Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = gas shear stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7546 KiB  
Article
Measuring the Effects of Gas Pressure and Confining Pressures on Coal: In the View of Time–Frequency Evolutionary Properties and Crack Propagation Behavior
by Yufei Tian, Junjun Jiang, Zhigang Deng, Yin Wang, Zhuoran Duan, Weiguang Ren, Yunpeng Li and Guanghui Zhang
Processes 2025, 13(8), 2493; https://doi.org/10.3390/pr13082493 - 7 Aug 2025
Abstract
As coal mining progresses to greater depths, the complex geological conditions significantly increase the risk of compound disasters. With increasing mining depth, elevated ground stress and gas pressure exacerbate the coupling effects of rockburst and gas outburst. This study employs laboratory tests and [...] Read more.
As coal mining progresses to greater depths, the complex geological conditions significantly increase the risk of compound disasters. With increasing mining depth, elevated ground stress and gas pressure exacerbate the coupling effects of rockburst and gas outburst. This study employs laboratory tests and theoretical analysis to investigate gas disasters under varying gas and confining pressures. The experimental results are analyzed in terms of mechanical parameters, crack propagation, and acoustic emission (AE) time–frequency evolution. Under conventional compression, coal failure exhibits shear damage with axial splitting or debris ejection. The peak strength demonstrates a clear confining pressure strengthening effect and gas pressure weakening effect. At constant gas pressure, the elastic modulus increases with confining pressure, whereas at constant confining pressure, it decreases with rising gas pressure. Full article
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 10070 KiB  
Article
The Influence of MoS2 Coatings on the Subsurface Stress Distribution in Bearing Raceways
by Bing Su, Chunhao Lu and Zeyu Gong
Lubricants 2025, 13(8), 336; https://doi.org/10.3390/lubricants13080336 - 30 Jul 2025
Viewed by 296
Abstract
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there [...] Read more.
Many low-temperature applications, such as rocket engines and liquefied natural gas (LNG) transport pumps, necessitate ultra-low-temperature operational environments. In these conditions, the properties of lubricating oils and greases are significantly influenced by temperature, leading to the widespread adoption of solid lubrication. Currently, there is no international research regarding the influence of bearing coatings on the subsurface stress distribution in raceways. The Lundberg–Palmgren (L-P) theory states that subsurface stress variations govern bearing lifespan. Therefore, this paper utilizes existing formulas and Python programming to calculate the subsurface stress field of the inner raceway in a MoS2 solid-lubricated angular contact ball bearing. Furthermore, it analyzes the impacts of factors such as coating material properties, slide-to-roll ratio, traction coefficient, and load on its subsurface stress field. The results reveal that for solid-lubricated ball bearings, as the load increases, the maximum subsurface stress shifts closer to the center of the contact area, and the maximum subsurface shear stress becomes more concentrated. As the traction coefficient increases, the stress on the XZ-plane side increases and its position moves closer to the surface, while the opposite trend is observed on the other side. Additionally, the maximum value of the subsurface von Mises stress is approximately 0.64P0, and the maximum value of the orthogonal shear stress component τyz in the subsurface is approximately 0.25P0. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 578
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

