Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = gas atomized Al7075 alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6990 KB  
Article
Role of Heat Treatment Atmosphere on the Microstructure and Surface Morphology of DLP-Fabricated High-Entropy Alloy Components
by Jui-Ting Liang, Ting-Hsiang Lin, Vivekanandan Alangadu Kothandan and Shih-Hsun Chen
Materials 2025, 18(24), 5607; https://doi.org/10.3390/ma18245607 - 13 Dec 2025
Viewed by 261
Abstract
AlCrFeNiSi high-entropy alloy (HEA) components were fabricated using digital light processing (DLP) 3D printing, followed by debinding under oxygen-rich and oxygen-deficient atmospheres and sintering at various temperatures. The influence of atmosphere on microstructural evolution, elemental redistribution, and mechanical consolidation was systematically investigated. Oxygen-rich [...] Read more.
AlCrFeNiSi high-entropy alloy (HEA) components were fabricated using digital light processing (DLP) 3D printing, followed by debinding under oxygen-rich and oxygen-deficient atmospheres and sintering at various temperatures. The influence of atmosphere on microstructural evolution, elemental redistribution, and mechanical consolidation was systematically investigated. Oxygen-rich debinding induced oxidation-driven gas formation and surface cracking, whereas oxygen-deficient debinding preserved residual carbon that reduced porosity and enabled earlier densification. The layered microstructure progressively vanished with temperature, and full consolidation was achieved at 1100 °C in oxygen-rich and 1050 °C in oxygen-deficient environments. Correspondingly, both processing conditions yielded similar maximum compressive strengths (~5 MPa), although the oxygen-deficient condition attained this strength at a lower temperature. These findings demonstrate that controlling oxygen exposure during debinding provides an effective pathway to reduce the sintering temperature while maintaining the mechanical performance of DLP-printed AlCrFeNiSi HEA components. Full article
(This article belongs to the Special Issue New Advances in High Entropy Alloys)
Show Figures

Graphical abstract

19 pages, 551 KB  
Review
Compositional Formulations for the Removal and Dissolution of Asphaltene–Resin–Paraffin Deposits in the Near-Wellbore Zone and Tubing Strings
by Nina Lyubchenko, Galina Boiko, Raushan Sarmurzina, Yelena Panova, Bagdaulet Kenzhaliyev and Uzakbay Karabalin
Processes 2025, 13(10), 3328; https://doi.org/10.3390/pr13103328 - 17 Oct 2025
Viewed by 806
Abstract
The concept of heating the near-wellbore zone (NWZ) using activated aluminum alloys offers a novel approach to enhancing oil recovery. This article reviews research on the development of hydrocarbon-based solvent formulations for removing asphaltene–resin–paraffin deposits (ARPD) in the NWZ and restoring well productivity. [...] Read more.
The concept of heating the near-wellbore zone (NWZ) using activated aluminum alloys offers a novel approach to enhancing oil recovery. This article reviews research on the development of hydrocarbon-based solvent formulations for removing asphaltene–resin–paraffin deposits (ARPD) in the NWZ and restoring well productivity. A comprehensive analysis of ARPD composition enabled the selection of solvent systems tailored to specific deposit types. The efficiency of ARPD removal from the NWZ, downhole equipment, and oil gathering systems in heavy and highly viscous Kazakhstani crude oils was evaluated using hydrocarbon solvent blends (e.g., hexane–toluene, gasoline–o-xylene, o-xylene–hexane–1-hexene) with surfactants (polyoxyethylene sorbitan–maleic anhydride esters), atactic polypropylene (APP), and activated aluminum alloys. The developed formulations accelerated ARPD breakdown and reduced energy consumption. It has been established that the optimal concentration of APP (0.5 wt.%) provides up to 100% cleaning efficiency and increases dissolving capacity by 25–30% compared to traditional binary systems. Cleaning efficiency is driven by a thermochemical reaction between water and the aluminum alloy, 2Al + 6H2O → 2Al(OH)3 + 3H2↑ + 17 kJ, which depends on the alloy’s microstructure, grain boundary condition, and additive distribution. The exothermic effect of the reaction leads to the formation of a hot gas–steam–hydrogen mixture, where atomic hydrogen actively breaks down ARPD and increases the reservoir permeability by 2 to 4.5 times. Results show that a composite formulation of hexane–toluene–alloy–H2O2 (46.5:15:0.25:38.25) reduces the treatment time of ARPD-3 from 60 to 10 min while maintaining high efficiency at the level of 98.3%. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 950
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

