Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = fuzzy game

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 542 KB  
Systematic Review
Dynamic Difficulty Adjustment in Serious Games: A Literature Review
by Lucia Víteková, Christian Eichhorn, Johanna Pirker and David A. Plecher
Information 2026, 17(1), 96; https://doi.org/10.3390/info17010096 - 17 Jan 2026
Viewed by 85
Abstract
This systematic literature review analyzes the role of dynamic difficulty adaptation (DDA) in serious games (SGs) to provide an overview of current trends and identify research gaps. The purpose of the study is to contextualize how DDA is being employed in SGs to [...] Read more.
This systematic literature review analyzes the role of dynamic difficulty adaptation (DDA) in serious games (SGs) to provide an overview of current trends and identify research gaps. The purpose of the study is to contextualize how DDA is being employed in SGs to enhance their learning outcomes, effectiveness, and game enjoyment. The review included studies published over the past five years that implemented specific DDA methods within SGs. Publications were identified through Google Scholar (searched up to 10 November 2025) and screened for relevance, resulting in 75 relevant papers. No formal risk-of-bias assessment was conducted. These studies were analyzed by publication year, source, application domain, DDA type, and effectiveness. The results indicate a growing interest in adaptive SGs across domains, including rehabilitation and education, with DDA methods ranging from rule-based (e.g., fuzzy logic) and player modeling (using performance, physiological, or emotional metrics) to various machine learning techniques (reinforcement learning, genetic algorithms, neural networks). Newly emerging trends, such as the integration of generative artificial intelligence for DDA, were also identified. Evidence suggests that DDA can enhance learning outcomes and game experience, although study differences, limited evaluation metrics, and unexplored opportunities for adaptive SGs highlight the need for further research. Full article
(This article belongs to the Special Issue Serious Games, Games for Learning and Gamified Apps)
26 pages, 3522 KB  
Article
Evaluation of Mine Land Ecological Resilience: Application of the Vague Sets Model Under the Nature-Based Solutions Framework
by Lu Feng, Jing Xie and Yuxian Ke
Sustainability 2026, 18(1), 164; https://doi.org/10.3390/su18010164 - 23 Dec 2025
Viewed by 275
Abstract
To achieve a scientific evaluation of land ecological resilience in mining areas and promote the green transformation and sustainable development of the mining industry, this study is based on the core concept of Nature-based Solutions (NbS), coupling the “Driving force–Pressure–State–Impact–Response” (DPSIR) framework, and [...] Read more.
To achieve a scientific evaluation of land ecological resilience in mining areas and promote the green transformation and sustainable development of the mining industry, this study is based on the core concept of Nature-based Solutions (NbS), coupling the “Driving force–Pressure–State–Impact–Response” (DPSIR) framework, and constructs an evaluation system for mine land ecological resilience (MLER) focusing on sustainability. This system covers multiple aspects, including natural ecology, socio-economics, and policy management, comprising 21 secondary indicators that comprehensively respond to NbS’ fundamental principles of “nature-guided, multi-party collaboration, and long-term adaptation.” In terms of evaluation methodology, this study proposes a combined weighting model that integrates AHP-CRITIC game theory with Vague sets. First, subjective expert experience and objective data variance are balanced through combined weighting. Based on game theory, the optimal combination coefficients were determined (α1 = 0.624, α2 = 0.376) to reconcile subjective and objective preferences. Subsequently, the three-dimensional interval structure of Vague sets is utilized to effectively accommodate fuzzy information and data gaps. By characterizing the restoration process through interval membership, the model enhances the representational capacity of the evaluation results regarding complex ecological information. Empirical research conducted in the mining areas of Gan Xian, Xing Guo, Yu Du, and Xun Wu in Jiangxi Province effectively identified differences in resilience levels: the resilience of the Xing Guo mining area was classified as I, Gan Xian and Yu Du as II, and Xun Wu as IV. These results are fundamentally consistent with the AHP-Fuzzy Comprehensive Evaluation method, verifying the robustness and reliability of the model. The NbS-guided evaluation system and model constructed in this study provide scientific tools for identifying differences in the sustainability of MLER and key constraints, promoting the transformation of restoration models from “engineering-driven” to “nature-driven, long-term adaptation” in the context of NbS in China. Full article
(This article belongs to the Special Issue Sustainable Solutions for Land Reclamation and Post-mining Land Uses)
Show Figures