19 pages, 6394 KiB  
Article
Effect of Water Content and Cementation on the Shear Characteristics of Remolded Fault Gouge
by Weimin Wang, Hejuan Liu, Haizeng Pan and Shengnan Ban
Appl. Sci. 2025, 15(14), 7933; https://doi.org/10.3390/app15147933 - 16 Jul 2025
Viewed by 213
Abstract
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content [...] Read more.
The strength parameters of fault gouge are critical factors that influence sealing capacity and fault reactivation in underground gas storage reservoirs. This study investigates the shear characteristics of remolded fault gouge under varying hydro-mechanical conditions, focusing on the coupled influence of water content and cementation. Sixty fault gouge samples are prepared using a mineral mixture of quartz, montmorillonite, and kaolinite, with five levels of water content (10–30%) and three cementation degrees (0%, 1%, 3%). Direct shear tests are conducted under four normal stress levels (100–400 kPa), and microstructural characteristics are examined using SEM. The results show that shear strength and cohesion exhibit a non-monotonic trend with water content, increasing initially and then decreasing, while the internal friction angle decreases continuously. Higher cementation degrees not only enhance shear strength and reduce the softening effect caused by water but also shift the failure mode from ductile sliding to brittle, cliff-type rupture. Moreover, clay content is found to modulate the degree—but not the trend—of strength parameter responses to water and cementation variations. Based on the observed mechanical behavior, a semi-empirical shear strength prediction model is developed by extending the classical Mohr–Coulomb criterion with water–cementation coupling terms. The model accurately predicts cohesion and internal friction angle as functions of water content and cementation degree, achieving strong agreement with experimental results (R2 = 0.8309 for training and R2 = 0.8172 for testing). These findings provide a practical and interpretable framework for predicting the mechanical response of fault gouge under complex geological conditions. Full article
Show Figures

Figure 1

16 pages, 5503 KiB  
Article
Bending Stress and Deformation Characteristics of Gas Pipelines in Mountainous Terrain Under the Influence of Subsidence
by Guozhen Zhao, Jiadong Li and Haoyan Liang
Energies 2025, 18(13), 3323; https://doi.org/10.3390/en18133323 - 24 Jun 2025
Viewed by 370
Abstract
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as [...] Read more.
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as the research background, through the combination of similar simulation and finite element simulation, the deformation and stress characteristics of gas pipelines affected by subsidence in mountainous terrain are analyzed, and the failure law of gas pipelines in different terrains of the coal mining area is revealed. The results demonstrate that topographic stress convergence creates a maximum compression zone at the valley base of the central subsidence basin, causing significant pipeline depression. Hillslope areas primarily experience tension from soil slippage, while slope–valley transition zones exhibit a high-risk shear–tension coupling. Analysis via the pipe–soil interaction model reveals concentrated mid-subsidence pipeline stresses with subsequent relaxation through redistribution. Accordingly, the following zoned protection strategy is proposed: enhanced compression monitoring in valley segments, tensile reinforcement for slope sections, and prioritized shear prevention in transition zones. The research provides a theoretical basis for the safe operation and maintenance of gas pipeline networks in mountainous areas. Full article
Show Figures

Figure 1

13 pages, 1289 KiB  
Article
Initiation of Shear Band in Gas Hydrate-Bearing Sediment Considering the Effect of Porosity Change on Stress
by Yudong Huang, Tianju Wang, Hongsheng Guo, Yan Zhang, Zhiwei Hao, Xiaobing Lu and Xuhui Zhang
Modelling 2025, 6(3), 51; https://doi.org/10.3390/modelling6030051 - 23 Jun 2025
Viewed by 339
Abstract
The initiation condition of the shear band in gas hydrate-bearing sediment (GHBS) was analyzed in this study. First, the mathematical model considering the pore diffusion and stress conservation equations was constructed. The shear stress is assumed to be related to the porosity, shear [...] Read more.
The initiation condition of the shear band in gas hydrate-bearing sediment (GHBS) was analyzed in this study. First, the mathematical model considering the pore diffusion and stress conservation equations was constructed. The shear stress is assumed to be related to the porosity, shear strain, and shear strain ratio. The expansion of pores causes sediment softening, while the shear strain causes the stiffening of the sediment. The perturbation method was used to analyze the initiation condition of the shear band under porosity softening and strain stiffening based on the presented mathematical model. A numerical simulation was also performed. The development of the strain, stress, and porosity was analyzed. It is shown that the parameters of the sediment change with the strain and porosity. When the parameters are satisfied under certain conditions, the shear band will initiate and develop. The critical condition is when the porosity-softening effects overcome the strain-stiffening effects. In some special cases, the critical condition may be related to other factors, such as when strain softening induces other kinds of initiation of the shear band. Full article
Show Figures