19 pages, 7042 KB  
Article
Process and Properties of Al-Mg-Er-Zr-Sc High-Strength Aluminum Alloy Powder Prepared by Vacuum Induction Melting Gas Atomization
by Zhengjiang Gao, Fei Zhang, Hui Li, Teng Ma, Huan Yang, Wei Wang, Wu Wei, Shengping Wen, Hui Huang, Xiaolan Wu, Kunyuan Gao, Li Rong, Xiangyuan Xiong and Zuoren Nie
Materials 2025, 18(8), 1763; https://doi.org/10.3390/ma18081763 - 11 Apr 2025
Cited by 1 | Viewed by 1099
Abstract
The Er-Zr-Sc-modified Al-Mg alloys produced by additive manufacturing (AM) exhibit good formability and excellent mechanical properties, and present great potential for applications in the fields of aerospace and automotive fields. In this work, the preparation process of Al-4.5Mg-0.7Er-0.5Zr-0.3Sc high-strength aluminum alloy powder for [...] Read more.
The Er-Zr-Sc-modified Al-Mg alloys produced by additive manufacturing (AM) exhibit good formability and excellent mechanical properties, and present great potential for applications in the fields of aerospace and automotive fields. In this work, the preparation process of Al-4.5Mg-0.7Er-0.5Zr-0.3Sc high-strength aluminum alloy powder for additive manufacturing by vacuum induction melting gas atomization (VIGA) was investigated. With the goal of obtaining excellent sphericity and higher powder yield in the particle size range of 15~53 μm, a new type atomizer with optimized convergence angle and tube extension length was designed based on finite element numerical simulation and experimental research, and the optimal atomization processing parameters were determined. The results revealed that when the convergence angle was 32° and the extension length was 5 mm, the large negative pressure and suction force at the tube outlet could facilitate the smooth flow of the melt and a refined powder particle size; when the melt temperature was 800 °C and the atomization pressure was 3.25 Mpa, the melt had low viscosity and the atomization gas could fully interact with the melt. Meanwhile, the melt droplets had suitable cooling conditions, avoiding the generation of irregular powders and improving the powder sphericity. Under the above optimal processing parameters, the prepared powders were spherical or nearly spherical with fine particle size and a high yield of about 39.45%. Full article
Show Figures

Figure 1

18 pages, 6209 KB  
Article
Non-Isothermal Crystallization Behavior of a Zr-Based Amorphous Alloy Composite Prepared by Selective Laser Melting
by Qi An, Rui Li, Yalin Hu, Yun Luo, Anhui Cai, Yixian Li, Hong Mao and Sheng Li
Materials 2025, 18(7), 1631; https://doi.org/10.3390/ma18071631 - 3 Apr 2025
Viewed by 776
Abstract
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr [...] Read more.
Zr48Cu47.5Al4Co0.5 bulk amorphous alloy composites were prepared by selective laser melting (SLM) technology under different processing conditions and their non-isothermal crystallization behaviors were systematically investigated. The results show that the crystallization phases are Cu10Zr7 and CuZr2 for both gas-atomized powder and SLMed samples. The dependence of volume fraction of Cu10Zr7 and CuZr2 on laser energy density can be fitted by an exponential function. The crystalline sizes of Cu10Zr7 and CuZr2 linearly increase with increasing energy density. The thermal stability is larger for the gas-atomized powders than for the SLMed bulk samples. It is interestingly found that there is an exponential relationship between the crystallization enthalpy ΔHx and the amorphous content. In addition, the glass transition is more difficult for the gas-atomized powders than for the SLMed bulk samples. The crystallization procedure is more difficult for the SLMed bulk samples than for the gas-atomized powders. The local activation energy Eα decreases with increasing α for the gas-atomized powder and the SLMed bulk samples. In addition, the Eα is larger for the SLMed bulk samples than for the gas-atomized powder at the corresponding crystallization fraction α. The dependence of the local Avrami exponent n(α) on the α is similar for both the gas-atomized powders and the SLMed bulk samples at studied heating rates. The crystallization mechanism is also discussed. Full article
Show Figures