Figure 1

24 pages, 2261 KB  
Article
Game-Theoretic Design Optimization of Switched Reluctance Motors for Air Compressors to Reduce Electromagnetic Vibration
by Liyun Si, Tieyong Wang, Chenguang Niu, Mei Xiao and Weiyu Liu
Appl. Sci. 2026, 16(1), 97; https://doi.org/10.3390/app16010097 - 21 Dec 2025
Viewed by 263
Abstract
Switched reluctance motors (SRMs) are promising for applications such as air compressors due to their robust structure and fault tolerance, but suffer from high torque ripple and radial electromagnetic forces that cause vibration and noise. This paper proposes a game-theoretic multi-objective design optimization [...] Read more.
Switched reluctance motors (SRMs) are promising for applications such as air compressors due to their robust structure and fault tolerance, but suffer from high torque ripple and radial electromagnetic forces that cause vibration and noise. This paper proposes a game-theoretic multi-objective design optimization framework to enhance electromagnetic performance by simultaneously maximizing average torque and minimizing radial force. The optimization problem is transformed into a game model where objectives are treated as players with strategy spaces derived through fuzzy clustering and correlation analysis. Particle swarm optimization (PSO) is employed to solve the payoff functions under both novel cooperative and non-cooperative game scenarios of SRMs’ structural design. Finite element analysis (FEA) validates the optimized motor topology, showing that the cooperative game model achieves a balanced performance with high torque density and reduced vibration, meeting the requirements for air compressor drives. The proposed method effectively resolves the weight selection challenge in traditional multi-objective optimization and demonstrates strong engineering feasibility. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

32 pages, 7211 KB  
Article
Risk Assessment of Roof Water Inrush in Shallow Buried Thick Coal Seam Using FAHP-CV Comprehensive Weighting Method: A Case Study of Guojiawan Coal Mine
by Chao Liu, Xiaoyan Chen, Zekun Li, Jun Hou, Jinjin Tian and Dongjing Xu
Water 2025, 17(24), 3571; https://doi.org/10.3390/w17243571 - 16 Dec 2025
Viewed by 344
Abstract
Roof water inrush is a major hazard threatening coal mine safety. This paper addresses the risk of roof water inrush during mining in the shallow-buried Jurassic coalfield of Northern Shaanxi, taking the Guojiawan Coal Mine as a case study. A systematic framework of [...] Read more.
Roof water inrush is a major hazard threatening coal mine safety. This paper addresses the risk of roof water inrush during mining in the shallow-buried Jurassic coalfield of Northern Shaanxi, taking the Guojiawan Coal Mine as a case study. A systematic framework of “identification of main controlling factors–coupling of subjective and objective weighting–GIS-based spatial evaluation” is proposed. An integrated weighting system combining the Fuzzy Analytic Hierarchy Process (FAHP) and the Coefficient of Variation (CV) method is innovatively adopted. Four weight optimization models, including Linear Weighted Method, Multiplicative Synthesis Normalization Method, Minimum Information Entropy Method, and Game Theory Method, are introduced to evaluate 10 main controlling factors, including the fault strength index and sand–mud ratio. The results indicate that the GIS-based vulnerability evaluation model using the Multiplicative Synthesis Normalization Method achieves the highest accuracy, with a Spearman correlation coefficient of 0.9961. This model effectively enables five-level risk zoning and accurately identifies high-risk areas. The evaluation system and zoning results developed in this paper can provide a direct scientific basis for the design of water prevention engineering and precise countermeasures in the Guojiawan Coal Mine and other mining areas with similar geological conditions. Full article
Show Figures

