, P.A.; Ahizi, S.; Mendez, M.A. Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks. Energy 2024, 302, 131739. [Google Scholar] [CrossRef]
- Tzelepi, M.; Symeonidis, C.; Nousi, P.; Kakaletsis, E.; Manousis, T.; Tosidis, P.; Nikolaidis, N.; Tefas, A. Deep Learning for Energy Time-Series Analysis and Forecasting. arXiv 2023, arXiv:2306.09129. Available online: https://arxiv.org/abs/2306.09129 (accessed on 26 September 2024).
- Qian, J.; Jiang, X.; Liu, Y. A Review of the Temperature Field Research of C-type Liquid Tanks on Small and Medium-sized LNG Ships. Front. Power Energy Syst. 2024, 3, 96–101. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q. A Fluent-Based Method for Predicting LNG Tank Evaporation Parameters. Ship Ocean Eng. 2018, 47, 160–163+167. [Google Scholar]
- Feng, W.; Zhou, H.; Zhao, J. Study on the Temperature Distribution of the Hull of Membrane-type Liquefied Natural Gas Carrier. Shipbuild. Technol. 2006, 5, 17–19. [Google Scholar]
- Zhang, W.; Li, K.; Zhou, H. Study on the Temperature Field of Membrane-type LNG Carrier. Nat. Gas Ind. 2005, 25, 110–112. [Google Scholar]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.A. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 62. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, J.; Guo, J.; Wu, S.; Li, Z. Advancing AI-Enabled Techniques in Energy System Modeling: A Review of Data-Driven, Mechanism-Driven, and Hybrid Modeling Approaches. Energies 2025, 18, 845. [Google Scholar] [CrossRef]
- Chen, Z.S.; Lam, J.S.L.; Xiao, Z. Prediction of harbour vessel fuel consumption based on machine learning approach. Ocean Eng. 2023, 278, 114483. [Google Scholar] [CrossRef]
- Pan, L.; Chen, S.; Wang, H. Temperature Prediction of High-pressure Rotor Hazard Points Based on Machine Learning. J. Southeast Univ. (Nat. Sci. Ed.) 2025, 55, 831–838. [Google Scholar]
- Dhamodaran, S.; Krishna Chaitanya Varma, C.; Reddy, C.D. Weather Prediction Model Using Random Forest Algorithm and GIS Data Model. In Innovative Data Communication Technologies and Application. ICIDCA 2019; Raj, J., Bashar, A., Ramson, S., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2020; Volume 46. [Google Scholar] [CrossRef]
- Tao, Y.; Du, J. Temperature Prediction Based on Long Short-Term Memory Network and Random Forest. Comput. Eng. Des. 2019, 40, 7. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Kang, J.; Ding, Z.; Zhu, H. An XGBoost-Based predictive control strategy for HVAC systems in providing day-aheaddemand response. Build. Environ. 2023, 238, 110350. [Google Scholar] [CrossRef]
- Liao, N.; Hu, Z.; Magami, D. A metaheuristic approach to model the effect of temperature on urban electricity need utilizing XGBoost and modified boxing match algorithm. AIP Adv. 2024, 14, 115318. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Wang, F.; Lee, C.-H. Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data. Appl. Comput. Eng. 2024, 99, 168–174. [Google Scholar] [CrossRef]
- Akilan, T.; Baalamurugan, K.M. Automated weather forecasting and field monitoring usingGRU-CNN model along with IoT to support precision agriculture. Expert Syst. Appl. 2024, 249 Pt A, 123468. [Google Scholar] [CrossRef]
- Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24, 16453–16482. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Liang, X.; Zhang, C.; Yang, C.; Gui, W. Learning an Enhanced TCN-LSTM Network for Temperature Process Modeling in Rotary Kilns. IEEE Trans. Autom. Sci. Eng. 2025, 22, 3056–3067. [Google Scholar] [CrossRef]
- Xiang, X.; Li, X.; Zhang, Y.; Hu, J. A short-term forecasting method for photovoltaic power generation based on the TCN-ECANet-GRU hybrid model. Sci. Rep. 2024, 14, 6744. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. Study on Heat Transfer and Evaporation in Type C LNG Fuel Tank. Master’s Thesis, Dalian University of Technology, Dalian, China, 2022. [Google Scholar] [CrossRef]
AI Models | MSE | MAE | R2 |
---|---|---|---|
RF | 0.52132 | 0.51992 | 0.97566 |
XGBoost | 0.39468 | 0.47866 | 0.9739 |
LSTM | 3.6031 | 1.5183 | 0.89003 |
GRU | 3.2171 | 1.4315 | 0.884 |
CNN | 0.19138 | 0.35005 | 0.97871 |
TCN | 0.34385 | 0.42624 | 0.98436 |
CNN-LSTM | 2.907 | 1.3737 | 0.91091 |
CNN-GRU | 2.2032 | 1.2165 | 0.91214 |
TCN-LSTM | 1.0758 | 0.82026 | 0.93858 |
TCN-GRU | 0.88231 | 0.76639 | 0.9543 |
AI Models | MSE | MAE | R2 | |
---|---|---|---|---|
A + B + C | CNN | 0.19138 | 0.35005 | 0.97871 |
TCN | 0.34385 | 0.42624 | 0.98436 | |
A + B | CNN | 0.1501 | 0.32457 | 0.9791 |
TCN | 0.73567 | 0.7691 | 0.90313 | |
B + C | CNN | 0.091047 | 0.23089 | 0.98831 |
TCN | 0.58051 | 0.65838 | 0.91959 | |
A + C | CNN | 0.16418 | 0.31556 | 0.99182 |
TCN | 1.0601 | 0.69708 | 0.9687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Qian, J.; Liu, Y.; Jiang, X.; Ma, J.; Xu, Y.; Cai, B. Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks. Appl. Sci. 2025, 15, 11125. https://doi.org/10.3390/app152011125
Zhang H, Qian J, Liu Y, Jiang X, Ma J, Xu Y, Cai B. Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks. Applied Sciences. 2025; 15(20):11125. https://doi.org/10.3390/app152011125
Chicago/Turabian StyleZhang, Huixia, Jinhua Qian, Yitong Liu, Xuhui Jiang, Jian Ma, Yaning Xu, and Bowen Cai. 2025. "Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks" Applied Sciences 15, no. 20: 11125. https://doi.org/10.3390/app152011125
APA StyleZhang, H., Qian, J., Liu, Y., Jiang, X., Ma, J., Xu, Y., & Cai, B. (2025). Machine Learning-Driven Optimization for Thermal Management of LNG Storage Tanks. Applied Sciences, 15(20), 11125. https://doi.org/10.3390/app152011125