Figure 1

17 pages, 3597 KB  
Article
Interrelationships Between Topology and Wettability of Nanostructured Composite Wide Bandgap Metal Oxide Films Prepared by Spray Pyrolysis
by Vadim Morari, Elena I. Monaico, Eduard V. Monaico, Emil V. Rusu and Veaceslav V. Ursaki
Appl. Sci. 2025, 15(5), 2381; https://doi.org/10.3390/app15052381 - 23 Feb 2025
Viewed by 1173
Abstract
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated [...] Read more.
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated for a wide range of compositions. A direct relationship between the surface roughness and the value of the contact angle was found for nanocomposite (In2O3)1−x(MgO)x, (In1−xGax)2O3, and Zn1−xMgxO films, for which both the surface roughness and the contact angle increase with the increasing x-value. On the other hand, in ITO films doped with Ga, it was found that the surface roughness increases by increasing the Ga doping, while the contact angle decreases. Both the surface roughness and the contact angle proved to increase in Ga2O3 films when they were alloyed with Al2O3, similar to other nanocomposite films. An inverse relationship was revealed for a nanocomposite formed from Ga2O3 and SnO2. The contact angle for a (Ga2O3)0.75(SnO2)0.25 film was larger as compared to that of the Ga2O3 film, while the surface roughness was lower, similar to ITO films. The highest value of the contact angle equal to 128° was found for a (In2O3)1−x(MgO)x film with an x-value of 0.8, and the largest RMS roughness of 20 nm was showed by a Ga1.75Al0.25O3 film. The optical properties of the prepared films were also analyzed from optical absorption spectroscopy, demonstrating their bandgap variation in the range of (4 to 4.85) eV, corresponding to the middle ultraviolet spectral range. Full article
Show Figures

Figure 1

11 pages, 2752 KB  
Article
Comparative Study on Preparation of Aluminum-Rare Earth Master Alloy Fine Powders by Mechanical Pulverization and Gas Atomization Methods
by Huiyi Bai, Yunping Ji, Yiming Li, Haoqi Wang, Xueliang Kang, Huiping Ren and Wei Lv
Processes 2025, 13(2), 548; https://doi.org/10.3390/pr13020548 - 15 Feb 2025
Cited by 1 | Viewed by 1125
Abstract
Aiming at the high-value application of rare earth elements lanthanum (La), an Al-50% La alloy was selected and prepared in a vacuum medium-frequency induction furnace. The geometric characteristics of the Al-50% La alloy powders were compared and studied, with the powders prepared by [...] Read more.
Aiming at the high-value application of rare earth elements lanthanum (La), an Al-50% La alloy was selected and prepared in a vacuum medium-frequency induction furnace. The geometric characteristics of the Al-50% La alloy powders were compared and studied, with the powders prepared by two different methods: mechanical pulverization and gas atomization. The results showed that an Al-49.09% La master alloy was obtained, and the only intermediate phase containing La in the experimental alloy was Al11La3. From the perspectives of chemical and phase composition, La has a high yield. Additionally, an Al-La alloy with controllable rare earth intermediate phases can be obtained. The Al-La alloy powders prepared by the mechanical pulverization method are irregular in shape, but the particle size is relatively small, ranging from 0.25 to 66.9 μm. Submicron powders were obtained, with 4.38% of the powders having an equivalent particle size of less than 1 μm. Considering the characteristic of the selective laser melting (SLM) process forming micro-melt pools, a small amount of submicron Al-La alloy powders prepared by the mechanical pulverization method can be used as a trace additive for SLM preparation of CP-Ti. The powders prepared by gas atomization have good sphericity, with a particle size range of 1.65 to 76.0 μm. Among them, the powders with a size of 2–10 μm account for 75.52%, and this part of the powders can be used for the powder metallurgy preparation of composite materials. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