Figure 1

35 pages, 7887 KiB  
Article
Triaxial Experimental Study of Natural Gas Hydrate Sediment Fracturing and Its Initiation Mechanisms: A Simulation Using Large-Scale Ice-Saturated Synthetic Cubic Models
by Kaixiang Shen, Yanjiang Yu, Hao Zhang, Wenwei Xie, Jingan Lu, Jiawei Zhou, Xiaokang Wang and Zizhen Wang
J. Mar. Sci. Eng. 2025, 13(6), 1065; https://doi.org/10.3390/jmse13061065 - 28 May 2025
Viewed by 318
Abstract
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional [...] Read more.
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional reservoirs. This study presents a comprehensive triaxial experimental investigation of the fracturing behavior and fracture initiation mechanisms of NGH-bearing sediments, using large-scale ice-saturated synthetic cubic models. The experiments systematically explore the effects of key parameters, including the injection rate, fluid viscosity, ice saturation, perforation patterns, and in situ stress, on fracture propagation and morphology. The results demonstrate that at low fluid viscosities and saturation levels, transverse and torsional fractures dominate, while longitudinal fractures are more prominent at higher viscosities. Increased injection rates enhance fracture propagation, generating more complex fracture patterns, including transverse, torsional, and secondary fractures. A detailed analysis reveals that the perforation design significantly influences the fracture direction, with 90° helical perforations inducing vertical fractures and fixed-plane perforations resulting in transverse fractures. Additionally, a plastic fracture model more accurately predicts fracture initiation pressures compared to traditional elastic models, highlighting a shift from shear to tensile failure modes as hydrate saturation increases. This research provides new insights into the fracture mechanisms of NGH-bearing sediments and offers valuable guidance for optimizing hydraulic fracturing strategies to enhance resource extraction in hydrate reservoirs. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

15 pages, 2368 KiB  
Article
A Study on the Creep Characteristics of Gassy Clay Mixed with Silt
by Aiwu Yang, Tianli Liu, Hao Zhang and Boqu Zhang
Appl. Sci. 2025, 15(9), 5106; https://doi.org/10.3390/app15095106 - 4 May 2025
Viewed by 336
Abstract
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly [...] Read more.
As the economy evolves, there has been an increasing interest in exploring oceanic resources. However, the complex marine environment poses several geological challenges for offshore engineering endeavors. The presence of gassy soil significantly influences the deformation properties and integrity of the soil, significantly impacting offshore engineering construction. Triaxial shear tests and creep tests were conducted on gassy clay with silt content, prepared using the laboratory “zeolite method”, to analyze its shear deformation characteristics and long-term resilience. We proposed a prediction model for calculating the long-term resilience of silt-containing clay, accounting for confining pressure and gas content, and verified its efficacy through experimentation. Our findings reveal the following: The stress–strain relationship curve of silt-containing gassy clay is a typical strain hardening curve. The greater the confining pressure or the smaller the gas content, the greater the stress under the same strain and the greater the yield stress; when the gas content is the same, the greater the confining pressure, the greater the long-term strength of the soil; and when the confining pressure is the same, the smaller the gas content, the greater the long-term strength of the soil. The research results can provide theoretical reference for actual complex engineering. Full article
Show Figures

