Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Biological Aerosol Reaction Chamber (Bio-ARC)
2.2. Bio-ARC Experimental Overview
2.3. Experimental Conditions in Bio-ARC
2.4. Cells
2.5. SNV Propagation and Titration/Viability Assays
2.6. Titration of Collected SNV Bioaerosols
2.7. SNV RT-PCR
2.8. Generation of SNV Matrices and Aerosol Particles
2.9. Data Analysis
2.9.1. Statistical Analysis
2.9.2. Bio-ARC Decay Rate Calculations
- FFU: SNV aerosol concentration (determined by FRNT FFU/mL).
- U: upstream filter.
- D: downstream filter, multiplied by two to correct for the air flow.
- t: time from upstream to downstream sample filter.
3. Results
3.1. Bio-ARC System Characterization
3.2. Bio-ARC: SNV Bioaerosol Decay Rates
3.3. Bio-ARC: SNV Bioaerosol RT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SNV | Sin Nombre virus |
HCPS | hantavirus cardiopulmonary syndrome |
Bioaerosol | biological aerosol |
ANDV | Andes virus |
Bio-ARC | Biological Aerosol Reaction Chamber |
SSR | simulated solar radiation |
RH | relative humidity |
OPS | Optical Particle Sizer |
FRNT | focus reduction neutralization test |
eFFU | estimated focus forming unit |
FFU | focus forming unit |
References
- About Hantavirus|Hantavirus|CDC. Available online: https://www.cdc.gov/hantavirus/about/index.html#cdc_disease_basics_symptoms-signs-and-symptoms (accessed on 29 January 2025).
- Centers for Disease Control and Prevention. Emerging Infectious Diseases Outbreak of Acute Illness-Southwestern United States, 1993. MMWR 1993, 42, 421–424. [Google Scholar]
- Krüger, D.H.; Schönrich, G.; Klempa, B. Human Pathogenic Hantaviruses and Prevention of Infection. Hum. Vaccines 2011, 7, 685. [Google Scholar] [CrossRef] [PubMed]
- Warner, B.M.; Stein, D.R.; Griffin, B.D.; Tierney, K.; Leung, A.; Sloan, A.; Kobasa, D.; Poliquin, G.; Kobinger, G.P.; Safronetz, D. Development and Characterization of a Sin Nombre Virus Transmission Model in Peromyscus Maniculatus. Viruses 2019, 11, 183. [Google Scholar] [CrossRef] [PubMed]
- Green, A.L.; Branan, M.; Fields, V.L.; Patyk, K.; Kolar, S.K.; Beam, A.; Marshall, K.; McGuigan, R.; Vuolo, M.; Freifeld, A.; et al. Investigation of Risk Factors for Introduction of Highly Pathogenic Avian Influenza H5N1 Virus onto Table Egg Farms in the United States, 2022: A Case–Control Study. Front. Vet. Sci. 2023, 10, 1229008. [Google Scholar] [CrossRef] [PubMed]
- Current Situation: Bird Flu in Humans|Bird Flu|CDC. Available online: https://www.cdc.gov/bird-flu/situation-summary/inhumans.html (accessed on 2 March 2025).
- Charostad, J.; Rezaei Zadeh Rukerd, M.; Mahmoudvand, S.; Bashash, D.; Hashemi, S.M.A.; Nakhaie, M.; Zandi, K. A Comprehensive Review of Highly Pathogenic Avian Influenza (HPAI) H5N1: An Imminent Threat at Doorstep. Travel Med. Infect. Dis. 2023, 55, 102638. [Google Scholar] [CrossRef]
- Smith, D.R.M.; Turner, J.; Fahr, P.; Attfield, L.A.; Bessell, P.R.; Donnelly, C.A.; Gibb, R.; Jones, K.E.; Redding, D.W.; Asogun, D.; et al. Health and Economic Impacts of Lassa Vaccination Campaigns in West Africa. Nat. Med. 2024, 30, 3568–3577. [Google Scholar] [CrossRef]
- Islam, M.R.; Akash, S.; Rahman, M.M. Epidemiology, Symptoms, Transmission, Prevention, Treatment, and Future Prospects of the Lassa Fever Outbreak: A Potential Study. Int. J. Surg. 2023, 109, 531. [Google Scholar] [CrossRef]
- Mahy, B.W.J. Emerging and Reemerging Virus Diseases of Vertebrates. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Martinez, V.P.; Bellomo, C.; San Juan, J.; Pinna, D.; Forlenza, R.; Elder, M.; Padula, P.J. Person-to-Person Transmission of Andes Virus. Emerg. Infect. Dis. 2005, 11, 1848. [Google Scholar] [CrossRef]
- Saavedra, F.; Díaz, F.E.; Retamal-Díaz, A.; Covián, C.; González, P.A.; Kalergis, A.M. Immune Response during Hantavirus Diseases: Implications for Immunotherapies and Vaccine Design. Immunology 2021, 163, 262. [Google Scholar] [CrossRef]
- Klug, E.A.; Rivera, D.N.; Lucero, G.A.; Herrera, V.L.; Kinahan, S.M.; Tezak, M.; Xu, N.; Sferrella, J.D.; Ackerman, D.N.; Ravnholdt, A.R.; et al. MS2 Bacteriophage Infectivity after Exposure to RH, Ozone, Chlorine Dioxide and Solar Radiation Using an Oxidation Flow Reactor and a Rotating Drum. Aerosol Sci. Technol. 2025, 59, 292–304. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J. Actions of Ultraviolet Light on Cellular Structures. In Cancer: Cell Structures, Carcinogens and Genomic Instability; Experientia Supplementum EXS; Birkhäuser: Basel, Switzerland, 2006; pp. 131–157. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef]