14 pages, 7114 KB  
Article
Preparation of Ultrafine Spherical Al-Mg Alloy and Its Energy Release Characteristics in Explosives
by Junhui Liu, Jie Yao, Zichao Wang, Wei Liu, Jianxin Nie and Shi Yan
Metals 2025, 15(2), 202; https://doi.org/10.3390/met15020202 - 14 Feb 2025
Cited by 1 | Viewed by 1925
Abstract
The substitution of aluminum powder with highly reactive ultrafine aluminum-based metal fuels has a significant impact on the energy release of aluminum-containing energetic materials because of their excellent energy density and combustion performances. A series of ultrafine spherical Al-Mg alloy fuels with different [...] Read more.
The substitution of aluminum powder with highly reactive ultrafine aluminum-based metal fuels has a significant impact on the energy release of aluminum-containing energetic materials because of their excellent energy density and combustion performances. A series of ultrafine spherical Al-Mg alloy fuels with different contents of magnesium were prepared by close-coupled gas atomization technology. The properties of Al-Mg alloy powders of 13~15 μm were tested by SEM, TG-DSC, and laser ignition experiments. Results show that alloying with magnesium can significantly enhance thermal oxidation and combustion performance, leading to more oxidation weight gains and higher combustion heat release. HMX-based castable explosives with the same content of Al and the novel Al-Mg alloy were made and tested. Results show that the detonation performances of HMX/Al-Mg alloy/HTPB are better than HMX/Al/HTPB. Compared to the HMX/Al/HTPB explosive, the detonation heat of HMX/ Al-Mg alloy/HTPB was increased by 200 kJ/kg, the energy release efficiency was enhanced from 80.55% to 83.19%, the detonation velocity was increased by 114 m/s, and the shock wave overpressure at 5 m was increased by 83%. This research provides a new type of composite metal fuel for improving the combustion performance of Al powder. Full article
Show Figures

Figure 1

18 pages, 3191 KB  
Article
Material Characterization and Technological Properties of Biocompatible Ti-12Al-42Nb Spherical Powder Alloy for Additive Manufacturing of Personal Medical Implants
by Alexander Anokhin, Andrey Kirsankin, Elena Kukueva, Alexander Luk’yanov, Maria Chuvikina, Elena Ermakova, Svetlana Strelnikova and Stepan Kupreenko
Metals 2025, 15(2), 147; https://doi.org/10.3390/met15020147 - 31 Jan 2025
Viewed by 1458
Abstract
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient [...] Read more.
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient (PSC) was 1.02. Image J software was used to calculate the spherical degree by processing images sets from scanning electron microscopy (SEM) and optical microscopy (OM). SEM of particles cross-sections indicated internal thermal-induced porosity (TIP) with a 2.3 μm pore diameter. Particle size distribution was in the range from 15.72 μm (d10) to 64.48 μm (d100) as measured by laser particle analyzer. It was indicated that flowability and powder bulk density were 196 sec and 2.79 g/cm3, respectively. XRD analysis confirmed the beta phase of the powder alloy with no additional phases. X-ray fluorescence spectrometry confirmed the alloyed composition. Reducing and oxidative melting methods of analysis showed a slight amount of impurities: oxygen (0.0087 wt.%), nitrogen (0.03 wt.%), hydrogen (0.0012 wt.%), sulfur (0.0016 wt.%), and carbon (0.022 wt.%). Simultaneous thermal analysis (STA) was performed to indicate weight growth and losses and thermal effects in argon, nitrogen, and air as well as the oxidation of Al2O3, TiO2, and Nb2O5 on the surface layer of Ti-12Al-42Nb powder alloy particles. Different phase transformations of γAl2O3  θAl2O3  αAl2O3 and TiO2 rutile TiO2 anatase phase transformation were detected by STA in the oxidative layer. Full article
Show Figures

