Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = gas phase reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 94
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

12 pages, 1078 KiB  
Article
Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission
by Elizabeth A. Klug, Danielle N. Rivera, Vicki L. Herrera, Ashley R. Ravnholdt, Daniel N. Ackerman, Yangsheng Yu, Chunyan Ye, Steven B. Bradfute, St. Patrick Reid and Joshua L. Santarpia
Pathogens 2025, 14(8), 750; https://doi.org/10.3390/pathogens14080750 - 30 Jul 2025
Viewed by 279
Abstract
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental [...] Read more.
Sin Nombre virus (SNV) is the main causative agent of hantavirus cardiopulmonary syndrome (HCPS) in North America. SNV is transmitted via environmental biological aerosols (bioaerosols) produced by infected deer mice (Peromyscus maniculatus). It is similar to other viruses that have environmental transmission routes rather than a person-to-person transmission route, such as avian influenza (e.g., H5N1) and Lassa fever. Despite the lack of person-to-person transmission, these viruses cause a significant public health and economic burden. However, due to the lack of targeted pharmaceutical preventatives and therapeutics, the recommended approach to prevent SNV infections is to avoid locations that have a combination of low foot traffic, receive minimal natural sunlight, and where P. maniculatus may be found nesting. Consequently, gaining insight into the SNV bioaerosol decay profile is fundamental to the prevention of SNV infections. The Biological Aerosol Reaction Chamber (Bio-ARC) is a flow-through system designed to rapidly expose bioaerosols to environmental conditions (ozone, simulated solar radiation (SSR), humidity, and other gas phase species at stable temperatures) and determine the sensitivity of those particles to simulated ambient conditions. Using this system, we examined the bioaerosol stability of SNV. The virus was found to be susceptible to both simulated solar radiation and ozone under the tested conditions. Comparisons of decay between the virus aerosolized in residual media and in a mouse bedding matrix showed similar results. This study indicates that SNV aerosol particles are susceptible to inactivation by solar radiation and ozone, both of which could be implemented as effective control measures to prevent disease in locations where SNV is endemic. Full article
(This article belongs to the Special Issue Airborne Transmission of Pathogens)
Show Figures

Figure 1

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 226
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 380
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 366
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 350
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

24 pages, 2960 KiB  
Review
Driving Sustainable Energy Co-Production: Gas Transfer and Pressure Dynamics Regulating Hydrogen and Carboxylic Acid Generation in Anaerobic Systems
by Xiao Xiao, Meng He, Yanning Hou, Bilal Abdullahi Shuaibu, Wenjian Dong, Chao Liu and Binghua Yan
Processes 2025, 13(8), 2343; https://doi.org/10.3390/pr13082343 - 23 Jul 2025
Viewed by 212
Abstract
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected [...] Read more.
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected to achieve efficient co-production of hydrogen and carboxylic acids. However, this process is fundamentally affected by gas–liquid mass transfer kinetics, bubble behaviors, and system partial pressure. Moreover, the related studies are few and unfocused, and no systematic research has been developed yet. This review systematically summarizes and discusses the basic mathematical models used for gas–liquid mass transfer kinetics, the relationship between gas solubility and mass transfer, and the liquid-phase product composition. The review analyzes the roles of the headspace gas composition and partial pressure of the reaction system in regulating co-production. Additionally, we discuss strategies to optimize the metabolic pathways by modulating the gas composition and partial pressure. Finally, the feasibility of and prospects for the realization of hydrogen and carboxylic acid co-production in anaerobic fermentation systems are outlined. By exploring information related to gas mass transfer and system pressure, this review will surely provide an important reference for promoting cleaner production of sustainable energy. Full article
(This article belongs to the Special Issue Green Hydrogen Production: Advances and Prospects)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 256
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