Figure 1

20 pages, 6183 KB  
Article
Multi-Parameter Assessment and Validation of Cable Insulation Using Game Theory and Fuzzy Comprehensive Evaluation
by Qianqiu Shao, Songhai Fan, Zongxi Zhang, Fenglian Liu, Jinkui Lu, Zhengzheng Fu and Pinlei Lv
Energies 2025, 18(24), 6565; https://doi.org/10.3390/en18246565 - 16 Dec 2025
Viewed by 274
Abstract
Accurate assessment of high-voltage cable insulation condition is essential for safe operation in complex tunnel environments. Traditional methods relying on single diagnostic indicators and fixed weighting schemes often suffer from limited accuracy and adaptability. This paper proposes a multi-parameter assessment method integrating game [...] Read more.
Accurate assessment of high-voltage cable insulation condition is essential for safe operation in complex tunnel environments. Traditional methods relying on single diagnostic indicators and fixed weighting schemes often suffer from limited accuracy and adaptability. This paper proposes a multi-parameter assessment method integrating game theory with fuzzy comprehensive evaluation. Five types of online monitoring data, namely cable surface temperature, sheath grounding current, partial discharge, tunnel humidity, and ambient temperature, are selected as diagnostic parameters. Subjective and objective weights are first derived using the analytic hierarchy process and the entropy weight method, and then optimally integrated through a game-theoretic framework. Fuzzy membership functions are applied to construct an evaluation matrix, enabling quantitative and graded assessment of insulation condition. A case study on 110 kV tunnel high-voltage land cables in Zhejiang, China, verifies the effectiveness of the approach. Results show that the proposed method more accurately reflects actual operating conditions and provides higher diagnostic precision and robustness compared with single-feature and traditional weighting methods. By combining expert knowledge with real monitoring data, this study develops a scientific and practical framework for insulation condition assessment, offering reliable support to real-time insulation monitoring and predictive maintenance applications of high-voltage power transmission systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

36 pages, 2371 KB  
Article
A Fermatean Fuzzy Game-Theoretic Framework for Policy Design in Sustainable Health Supply Chains
by Ertugrul Ayyildiz, Mirac Murat, Gokhan Ozcelik, Bahar Yalcin Kavus and Tolga Kudret Karaca
Mathematics 2025, 13(22), 3644; https://doi.org/10.3390/math13223644 - 13 Nov 2025
Viewed by 511
Abstract
Medicine and vaccine supply chains in Nigeria are socio-technical systems exposed to persistent uncertainty and disruption. Existing studies rarely integrate systems thinking with uncertainty-aware decision tools to jointly prioritize challenges and policy responses. This study asks which policy mix most effectively strengthens these [...] Read more.
Medicine and vaccine supply chains in Nigeria are socio-technical systems exposed to persistent uncertainty and disruption. Existing studies rarely integrate systems thinking with uncertainty-aware decision tools to jointly prioritize challenges and policy responses. This study asks which policy mix most effectively strengthens these supply chains while balancing multiple, conflicting criteria and stakeholder judgments. We develop a two-stage Fermatean fuzzy framework that first weights 35 challenges using Fermatean Fuzzy Stepwise Weight Assessment Ratio Analysis (FF-SWARA) and then ranks four policy alternatives via Fermatean Fuzzy VIšeKriterijumska Optimizacija I Kompromisno Resenje (FF-VIKOR), based on expert elicitation and linguistic assessments. Results identify interruption of drug supplies, limited vaccine funding, cold-chain potency loss, human resource shortages, and product damage as the most critical challenges. FF-VIKOR prioritizes Effective Implementation of Existing Policies as the best alternative, followed by Improving Access to Medicines and Vaccines, indicating that governance quality and access-enabling infrastructure are complementary levers for resilience. To further enhance robustness, we embed the VIKOR outcomes into a policy-oriented game-theoretic analysis, where strategic weighting scenarios (e.g., cost-focused, infrastructure-driven, human-capital focused) interact with policy choices. The equilibrium results reveal that a mixed strategy combining Effective Implementation of Existing Policies and Strengthening Distribution and Storage Systems guarantees the best compromise performance across adversarial scenarios. The proposed framework operationalizes systems thinking for uncertainty-aware and strategically robust policy design and can be extended with real-time data integration, scenario planning, and regional replication to guide adaptive supply chain governance. Full article
Show Figures