Figure 1

14 pages, 2751 KB  
Article
Synthesis of Y2O3 Oxide Dispersion-Strengthened Ti-6Al-2Sn-4Zr-2Mo Alloy Powder by In Situ Gas Atomization Method
by Hyeon-Tae Im, Ryun-Ho Kwak, Sung-Min Park, Chang-Soo Park and Hyung-Ki Park
Materials 2025, 18(3), 521; https://doi.org/10.3390/ma18030521 - 23 Jan 2025
Cited by 3 | Viewed by 2184
Abstract
Oxide dispersion-strengthened (ODS) alloys demonstrate enhanced mechanical properties at elevated temperatures and show potential as next-generation powder materials for additive manufacturing. These alloys can mitigate defects such as micropores and cracks by regulating solidification and grain growth behaviors during the additive manufacturing process. [...] Read more.
Oxide dispersion-strengthened (ODS) alloys demonstrate enhanced mechanical properties at elevated temperatures and show potential as next-generation powder materials for additive manufacturing. These alloys can mitigate defects such as micropores and cracks by regulating solidification and grain growth behaviors during the additive manufacturing process. This study investigates the fabrication technology for ODS Ti-6Al-2Sn-4Zr-2Mo (Ti6242) alloy powder to achieve uniform oxide distribution within the alloy powders. Thermodynamic calculations were employed to determine the optimal Ti6242–Y2O3 composition for in situ gas atomization, ensuring complete dissolution of the oxide in the Ti6242 molten metal and subsequent reprecipitation upon cooling. A rod-shaped ingot was produced via vacuum arc melting, resulting in coarse Y2O3 precipitating along the grain boundaries. The powder was fabricated through an electrode induction gas atomization method, and the ODS Ti6242 powder exhibited a spherical shape and a smooth surface. Cross-sectional analysis revealed the uniform distribution of Y2O3 oxide particles, measuring several tens of nanometers in size, within the alloy powder. This research demonstrates the successful synthesis of oxide-integrated ODS Ti6242 alloy powder through the in situ gas atomization method, potentially advancing the field of additive manufacturing for high-temperature applications. Full article
(This article belongs to the Special Issue Advanced Materials for Multifunctional Applications, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 6617 KB  
Article
Bandgap-Tunable Aluminum Gallium Oxide Deep-UV Photodetector Prepared by RF Sputter and Thermal Interdiffusion Alloying Method
by Che-Hao Liao, Jing-Yun Huang, Chien-Sheng Huang, Chih-Chiang Yang, Jui-En Kuo, Walter Water, Wan-Shao Tsai, Patsy A Miranda Cortez, Xiao Tang and Shih-Hung Lin
Processes 2025, 13(1), 68; https://doi.org/10.3390/pr13010068 - 31 Dec 2024
Cited by 3 | Viewed by 1817
Abstract
Gallium oxide (Ga2O3) has gained considerable attention due to its wide bandgap, the availability of native substrates, and its excellent properties for solar-blind photodetectors, transparent electronics, and next-generation power devices. However, the expensive Ga2O3 native substrates [...] Read more.
Gallium oxide (Ga2O3) has gained considerable attention due to its wide bandgap, the availability of native substrates, and its excellent properties for solar-blind photodetectors, transparent electronics, and next-generation power devices. However, the expensive Ga2O3 native substrates have restricted its widespread adoption. To reduce costs and further the development of β-Ga2O3-based devices, there is a need for bandgap-tunable oxide films with high crystal quality for deep-ultraviolet (DUV) photodetectors and high-breakdown-field power devices. This study introduces a Thermal Interdiffusion Alloying method to address these requirements. It focuses on developing deep ultraviolet (DUV) photodetectors using β-Ga2O3 thin films on sapphire substrates by promoting the diffusion of aluminum (Al) atoms from the substrate into the film, resulting in the formation of aluminum gallium oxide (β-(AlxGa1−x)2O3). The aluminum content is controlled by adjusting the process temperature, allowing for tunable detection wavelengths and enhanced DUV sensing capabilities. Radio frequency (RF) sputtering optimizes the film’s quality by adjusting the sputtering power and the argon/oxygen (Ar/O2) flow ratio. Material analysis indicates that this method expands the optical bandgap and shifts the response wavelength to 210 nm, significantly boosting the performance of the fabricated photodetectors. This research presents considerable potential for advancing DUV photodetectors across various disinfection applications. Full article
Show Figures