14 pages, 4419 KiB  
Article
Slurry Aluminizing Mechanisms of Nickel-Based Superalloy and Applicability for the Manufacturing of Platinum-Modified Aluminide Coatings
by Giulia Pedrizzetti, Virgilio Genova, Erica Scrinzi, Rita Bottacchiari, Marco Conti, Laura Paglia and Cecilia Bartuli
Coatings 2025, 15(7), 822; https://doi.org/10.3390/coatings15070822 - 14 Jul 2025
Viewed by 342
Abstract
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber [...] Read more.
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber and the initial slurry layer thickness on the microstructure, chemical composition, and phase composition of aluminide coatings. Coatings were manufactured on Ni-based superalloy substrates using CrAl powders as an aluminum source and chloride- and fluoride-based activator salts. The effect of the initial thickness of the slurry layer was studied by varying the amount of deposited slurry in terms of mgslurry/cm2sample (with constant mgslurry/cm3chamber). The microstructure and phase composition of the produced aluminide coatings were evaluated by SEM, EDS, and XRD analysis. Slurry thickness can affect concentration gradients during diffusion, and the best results were obtained with an initial slurry amount of 100 mgslurry/cm2sample. The effect of the Al vapor phase in the reaction chamber was then investigated by varying the mgslurry/cm3chamber ratio while keeping the slurry layer thickness constant at 100 mgslurry/cm2sample. This parameter influences the amount of Al at the substrate surface before the onset of solid-state diffusion, and the best results were obtained for a 6.50 mgslurry/cm3chamber ratio with the formation of 80 µm coatings (excluding the interdiffusion zone) with a β-NiAl phase throughout the thickness. To validate process flexibility, the same parameters were successfully applied to produce platinum-modified aluminides with a bi-phasic ζ-PtAl2 and β-(Ni,Pt)Al microstructure. Full article
Show Figures

Figure 1

18 pages, 1371 KiB  
Article
Reduced-Order Model for Catalytic Cracking of Bio-Oil
by Francisco José de Souza, Jonathan Utzig, Guilherme do Nascimento, Alicia Carvalho Ribeiro, Higor de Bitencourt Rodrigues and Henry França Meier
Fluids 2025, 10(7), 179; https://doi.org/10.3390/fluids10070179 - 7 Jul 2025
Viewed by 238
Abstract
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented [...] Read more.
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented using a Lagrangian framework, which accounts for their movement and evaporation within the gas-solid flow field, enabling the assessment of droplet size impact on reactor performance. The cracking reactions are modeled using a four-lumped kinetic scheme, representing the conversion of bio-oil into gasoline, kerosene, gas, and coke. The resulting set of ordinary differential equations is solved using a stiff, second- to third-order solver. The simulation results are validated against experimental data from a full-scale FCC unit, demonstrating good agreement in terms of product yields. The findings indicate that heat exchange by radiation is negligible and that the Buchanan correlation best represents the heat transfer between the droplets and the catalyst particles/gas phase. Another significant observation is that droplet size, across a wide range, does not significantly affect conversion rates due to the bio-oil’s high vaporization heat. The proposed reduced-order model provides valuable insights into optimizing FCC riser reactors for bio-oil processing while avoiding the high computational costs of 3D CFD simulations. The model can be applied across multiple applications, provided the chemical reaction mechanism is known. Compared to full models such as CFD, this approach can reduce computational costs by thousands of computing hours. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

33 pages, 8851 KiB  
Article
Advanced Research on Stimulating Ultra-Tight Reservoirs: Combining Nanoscale Wettability, High-Performance Acidizing, and Field Validation
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(7), 2153; https://doi.org/10.3390/pr13072153 - 7 Jul 2025
Viewed by 418
Abstract
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with [...] Read more.
Unconventional hydrocarbon reservoirs with low matrix permeability (<0.3 mD), high temperatures, and sour conditions present significant challenges for stimulation and production enhancement. This study examines field trials for a large oil and gas operator in the UAE, focusing on tight carbonate deposits with reservoir temperatures above 93 °C and high sour gas content. A novel multi-stage chemical stimulation workflow was created, beginning with a pre-flush phase that alters rock wettability and reduces interfacial tension at the micro-scale. This was followed by a second phase that increased near-wellbore permeability and ensured proper acid placement. The treatment’s core used a thermally stable, corrosion-resistant retarded acid system designed to slow reaction rates, allow deeper acid penetration, and build prolonged conductive wormholes. Simulations revealed considerable acid penetration of the formation beyond the near-wellbore zone. The post-treatment field data showed a tenfold improvement in injectivity, which corresponded closely to the acid penetration profiles predicted by modeling. Furthermore, oil production demonstrated sustained, high oil production of 515 bpd on average for several months after the treatment, in contrast to the previously unstable and low-rate production. Finally, the findings support a reproducible and technologically advanced stimulation technique for boosting recovery in ultra-tight carbonate reservoirs using the acid retardation effect where traditional stimulation fails. Full article
Show Figures