Figure 1

19 pages, 12457 KiB  
Article
Experimental Study on Strength Characteristics of Overconsolidated Gassy Clay
by Tao Liu, Longfei Zhu, Yan Zhang, Chengrong Qing, Yuanzhe Zhan, Chaonan Zhu and Jiayang Jia
J. Mar. Sci. Eng. 2025, 13(5), 904; https://doi.org/10.3390/jmse13050904 - 30 Apr 2025
Viewed by 457
Abstract
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial [...] Read more.
Gassy clay, commonly encountered in coastal areas as overconsolidated deposits, demonstrates distinct mechanical properties posing risks for submarine geohazards and engineering stability. Consolidated undrained triaxial tests combined with cyclic simple shear tests were performed on specimens with varying overconsolidation ratios (OCRs) and initial pore pressures, supplemented by SEM microstructural analysis. Triaxial results indicate that OCR controls the transitions between shear contraction and dilatancy, which govern both stress–strain responses and excess pore pressure development. Higher OCR with lower initial pore pressure increases stress path slope, raises undrained shear strength (su), reduces pore pressure generation, and induces negative pore pressure at elevated OCR. These effects originate from compressed gas bubbles and limited bubble flooding under overconsolidation, intensifying dilatancy during shear. Cyclic tests reveal gassy clay’s superior cyclic strength, slower pore pressure accumulation, reduced stiffness softening, and enhanced deformation resistance relative to saturated soils. Cyclic pore pressure amplitude increases with OCR, while peak cyclic strength and anti-softening capacity occur at OCR = 2, implying gas bubble interactions. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

26 pages, 13999 KiB  
Article
Development Characteristics of Natural Fractures in Metamorphic Basement Reservoirs and Their Impacts on Reservoir Performance: A Case Study from the Bozhong Depression, Bohai Sea Area, Eastern China
by Guanjie Zhang, Jingshou Liu, Lei Zhang, Elsheikh Ahmed, Qi Cheng, Ning Shi and Yang Luo
J. Mar. Sci. Eng. 2025, 13(4), 816; https://doi.org/10.3390/jmse13040816 - 19 Apr 2025
Viewed by 556
Abstract
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory [...] Read more.
Archaean metamorphic basement reservoirs, characterized by the development of natural fractures, constitute the primary target for oil and gas exploration in the Bozhong Depression, Bohai Bay Basin, Eastern China. Based on analyses of geophysical image logs, cores, scanning electron microscopy (SEM), and laboratory measurements, tectonic fractures are identified as the dominant type of natural fracture. Their development is primarily controlled by lithology, weathering intensity, and faulting. Fractures preferentially develop in metamorphic rocks with low plastic mineral content and are positively correlated with weathering intensity. Fracture orientations are predominantly parallel or subparallel to fault strikes, while localized stress perturbations induced by faulting significantly increase fracture density. Open fractures, constituting more than 60% of the total reservoir porosity, serve as both primary storage spaces and dominant fluid flow conduits, fundamentally governing reservoir quality. Consequently, spatial heterogeneity in fracture distribution drives distinct vertical zonation within the reservoir. The lithological units are ranked by fracture development potential (in descending order): leptynite, migmatitic granite, gneiss, cataclasite, diorite-porphyrite, and diabase. Diabase represents the lower threshold for effective reservoir formation, whereas overlying lithologies may function as reservoirs under favorable conditions. The large-scale compressional orogeny during the Indosinian period marked the primary phase of tectonic fracture formation. Subsequent uplift and inversion during the Yanshanian period further modified and overlaid the Indosinian structures. These structures are characterized by strong strike-slip strain, resulting in a series of conjugate shear fractures. During the Himalayan period, preexisting fractures were primarily reactivated, significantly influencing fracture effectiveness. The development model of the fracture network system in the metamorphic basement reservoirs of the study area is determined by a coupling mechanism of dominant lithology and multiphase fracturing. The spatial network reservoir system, under the control of multistage structure and weathering, is key to the formation of large-scale effective reservoirs in the metamorphic basement. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