Figure 1

18 pages, 2215 KB  
Article
A Dynamic Evaluation Method for Pumped Storage Units Adapting to Asymmetric Evolution of Power System
by Longxiang Chen, Yuan Wang, Hengyu Xue, Lei Deng, Ziwei Zhong, Xuan Jia, Shuo Feng and Jun Xie
Symmetry 2025, 17(11), 1900; https://doi.org/10.3390/sym17111900 - 7 Nov 2025
Viewed by 339
Abstract
As the core component of pumped storage stations (PSS), pumped storage units (PSU) require a scientific and comprehensive evaluation method to guide the selection of optimal units and support the development of the new-type power system (NPS). This paper aims to address the [...] Read more.
As the core component of pumped storage stations (PSS), pumped storage units (PSU) require a scientific and comprehensive evaluation method to guide the selection of optimal units and support the development of the new-type power system (NPS). This paper aims to address the symmetry issues in PSU evaluation methods by proposing an innovative approach based on evolutionary combination weighting and cloud model theory, thereby adapting to the long-term asymmetric evolution of the power system. First, the subjective and objective weights of indicators at all levels for PSU are obtained using the analytic hierarchy process (AHP) and the entropy weight method (EWM). Then, the optimal combination coefficients for subjective and objective weights are determined through game theory, achieving symmetry and balance between the subjective and objective weights. Subsequently, dynamic correction of the indicator weights is realized using a designed evolutionary response function, enabling the weights to evolve dynamically in response to the asymmetric development of the power system. Finally, the cloud model is employed to characterize the randomness and fuzziness of evaluation boundaries, which enhances the adaptability of the evaluation process and the interpretability of results. The simulation results show that, when considering the long-term asymmetric evolution of the power system, the expected score deviations of secondary indicators are approximately 4.7%, 1.3%, 3.5%, and 7.7%, respectively, with an overall score deviation of about 6.4%. The proposed method not only achieves symmetry and balance between subjective and objective factors in traditional evaluation but also accommodates the asymmetric evolution requirements of the power system. Full article
(This article belongs to the Special Issue Symmetry with Power Systems: Control and Optimization)
Show Figures

Figure 1

29 pages, 11221 KB  
Article
A Spatio-Temporal Overlap Narrative Experience Model for Archaeological Site Museums: A Case Study of the Panlongcheng Archaeological Site Museum
by Qi Hu, Xiao He, Tianyu Wei and Yi Yuan
Buildings 2025, 15(21), 3956; https://doi.org/10.3390/buildings15213956 - 2 Nov 2025
Cited by 1 | Viewed by 1682
Abstract
In the global trend of museums transitioning from static displays to digital, narrative, and experiential forms, heritage museums face challenges such as weakened cultural identity, insufficient emotional resonance, and the separation of reality and fiction. To address these issues, this study, based on [...] Read more.
In the global trend of museums transitioning from static displays to digital, narrative, and experiential forms, heritage museums face challenges such as weakened cultural identity, insufficient emotional resonance, and the separation of reality and fiction. To address these issues, this study, based on the theory of spatial narrative, introduces the tripartite theory of spatial production to jointly construct a narrative experience model with overlapping time and space. By expanding the dimensions of time and space, it achieves a deep correspondence of virtual experiences, providing guidance for the virtual-real integration experience design of heritage museums. Methodologically, a combined approach of FAHP1-spatial syntax-FAHP2-FCE is adopted. Taking the Panlongcheng Heritage Museum as an example, with user experience needs as the starting point and the analysis results of the physical exhibition space as the basis, the heritage culture theme serves as the narrative thread, integrating into an experiential model with contextual virtual-real fusion. Finally, the design practice is verified through FCE. The results show that this model can optimize the virtual-real integration experience, enhance users’ cultural identity and emotional resonance, and provide beneficial insights for the digital and experiential transformation of heritage museums. Full article
Show Figures

Figure 1

29 pages, 1549 KB  
Article
A Fuzzy DEMATEL-Based User-Centric Design Evaluation of Gamified Recommender Systems
by Seren Başaran and Agyeman Murad Taqi
Appl. Sci. 2025, 15(21), 11456; https://doi.org/10.3390/app152111456 - 27 Oct 2025
Viewed by 658
Abstract
Gamified recommender systems, which mix game design with recommendation frameworks, are a new way to increase user involvement and satisfaction. Even though they have a lot of potential, there has not been any systematic research on how their design affects how people use [...] Read more.
Gamified recommender systems, which mix game design with recommendation frameworks, are a new way to increase user involvement and satisfaction. Even though they have a lot of potential, there has not been any systematic research on how their design affects how people use them. This study introduces a fuzzy DEMATEL-based framework for the assessment and enhancement of gamified recommender systems. Four theoretically grounded gamified recommender system prototypes were developed as a novel contribution, as no readily available systems exist for these designs. The assessment utilized nine user-centric criteria—Effectiveness, Transparency, Persuasiveness, Satisfaction, Trust, Usefulness, Ease of Use, Efficiency, and Education—systematically derived from a PRISMA-guided literature review. This study integrates gamification theory, systematic review, and fuzzy decision-making to formulate a comprehensive framework for identifying the key factors influencing adoption. The fuzzy DEMATEL was applied to evaluate feedback from 25 end-users, and it was found that usefulness and ease of use were the most essential factors for satisfaction and system effectiveness. Analysis of design showed that competition in Points, Badges, and Leaderboards (PBL) design boosts short-term motivation, Acknowledgments, Objectives, and Progression (AOP) boosts progress and openness, Acknowledgments, Competition, and Time Pressure (ACT) boosts efficiency in competitive situations but might lower satisfaction, and Acknowledgments, Objectives, and Social Pressure (AOS) depends on social influence and accountability. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