Figure 1

16 pages, 5587 KiB  
Article
Rotational vs. Vibrational Excitations in a Chemical Laser
by José Daniel Sierra Murillo
Physchem 2025, 5(3), 26; https://doi.org/10.3390/physchem5030026 - 4 Jul 2025
Viewed by 305
Abstract
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes [...] Read more.
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes allow for precise energy state distribution analysis across translational, vibrational, and rotational components in the products. A key observation is the influence of the vibrational and rotational excitation of D2 on the total angular momentum (J′) of the HOD* product. This study reveals that increasing the vibrational level, vD2, significantly shifts P(J′) distributions toward higher values, broadening them due to increased isotropy. In contrast, increasing the rotational level, jD2, results in a smaller shift but introduces greater anisotropy, leading to a more selective distribution of J′ values. The dual Gaussian Binning selection—Vibrational-GB followed by Rotational-GB—further highlights a preference for either odd or even J′ values, depending on the specific excitation conditions. These findings have implications for the development of chemical lasers, as the excitation and emission properties of HOD* can be leveraged in the laser design. Future research aims to extend this study to a broader range of initial conditions, refining the understanding of reaction dynamics in controlled gas-phase environments. Full article
(This article belongs to the Section Application of Lasers to Physical Chemistry)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
DFT Study of Initial Surface Reactions in Gallium Nitride Atomic Layer Deposition Using Trimethylgallium and Ammonia
by P. Pungboon Pansila, Seckson Sukhasena, Saksit Sukprasong, Worasitti Sriboon, Wipawee Temnuch, Tongsai Jamnongkan and Tanabat Promjun
Appl. Sci. 2025, 15(13), 7487; https://doi.org/10.3390/app15137487 - 3 Jul 2025
Viewed by 521
Abstract
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the [...] Read more.
The initial surface reaction of gallium nitride (GaN) grown by atomic layer deposition (GaN-ALD) was investigated using density functional theory (DFT) calculations. Trimethylgallium (TMG) and ammonia (NH3) were used as gallium (Ga) and nitrogen (N) precursors, respectively. DFT calculations at the B3LYP/6-311+G(2d,p) and 6-31G(d) levels were performed to compute relative energies and optimize chemical structures, respectively. TMG adsorption on Si15H18–(NH2)2 and Si15H20=(NH)2 clusters was modeled, where –NH2 and =NH surface species served as adsorption sites. The reaction mechanisms in the adsorption and nitridation steps were investigated. The results showed that TMG can adsorb on both surface adsorption sites. In the initial adsorption stage, TMG adsorbs onto =NH- and –NH2-terminated Si(100) surfaces with activation energies of 1.11 and 2.00 eV, respectively, indicating that the =NH site is more reactive. During subsequent NH3 adsorption, NH3 adsorbs onto the residual TMG on the =NH- and –NH2-terminated surfaces with activation energies of approximately 2.00 ± 0.02 eV. The reaction pathways indicate that NH3 adsorbs via similar mechanisms on both surfaces, resulting in comparable nitridation kinetics. Furthermore, this study suggests that highly reactive NH2 species generated in the gas phase from ionized NH3 may help reduce the process temperature in the GaN-ALD process. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