20 pages, 9770 KiB  
Article
Damage Evaluation of Typical Aircraft Panel Structure Subjected to High-Speed Fragments
by Yitao Wang, Teng Zhang, Hanzhe Zhang, Liying Ma, Yuting He and Antai Ren
Aerospace 2025, 12(4), 354; https://doi.org/10.3390/aerospace12040354 - 17 Apr 2025
Viewed by 540
Abstract
This study explores the damage behavior of typical titanium alloy aircraft panel structures under high-speed fragment impacts via ballistic experiments and FEM-SPH simulations. Using a ballistic gun and two-stage light gas gun, tests were conducted with spherical, rhombic, and rod-shaped fragments at 1100–2100 [...] Read more.
This study explores the damage behavior of typical titanium alloy aircraft panel structures under high-speed fragment impacts via ballistic experiments and FEM-SPH simulations. Using a ballistic gun and two-stage light gas gun, tests were conducted with spherical, rhombic, and rod-shaped fragments at 1100–2100 m/s to analyze damage morphology. The FEM-SPH method effectively modeled dynamic impacts, capturing primary penetration and debris cloud-induced secondary damage. Residual strength under tension was evaluated via multiple restart analysis, linking impact dynamics to post-damage mechanics. Experimental results revealed fragment-dependent damage modes: spherical fragments caused circular shear holes with conical/jet-like debris clouds; rhombic fragments induced irregular tearing and triangular perforations due to unstable flight; rod-shaped fragments produced elongated breaches with extensive plastic deformation in stringers. Numerical simulations accurately reproduced debris cloud diffusion and secondary effects like spallation. Residual strength analysis showed tensile capacity was governed by breach geometry and location: rhombic breaches (34.6 kN) had lower strength than circular/square ones (38.1–38.3 kN) due to tip stress concentration, while stringer-located damage increased ultimate load by 8–12% via structural redundancy. In conclusion, high-speed fragment impacts dominate shear/tensile tearing, with morphology dependent on fragment characteristics and impact conditions. Debris cloud-induced secondary damage must be considered in structural assessments. The FEM-SPH method is effective for complex damage simulation, while breach geometry and damage location are critical for residual strength. Stringer involvement enhances load-bearing capacity, highlighting component-level design importance for aircraft survivability. The study results and methodologies presented herein can serve as references for aircraft structural damage analysis, residual strength evaluation of battle-damaged structures, and survivability design. Full article
Show Figures

Figure 1

26 pages, 10368 KiB  
Article
Numerical Study of the Mechanical Properties and Failure Mechanisms of Shale Under Different Loading Conditions
by Tianran Lin, Zhuo Dong and Bin Gong
Appl. Sci. 2025, 15(8), 4405; https://doi.org/10.3390/app15084405 - 16 Apr 2025
Cited by 1 | Viewed by 465
Abstract
The fracturing performance of shale directly influences the effectiveness of shale gas development. To investigate the impact of bedding on the anisotropic mechanical properties and failure modes of shale under different stress paths, a shale model with randomly generated bedding planes was established [...] Read more.
The fracturing performance of shale directly influences the effectiveness of shale gas development. To investigate the impact of bedding on the anisotropic mechanical properties and failure modes of shale under different stress paths, a shale model with randomly generated bedding planes was established using RFPA3D. Uniaxial compression, direct tension, and triaxial compression numerical simulations were conducted. The results reveal the following key findings: (1) With an increase in the bedding angle, the uniaxial compressive strength of shale shows a U-shaped change trend, while the tensile strength gradually decreases. Under the two loading conditions, the failure mechanism of the samples is significantly different, and the influence of the bedding distribution position on the direct tensile failure mode is more significant. (2) The confining pressure reduces the brittleness and anisotropy of shale by altering the internal stress distribution and inhibiting the propagation of microcracks. When the confining pressure increases from 0 MPa to 22.5 MPa, the strength increases by about 41% when the bedding angle is 30°, while the strength of 0° bedding only increases by 29%. (3) The frictional constraint effect plays a significant role in shale strength. Frictional stresses influence the strength near the interface between the bedding and the matrix, while the regions outside this interface maintain the original stress state. In shale with inclined bedding, shear stress promotes slip along the bedding planes, which further reduces the overall strength. The research findings hold significant guiding value for optimizing fracturing designs and enhancing the efficiency of shale gas development. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