26 pages, 573 KB  
Article
Mutual V2I Multifactor Authentication Using PUFs in an Unsecure Multi-Hop Wi-Fi Environment
by Mohamed K. Elhadad and Fayez Gebali
Electronics 2025, 14(21), 4167; https://doi.org/10.3390/electronics14214167 - 24 Oct 2025
Viewed by 572
Abstract
Secure authentication in vehicular ad hoc networks (VANETs) remains a fundamental challenge due to their dynamic topology, susceptibility to attacks, and scalability constraints in multi-hop communication. Existing approaches based on elliptic curve cryptography (ECC), blockchain, and fog computing have achieved partial success but [...] Read more.
Secure authentication in vehicular ad hoc networks (VANETs) remains a fundamental challenge due to their dynamic topology, susceptibility to attacks, and scalability constraints in multi-hop communication. Existing approaches based on elliptic curve cryptography (ECC), blockchain, and fog computing have achieved partial success but suffer from latency, resource overhead, and limited adaptability, leaving a gap for lightweight and hardware-rooted trust models. To address this, we propose a multi-hop mutual authentication protocol leveraging Physical Unclonable Functions (PUFs), which provide tamper-evident, device-specific responses for cryptographic key generation. Our design introduces a structured sequence of phases, including pre-deployment, registration, login, authentication, key establishment, and session maintenance, with optional multi-hop extension through relay vehicles. Unlike prior schemes, our protocol integrates fuzzy extractors for error tolerance, employs both inductive and game-based proofs for security guarantees, and maps BAN-logic reasoning to specific attack resistances, ensuring robustness against replay, impersonation, and man-in-the-middle attacks. The protocol achieves mutual trust between vehicles and RSUs while preserving anonymity via temporary identifiers and achieving forward secrecy through non-reused CRPs. Conceptual comparison with state-of-the-art PUF-based and non-PUF schemes highlights the potential for reduced latency, lower communication overhead, and improved scalability via cloud-assisted CRP lifecycle management, while pointing to the need for future empirical validation through simulation and prototyping. This work not only provides a secure and efficient solution for VANET authentication but also advances the field by offering the first integrated taxonomy-driven evaluation of PUF-enabled V2X protocols in multi-hop Wi-Fi environments. Full article
(This article belongs to the Special Issue Privacy and Security Vulnerabilities in 6G and Beyond Networks)
Show Figures

Figure 1

20 pages, 2482 KB  
Article
Safety Risk Evaluation of Water and Mud Inrush in Karst Tunnel Based on an Improved Weighted Cloud Model
by Baofu Duan, Anni Chu, Liankai Bu, Zhihong Li and Keyan Long
Sustainability 2025, 17(20), 9328; https://doi.org/10.3390/su17209328 - 21 Oct 2025
Viewed by 543
Abstract
Frequent water and mud inrush accidents during karst tunnel construction severely impact tunnel construction safety, environmental sustainability, and the long-term use of infrastructure. Therefore, conducting practical risk assessment for karst tunnel water and mud inrush is crucial for promoting sustainable practices in tunnel [...] Read more.
Frequent water and mud inrush accidents during karst tunnel construction severely impact tunnel construction safety, environmental sustainability, and the long-term use of infrastructure. Therefore, conducting practical risk assessment for karst tunnel water and mud inrush is crucial for promoting sustainable practices in tunnel engineering, as it can mitigate catastrophic events that lead to resource waste, ecological damage, and economic loss. This paper establishes an improved weighted cloud model for karst tunnel water and mud inrush risk to evaluate the associated risk factors. The calculation of subjective weight for risk metrics adopts the ordinal relationship method (G1 method), which is a subjective weighting method improved from the analytic hierarchy process. The calculation of objective weight employs the improved entropy weight method, which is superior to the traditional entropy weight method by effectively preventing calculation distortion. Game theory is applied to calculate the optimal weight combination coefficient for two computational methods, and cloud model theory is finally introduced to reduce the fuzziness of the membership interval during the assessment process. This study applied the established risk assessment model to five sections of the Furong Tunnel and Cushishan Tunnel in Southwest China. The final risk ratings for these sections were determined as “High Risk,” “High Risk,” “Medium Risk,” “High Risk,” and “Moderate Risk”, respectively. These results align with the findings from field investigations, validating the effectiveness and reliability of the cloud model-based mud and water outburst risk assessment using combined weighting. Compared to traditional methods such as fuzzy comprehensive evaluation and entropy weighting, the evaluation results from this study’s model demonstrate higher similarity and reliability. This provides a foundation for assessing mud and water outburst hazards and other tunnel disasters. Full article
Show Figures