Figure 1

19 pages, 15518 KB  
Article
Powder Metallurgy Processing to Enhance Superelasticity and Shape Memory in Polycrystalline Cu–Al–Ni Alloys: Reference Material for Additive Manufacturing
by Mikel Pérez-Cerrato, Jose F. Gómez-Cortés, Ernesto Urionabarrenetxea, Isabel Ruiz-Larrea, Fernando Carreño, Ízaro Ayesta, María L. Nó, Nerea Burgos and Jose M. San Juan
Materials 2024, 17(24), 6165; https://doi.org/10.3390/ma17246165 - 17 Dec 2024
Cited by 2 | Viewed by 6697
Abstract
Shape memory alloys (SMAs) are functional materials with a wide range of applications, from the aerospace sector to the biomedical field. Nowadays, there is a worldwide interest in developing SMAs through powder metallurgy like additive manufacturing (AM), which allows innovative building processes. However, [...] Read more.
Shape memory alloys (SMAs) are functional materials with a wide range of applications, from the aerospace sector to the biomedical field. Nowadays, there is a worldwide interest in developing SMAs through powder metallurgy like additive manufacturing (AM), which allows innovative building processes. However, producing SMAs using AM techniques is particularly challenging because of the microstructure required to obtain optimal functional properties. This aspect is critical in the case of Cu–Al–based SMAs, due to their high elastic anisotropy, making them brittle in polycrystalline form. In this work, we approached the processing of a Cu–Al–Ni SMA following a specific powder metallurgy route: gas atomization of a pre-alloyed melt; compaction of the atomized powders through hot isostatic pressing; and a final hot rolling plus thermal treatments. Then, the microstructure of the material was characterized by electron microscopy showing a specific [001] texture in the rolling direction that improved the functional behavior. The successive processing steps produce an increase of about 40 °C in the martensitic transformation temperatures, which can be well controlled and reproduced through the developed methodology. The thermomechanical functional properties of superelasticity and shape memory were evaluated on the final SMA. Outstanding, fully recoverable superelastic behavior of 4.5% in tension, as well as a ±5% full shape memory recovery in bending, were reported for many cycles. These experiments demonstrate the enhanced mechanical and functional properties obtained in polycrystalline Cu–Al–Ni SMAs by powder metallurgy. The present results pave the road for producing this kind of SMA with the new AM technologies, which always produce polycrystalline components and can improve their processes taking the powder metallurgy SMA, here produced, as reference material. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Figure 1

13 pages, 9271 KB  
Article
Effect of Powder Preparation of FeNiCoCrMo0.5Al1.3 High-Entropy Alloy on the Phase Composition and Properties of High-Velocity Oxy-Fuel-Sprayed Coatings
by Anton Semikolenov, Nikolay Mamaev, Tatiana Larionova, Svetlana Shalnova and Oleg Tolochko
J. Manuf. Mater. Process. 2024, 8(6), 280; https://doi.org/10.3390/jmmp8060280 - 3 Dec 2024
Viewed by 1643
Abstract
In this work, the effect of high-entropy alloy powder preparation on the coatings deposited via high-velocity oxygen fuel sprayings was studied. The powders of FeNiCoCrMo0.5Al1.3 composition were prepared by milling and gas atomization. The structures, porosity, phase composition, and microhardness [...] Read more.
In this work, the effect of high-entropy alloy powder preparation on the coatings deposited via high-velocity oxygen fuel sprayings was studied. The powders of FeNiCoCrMo0.5Al1.3 composition were prepared by milling and gas atomization. The structures, porosity, phase composition, and microhardness of the coatings produced from mechanically alloyed and gas-atomized powders were compared. The influence of milling parameters on the powder phase composition and morphology was studied. Milling at 600 rpm for 1.5 h allowed the production of mechanically alloyed powder with a homogeneous distribution of Fe, Ni, and Al and thin lamellas enriched with Co, Cr, and Mo. Despite the difference in the feedstock powders’ phase compositions, the phase compositions of the coatings deposited from mechanically alloyed and gas-atomized powders are the same consisting of BCC, FCC solutions, and oxide. The amount of FCC solutions and oxide in the coating depends on the size distribution of the sprayed powder. It was found that the phase composition and the properties of the coatings deposited from the mechanically alloyed and gas-atomized powders of similar sizes are similar. Full article
Show Figures