- Zhang, J.; Lioy, P.J. Ozone in Residential Air: Concentrations, I/O Ratios, Indoor Chemistry, and Exposures. Indoor Air 1994, 4, 95–105. [Google Scholar] [CrossRef]
- Franke, G.; Knobling, B.; Brill, F.H.; Becker, B.; Klupp, E.M.; Belmar Campos, C.; Pfefferle, S.; Lütgehetmann, M.; Knobloch, J.K. An Automated Room Disinfection System Using Ozone Is Highly Active against Surrogates for SARS-CoV-2. J. Hosp. Infect. 2021, 112, 108–113. [Google Scholar] [CrossRef]
- Piletić, K.; Linšak, D.T.; Kovač, B.; Meznarić, S.; Repustić, M.; Radmanović-Skrbić, M.; Gobin, I. Ozone Disinfection Efficiency Against Airborne Microorganisms in Hospital Environment: A Case Study. Arch. Ind. Hyg. Toxicol. 2023, 73, 270–276. [Google Scholar] [CrossRef]
- Bharadwaj, M.; Lyons, C.R.; Wortman, I.A.; Hjelle, B. Intramuscular Inoculation of Sin Nombre Hantavirus CDNAs Induces Cellular and Humoral Immune Responses in BALB/c Mice. Vaccine 1999, 17, 2836–2843. [Google Scholar] [CrossRef]
- Botten, J.; Mirowsky, K.; Kusewitt, D.; Bharadwaj, M.; Yee, J.; Ricci, R.; Feddersen, R.M.; Hjelle, B. Experimental Infection Model for Sin Nombre Hantavirus in the Deer Mouse (Peromyscus Maniculatus). Proc. Natl. Acad. Sci. USA 2000, 97, 10578–10583. [Google Scholar] [CrossRef]
- Cutler, T.D.; Zimmerman, J.J. Ultraviolet Irradiation and the Mechanisms Underlying Its Inactivation of Infectious Agents. Anim. Health Res. Rev. 2011, 12, 15–23. [Google Scholar] [CrossRef]
- Tseng, C.C.; Li, C.S. Inactivation of Viruses on Surfaces by Ultraviolet Germicidal Irradiation. J. Occup. Environ. Hyg. 2007, 4, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Dubuis, M.E.; Dumont-Leblond, N.; Laliberté, C.; Veillette, M.; Turgeon, N.; Jean, J.; Duchaine, C. Ozone Efficacy for the Control of Airborne Viruses: Bacteriophage and Norovirus Models. PLoS ONE 2020, 15, e0231164. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, A.V. Use of the Method of Tryptophan Fluorescence to Characterize Disruptions of the Structure of Ozonized Proteins. J. Appl. Spectrosc. 1988, 49, 691–695. [Google Scholar] [CrossRef]
- Ignatenko, A.V.; Tatarinov, B.A.; Khovratovich, N.N.; Khrapovitskii, V.P.; Cherenkevich, S.N. Spectral-Fluorescent Investigation of the Action of Ozone on Aromatic Amino Acids. J. Appl. Spectrosc. 1982, 37, 781–784. [Google Scholar] [CrossRef]
- Cifuentes-Muñoz, N.; Salazar-Quiroz, N.; Tischler, N.D. Hantavirus Gn and Gc Envelope Glycoproteins: Key Structural Units for Virus Cell Entry and Virus Assembly. Viruses 2014, 6, 1801. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.S. The Aerobiological Pathway of Microorganisms; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Haddrell, A.; Oswin, H.; Otero-Fernandez, M.; Robinson, J.F.; Cogan, T.; Alexander, R.; Mann, J.F.S.; Hill, D.; Finn, A.; Davidson, A.D.; et al. Ambient Carbon Dioxide Concentration Correlates with SARS-CoV-2 Aerostability and Infection Risk. Nat. Commun. 2024, 15, 3487. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Ratnesar-Shumate, S.; Haddrell, A. Laboratory Study of Bioaerosols: Traditional Test Systems, Modern Approaches, and Environmental Control. Aerosol Sci. Technol. 2020, 54, 585–600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klug, E.A.; Rivera, D.N.; Herrera, V.L.; Ravnholdt, A.R.; Ackerman, D.N.; Yu, Y.; Ye, C.; Bradfute, S.B.; Reid, S.P.; Santarpia, J.L. Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission. Pathogens 2025, 14, 750. https://doi.org/10.3390/pathogens14080750
Klug EA, Rivera DN, Herrera VL, Ravnholdt AR, Ackerman DN, Yu Y, Ye C, Bradfute SB, Reid SP, Santarpia JL. Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission. Pathogens. 2025; 14(8):750. https://doi.org/10.3390/pathogens14080750
Chicago/Turabian StyleKlug, Elizabeth A., Danielle N. Rivera, Vicki L. Herrera, Ashley R. Ravnholdt, Daniel N. Ackerman, Yangsheng Yu, Chunyan Ye, Steven B. Bradfute, St. Patrick Reid, and Joshua L. Santarpia. 2025. "Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission" Pathogens 14, no. 8: 750. https://doi.org/10.3390/pathogens14080750
APA StyleKlug, E. A., Rivera, D. N., Herrera, V. L., Ravnholdt, A. R., Ackerman, D. N., Yu, Y., Ye, C., Bradfute, S. B., Reid, S. P., & Santarpia, J. L. (2025). Aerostability of Sin Nombre Virus Aerosol Related to Near-Field Transmission. Pathogens, 14(8), 750. https://doi.org/10.3390/pathogens14080750