Figure 1

22 pages, 2785 KB  
Article
A Slope Dynamic Stability Evaluation Method Based on Variable Weight Theory and Trapezoidal Cloud Model
by Delin Li, Zhaohua Zhou, Sailajia Wei, Zongren Li, Zibin Li, Peng Guan and Yi Luo
Water 2025, 17(20), 3016; https://doi.org/10.3390/w17203016 - 20 Oct 2025
Viewed by 607
Abstract
Slope instability may cause severe casualties, property losses, and ecological damage. To accurately evaluate slope stability grades and mitigate geological hazards, a dynamic stability assessment method based on variable weight theory and trapezoidal cloud model is proposed. First, an evaluation index system for [...] Read more.
Slope instability may cause severe casualties, property losses, and ecological damage. To accurately evaluate slope stability grades and mitigate geological hazards, a dynamic stability assessment method based on variable weight theory and trapezoidal cloud model is proposed. First, an evaluation index system for slope stability is established following the principles of uniqueness, purposefulness, and scientific validity. Then, to improve the accuracy of subjective constant weights, the intuitionistic fuzzy analytic hierarchy process (IFAHP) is employed to calculate subjective constant weights. Considering the contrast intensity and conflict among indicators, an improved CRITIC method is applied to determine objective constant weights. To balance subjective and objective factors and avoid constant weight imbalance, the optimal comprehensive constant weights are computed based on game theory, effectively reducing bias caused by single weighting methods. Furthermore, to fully account for the influence of indicator state values on their weights, variable weight theory is introduced to dynamically adjust the comprehensive constant weights. Finally, based on the variable weights of evaluation indicators, a trapezoidal cloud model is utilized to construct the slope stability evaluation model, which is validated through an engineering case study. The results indicate that the stability grade of Stage 1 is assessed as basically stable, while Stages 2 and 3 are evaluated as stable. Numerical simulations show the safety factors of the three stages are 1.36, 1.83, and 2.36, respectively, verifying the correctness of the proposed model. The proposed model demonstrates practical engineering value in slope stability assessment and can be referenced for slope reinforcement and hazard prevention in later stages. Full article
Show Figures

Figure 1

56 pages, 3110 KB  
Review
A Scoping Review on Fuzzy Logic Used in Serious Games
by Ericka Janet Rechy-Ramirez
Technologies 2025, 13(10), 448; https://doi.org/10.3390/technologies13100448 - 2 Oct 2025
Viewed by 1728
Abstract
This scoping review investigates the use of fuzzy logic in serious games. Articles were searched in nine databases: ACM Digital Library, IEEE Xplore, IOPscience, MDPI, PubMed, ScienceDirect, Springer, Wiley, and Web of Science. The search retrieved 494 articles published between January 2020 and [...] Read more.
This scoping review investigates the use of fuzzy logic in serious games. Articles were searched in nine databases: ACM Digital Library, IEEE Xplore, IOPscience, MDPI, PubMed, ScienceDirect, Springer, Wiley, and Web of Science. The search retrieved 494 articles published between January 2020 and February 2025, of which 28 met the inclusion criteria. Specifically, four research questions were addressed, focusing on the taxonomy of serious games that use fuzzy logic, the characteristics of game design, the purpose and implementation of the fuzzy logic system within the game, and the experiments conducted in the studies. Results reported that 80% of the studies focused on educational serious games, while 20% addressed health applications. Mouse, keyboard, and smartphone touch screen were the most widely used interaction methods. The adventure genre was the most widely implemented in the studies (35.71%). Fuzzy logic was mainly used for adjusting game difficulty, followed by providing tailored feedback in the game. Mamdani inference was the most widely used inference method in the studies. Although 79% of the studies involved human participants in their experiments, 57% did not perform any statistical analysis of their results. Full article
(This article belongs to the Special Issue Disruptive Technologies: Big Data, AI, IoT, Games, and Mixed Reality)
Show Figures