16 pages, 2072 KiB  
Article
Dynamic Modeling of the Sulfur Cycle in Urban Sewage Pipelines Under High-Temperature and High-Salinity Conditions
by Zhiwei Cao, Zhen Xu, Yufeng Chen, Bingxuan Zhao, Chenxu Wang, Zuozhou Yu and Jingya Zhou
Microorganisms 2025, 13(7), 1534; https://doi.org/10.3390/microorganisms13071534 - 30 Jun 2025
Viewed by 319
Abstract
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled [...] Read more.
This study addresses the microbial corrosion of cement-based materials in coastal urban sewer networks, systematically investigating the kinetic mechanisms of sulfur biogeochemical cycling under seawater infiltration conditions. Through dynamic monitoring of sulfide concentrations and environmental parameter variations in anaerobic pipelines, a multiphase coupled kinetic model integrating liquid-phase, gas-phase, and biofilm metabolic processes was developed. The results demonstrate that moderate salinity enhances the activity of sulfate-reducing bacteria (SRB) and accelerates sulfate reduction rates, whereas excessive sulfide accumulation inhibits SRB activity. At 35 °C, the mathematical model coefficient “a” for sulfate reduction in the reactor with 3 g/L salinity was significantly higher than those in reactors with 19 g/L and 35 g/L salinities, with no significant difference observed between the latter two. Overall, high sulfate concentrations do not act as limiting factors for sulfide oxidation under anaerobic conditions; instead, they enhance the reaction within specific concentration ranges. The refined kinetic model enables prediction of sulfur speciation in tropical coastal urban sewer pipelines, providing a scientific basis for corrosion risk assessment. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Phosphorus-Derived Isatin Hydrazones: Synthesis, Structure, Thromboelastography, Antiplatelet, and Anticoagulation Activity Evaluation
by Aleksandr V. Samorodov, Wang Yi, Dmitry A. Kudlay, Elena A. Smolyarchuk, Alexey B. Dobrynin, Ayrat R. Khamatgalimov, Karina Shchebneva, Marina Kadomtseva, Dilbar Komunarova, Anna G. Strelnik and Andrei V. Bogdanov
Int. J. Mol. Sci. 2025, 26(13), 6147; https://doi.org/10.3390/ijms26136147 - 26 Jun 2025
Viewed by 394
Abstract
A series of new isatin hydrazones bearing phosphorus-containing moiety was synthesized through a simple, high-yield and easy work-up reaction of phosphine oxide (Phosenazide) or phosphinate (2-chloroethyl (4-(dimethylamino)phenyl)(2-hydrazinyl-2-oxoethyl)phosphinate, CAPAH) hydrazides with aryl-substituted isatins. The 31P NMR technique showed that, in most cases, out [...] Read more.
A series of new isatin hydrazones bearing phosphorus-containing moiety was synthesized through a simple, high-yield and easy work-up reaction of phosphine oxide (Phosenazide) or phosphinate (2-chloroethyl (4-(dimethylamino)phenyl)(2-hydrazinyl-2-oxoethyl)phosphinate, CAPAH) hydrazides with aryl-substituted isatins. The 31P NMR technique showed that, in most cases, out of 12 examples in solution, the ratio of the two spatial isomers varied from 1:1 to 1:3. Quantum chemical calculations confirmed the predominance of Z,syn form both in the gas phase and in solution. According to X-ray analysis data in crystals, they exist only in Z,syn form too. Most of the phosphine oxide derivatives and 5-methoxy- and 5-bromoaryl phosphinate analogs exhibit anti-aggregant activity at the level of acetylsalicylic acid but inhibit platelet activation processes more effectively. The 5-chloro type phosphinate derivative exhibits anti-aggregant properties more effectively than acetylsalicylic acid under the conditions of the tissue factor (TF)-activated thromboelastography (TEG) model, the ex vivo thrombosis model. Thus, all the obtained results can become the basis for future pharmaceutical developments to create effective anti-aggregation drugs with broad antithrombotic potential. Full article
(This article belongs to the Special Issue Biosynthesis and Application of Natural Compound)
Show Figures

Figure 1

Back to TopTop