Figure 1

15 pages, 3181 KB  
Article
Bandgap Characteristics of Boron-Containing Nitrides—Ab Initio Study for Optoelectronic Applications
by Pawel Strak, Iza Gorczyca and Henryk Teisseyre
Materials 2024, 17(20), 5120; https://doi.org/10.3390/ma17205120 - 21 Oct 2024
Cited by 2 | Viewed by 2011
Abstract
Hexagonal boron nitride (h-BN) is recognized as a 2D wide bandgap material with unique properties, such as effective photoluminescence and diverse lattice parameters. Nitride alloys containing h-BN have the potential to revolutionize the electronics and optoelectronics industries. The energy band structures of three [...] Read more.
Hexagonal boron nitride (h-BN) is recognized as a 2D wide bandgap material with unique properties, such as effective photoluminescence and diverse lattice parameters. Nitride alloys containing h-BN have the potential to revolutionize the electronics and optoelectronics industries. The energy band structures of three boron-containing nitride alloys—BxAl1−xN, BxGa1−xN, and BxIn1−xN—were calculated using standard density functional theory (DFT) with the hybrid Heyd–Scuseria–Ernzerhof (HSE) function to correct lattice parameters and energy gaps. The results for both wurtzite and hexagonal structures reveal several notable characteristics, including a wide range of bandgap values, the presence of both direct and indirect bandgaps, and phase mixing between wurtzite and hexagonal structures. The hexagonal phase in these alloys is observed at very low and very high boron concentrations (x), as well as in specific atomic configurations across the entire composition range. However, cohesive energy calculations show that the hexagonal phase is more stable than the wurtzite phase only when x > 0.5, regardless of atomic arrangement. These findings provide practical guidance for optimizing the epitaxial growth of boron-containing nitride thin films, which could drive future advancements in electronics and optoelectronics applications. Full article
Show Figures

Figure 1

12 pages, 5852 KB  
Article
Development of Cost-Effective Sn-Free Al-Bi-Fe Alloys for Efficient Onboard Hydrogen Production through Al–Water Reaction
by Rui Deng, Mingshuai Wang, Hao Zhang, Ruijun Yao, Kai Zhen, Yifei Liu, Xingjun Liu and Cuiping Wang
Materials 2024, 17(20), 4973; https://doi.org/10.3390/ma17204973 - 11 Oct 2024
Cited by 4 | Viewed by 1478
Abstract
Leveraging the liquid-phase immiscibility effect and phase diagram calculations, a sequence of alloy powders with varying Fe content was designed and fabricated utilizing the gas atomization method. Microstructural characterizations, employing SEM, EDS, and XRD analyses, revealed the successful formation of an incomplete shell [...] Read more.
Leveraging the liquid-phase immiscibility effect and phase diagram calculations, a sequence of alloy powders with varying Fe content was designed and fabricated utilizing the gas atomization method. Microstructural characterizations, employing SEM, EDS, and XRD analyses, revealed the successful formation of an incomplete shell on the surfaces of Al-Bi-Fe powders, obviating the need for Sn doping. This study systematically investigated the microstructure, hydrolysis performance, and hydrolysis process of these alloys in deionized water. Notably, Al-10Bi-7Fe exhibited the highest hydrogen production, reaching 961.0 NmL/g, while Al-10Bi-10Fe demonstrated the peak conversion rate at 92.99%. The hydrolysis activation energy of each Al-Bi-Fe alloy powder was calculated using the Arrhenius equation, indicating that a reduction in activation energy was achieved through Fe doping. Full article
(This article belongs to the Collection Materials and Technologies for Hydrogen and Fuel Cells)
Show Figures

Figure 1

Back to TopTop