Figure 1

22 pages, 6065 KB  
Article
A Sustainability Evaluation of Large-Scale Water Network Projects: A Case Study of the Jiaodong Water Network Project, China
by Yue Qiu and Changshun Liu
Water 2025, 17(19), 2822; https://doi.org/10.3390/w17192822 - 26 Sep 2025
Viewed by 603
Abstract
Large-scale water network projects are a crucial approach for the rational allocation of water resources and addressing water resource crises. Reliable sustainability evaluation is essential to ensure the sustainable operation of large-scale water network projects. This study develops an improved Fuzzy Comprehensive Evaluation [...] Read more.
Large-scale water network projects are a crucial approach for the rational allocation of water resources and addressing water resource crises. Reliable sustainability evaluation is essential to ensure the sustainable operation of large-scale water network projects. This study develops an improved Fuzzy Comprehensive Evaluation (FCE) method based on Game Theory weight fusion (GWF) for the quantitative evaluation of the sustainability of water network projects. By combining the Analytic Hierarchy Process (AHP), Entropy Weight Method (EWM), and Game Theory approach, the study integrates the advantages of both subjective and objective weighting methods to achieve the allocation of indicator weights; the sustainability of the Jiaodong Water Network Project was quantitatively evaluated by employing the improved FCE method. The results indicate that the resource and management dimensions are the two most critical factors affecting the sustainability of large-scale water network projects. Indicators with high weight such as per capita water resources, the rationality of the management system, and level of management intelligence are the primary risk factors affecting the sustainable operation of large-scale water network projects. The sustainability evaluation value of the Jiaodong Water Network Project is 82.83 points, which is classified as “high” sustainability. This validates the reliability of the evaluation indicator system and the method used. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

77 pages, 2936 KB  
Review
Enhancing Smart Grid Security and Efficiency: AI, Energy Routing, and T&D Innovations (A Review)
by Hassam Ishfaq, Sania Kanwal, Sadeed Anwar, Mubarak Abdussalam and Waqas Amin
Energies 2025, 18(17), 4747; https://doi.org/10.3390/en18174747 - 5 Sep 2025
Cited by 3 | Viewed by 3929
Abstract
This paper presents an in-depth review of cybersecurity challenges and advanced solutions in modern power-generation systems, with particular emphasis on smart grids. It examines vulnerabilities in devices such as smart meters (SMs), Phasor Measurement Units (PMUs), and Remote Terminal Units (RTUs) to cyberattacks, [...] Read more.
This paper presents an in-depth review of cybersecurity challenges and advanced solutions in modern power-generation systems, with particular emphasis on smart grids. It examines vulnerabilities in devices such as smart meters (SMs), Phasor Measurement Units (PMUs), and Remote Terminal Units (RTUs) to cyberattacks, including False Data Injection Attacks (FDIAs), Denial of Service (DoS), and Replay Attacks (RAs). The study evaluates cutting-edge detection and mitigation techniques, such as Cluster Partition, Fuzzy Broad Learning System (CP-BLS), multimodal deep learning, and autoencoder models, achieving detection accuracies of (up to 99.99%) for FDIA identification. It explores critical aspects of power generation, including resource assessment, environmental and climatic factors, policy and regulatory frameworks, grid and storage integration, and geopolitical and social dimensions. The paper also addresses the transmission and distribution (T&D) system, emphasizing the role of smart-grid technologies and advanced energy-routing strategies that leverage Artificial Neural Networks (ANNs), Generative Adversarial Networks (GANs), and game-theoretic approaches to optimize energy flows and enhance grid stability. Future research directions include high-resolution forecasting, adaptive optimization, and the integration of quantum–AI methods to improve scalability, reliability, and resilience. Full article
(This article belongs to the Special Issue Smart Grid and Energy Storage)
Show Figures

Figure 1

Back to TopTop