23 pages, 11814 KiB  
Article
A New Method for Optimizing the Jet-Cleaning Performance of Self-Cleaning Screen Filters: The 3D CFD-ANN-GA Framework
by Zhouyang Qin, Zhaotong Chen, Rui Chen, Jinzhu Zhang, Ningning Liu and Miao Li
Processes 2025, 13(4), 1194; https://doi.org/10.3390/pr13041194 - 15 Apr 2025
Viewed by 441
Abstract
The jet-type self-cleaning screen filter integrates industrial jet-cleaning technology into the self-cleaning process of screen filters in the drip irrigation system, which has the advantages of low water consumption, high cleaning capacity, and wide applicability compared to traditional filters. However, its commercialization faces [...] Read more.
The jet-type self-cleaning screen filter integrates industrial jet-cleaning technology into the self-cleaning process of screen filters in the drip irrigation system, which has the advantages of low water consumption, high cleaning capacity, and wide applicability compared to traditional filters. However, its commercialization faces challenges as the optimal jet cleaning mode and optimization method have not been determined. This study proposes a framework that combines computational fluid dynamics (CFD), artificial neural networks (ANN), and genetic algorithms (GA) for optimizing jet-cleaning parameters to improve the performance. The results show that, among the main influencing parameters of the nozzle, the incident section diameter d and the V-groove half angle β have the most significant effects on the peak wall shear stress, action area, and water consumption for cleaning. The ANN has a higher accuracy in predicting the performance (R2 = 0.9991, MAE = 9.477), and it can effectively replace the CFD model for predicting the jet-cleaning performance and optimizing the parameters. The optimization resulted in a 1.34% reduction in the peak wall shear stress, a 16.82% reduction in cleaning water consumption, and a 7.6% increase in the action area for the optimal model compared to the base model. The optimization framework combining CFD, ANN, and GA can provide an optimal cleaning parameter scheme for jet-type self-cleaning screen filters. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

21 pages, 8657 KiB  
Article
The Discovery of Fracture Tip-Driven Stress Concentration: A Key Contributor to Casing Deformation in Horizontal Wells
by Hai Li, Hongbo Wu, Guo Wen, Wentao Zhao, Hongjiang Zou, Yanchi Liu, Qixin Li, Weiyi Wang and Yulong Liu
Processes 2025, 13(4), 1121; https://doi.org/10.3390/pr13041121 - 8 Apr 2025
Viewed by 398
Abstract
Casing deformation (CD) is generally believed to be caused by the slip of fractures in the strata and its shear effects on horizontal wells. However, the casing deformation mode based on this theory cannot fully match the measurement data, and the differential deformation [...] Read more.
Casing deformation (CD) is generally believed to be caused by the slip of fractures in the strata and its shear effects on horizontal wells. However, the casing deformation mode based on this theory cannot fully match the measurement data, and the differential deformation characteristics and the mechanism behind this phenomenon are not completely clear. To elucidate the mechanisms of CD and enhance prevention and control measures, the CD modes in Shunan Block were identified and deformation mechanisms of these modes were comprehensively investigated. Our research shows the following: (1) Under the mechanism of penetrating fracture shear deformation, CD exhibit obvious shear deformation, and the natural fractures near the intersection point with the wellbore are prone to form a higher risk of deformation. (2) Natural fractures with tips approaching the wellbore experience intense stress concentration (1.6 times higher than shear stress) during activation, resulting in compression and asymmetrical CD. (3) The shear deformation induced by penetrating fractures is 15.52 mm, while the fracture tip-induced compression deformation demonstrates a substantially greater magnitude at 44.17 mm. This compressive deformation exceeds the shear deformation by a factor of approximately 2.85. (4) The stress concentration at the fracture tip is highly sensitive to the injection rate. Hence, adherence to the “avoiding stress concentration” principle is crucial in hydraulic fracturing operations. The conclusion indicates that in addition to penetrating fracture shear deformation, fracture tip compression deformation is another significant mechanism that causes CD. This research finding can offer theoretical guidance for developing effective measures to prevent and control CD in the exploitation of deep shale gas. Full article
Show Figures

Figure 1

Back to TopTop