Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = fuzzy active-disturbance rejection control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 211
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

17 pages, 2509 KiB  
Article
High-Performance Speed Control of PMSM Using Fuzzy Sliding Mode with Load Torque Observer
by Ping Xin, Peilin Liu and Pingping Qu
Appl. Sci. 2025, 15(13), 7053; https://doi.org/10.3390/app15137053 - 23 Jun 2025
Viewed by 246
Abstract
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode [...] Read more.
To enhance the speed control performance of the permanent magnet synchronous motor (PMSM) servo system, an improved sliding mode control method integrating a torque observer is presented. The current loop uses current feedback decoupling PID control, and the speed loop applies sliding mode control. In comparison to previous work in hybrid SMC using fuzzy logic and torque observers, this p proposes a hyperbolic tangent function in replacement of the signum function to solve the conflict between rapidity and chattering in the traditional exponential reaching law, and fuzzy and segmental self-tuning rules adjust relevant switching terms to reduce chattering and improve the sliding mode arrival process. A load torque observer is designed to enhance the system’s anti-interference ability by compensating the observed load torque to the current loop input. Simulation results show that compared with traditional sliding mode control with a load torque observer (SMC + LO), PID control with a load torque observer (PID + LO), and Active Disturbance Rejection Control (ADRC), the proposed strategy can track the desired speed in 0.032 s, has a dynamic deceleration of 2.7 r/min during sudden load increases, and has a recovery time of 0.011 s, while the others have relatively inferior performance. Finally, the model experiment is carried out, and the results of the experiment are basically consistent with the simulation results. Simulation and experimental results confirm the superiority of the proposed control strategy in improving the system’s comprehensive performance. Full article
(This article belongs to the Special Issue Power Electronics and Motor Control)
Show Figures

Figure 1

21 pages, 2438 KiB  
Article
Robust Load Frequency Control in Cyber-Vulnerable Smart Grids with Renewable Integration
by Rambaboo Singh, Ramesh Kumar, Utkarsh Raj and Ravi Shankar
Energies 2025, 18(11), 2899; https://doi.org/10.3390/en18112899 - 31 May 2025
Viewed by 461
Abstract
Frequency regulation (FR) constitutes a fundamental aspect of power system stability, particularly in the context of the growing integration of intermittent renewable energy sources (RES) and electric vehicles (EVs). The load frequency control (LFC) mechanism, essential for achieving FR, is increasingly reliant on [...] Read more.
Frequency regulation (FR) constitutes a fundamental aspect of power system stability, particularly in the context of the growing integration of intermittent renewable energy sources (RES) and electric vehicles (EVs). The load frequency control (LFC) mechanism, essential for achieving FR, is increasingly reliant on communication infrastructures that are inherently vulnerable to cyber threats. Cyberattacks targeting these communication links can severely compromise coordination among smart grid components, resulting in erroneous control actions that jeopardize the security and stability of the power system. In light of these concerns, this study proposes a cyber-physical LFC framework incorporating a fuzzy linear active disturbance rejection controller (F-LADRC), wherein the controller parameters are systematically optimized using the quasi-opposition-based reptile search algorithm (QORSA). Furthermore, the proposed approach integrates a comprehensive cyberattack detection and prevention scheme, employing Haar wavelet transforms for anomaly detection and long short-term memory (LSTM) networks for predictive mitigation. The effectiveness of the proposed methodology is validated through simulations conducted on a restructured power system integrating RES and EVs, as well as a modified IEEE 39-bus test system. The simulation outcomes substantiate the capability of the proposed framework to deliver robust and resilient frequency regulation, maintaining system frequency and tie-line power fluctuations within nominal operational thresholds, even under adverse cyberattack scenarios. Full article
Show Figures

Figure 1

25 pages, 463 KiB  
Review
Advances in Zeroing Neural Networks: Convergence Optimization and Robustness in Dynamic Systems
by Xin Zhou and Bolin Liao
Mathematics 2025, 13(11), 1801; https://doi.org/10.3390/math13111801 - 28 May 2025
Viewed by 668
Abstract
Zeroing Neural Networks (ZNNs), an ODE-based neural dynamics framework, has become a pivotal approach for solving time-varying problems in dynamic systems. This paper systematically reviews recent advances in improving the convergence of ZNN models, focusing on the optimization of fixed parameters, dynamic parameters, [...] Read more.
Zeroing Neural Networks (ZNNs), an ODE-based neural dynamics framework, has become a pivotal approach for solving time-varying problems in dynamic systems. This paper systematically reviews recent advances in improving the convergence of ZNN models, focusing on the optimization of fixed parameters, dynamic parameters, and activation functions. Additionally, structural adaptations and fuzzy control strategies have significantly enhanced the robustness and disturbance rejection capabilities of these systems. ZNNs have been successfully applied in robotic control, demonstrating superior accuracy and robustness compared to traditional methods. Future research directions include exploring nonlinear activation functions, multimodal adaptation strategies, and scalability in real-world environments. Full article
(This article belongs to the Special Issue Dynamical System and Stochastic Analysis, 2nd Edition)
Show Figures

Figure 1

28 pages, 6935 KiB  
Article
A Hybrid Quadrotor Unmanned Aerial Vehicle Control Strategy Using Self-Adaptive Bald Eagle Search and Fuzzy Logic
by Yalei Bai, Kelin Li and Guangzhao Wang
Electronics 2025, 14(11), 2112; https://doi.org/10.3390/electronics14112112 - 22 May 2025
Cited by 1 | Viewed by 323
Abstract
In this study, we propose an innovative inner–outer loop control framework for a quadcopter unmanned aerial vehicle (UAV) that significantly enhances the trajectory-tracking speed and accuracy while enhancing robustness against external disturbances. The inner loop employs a Linear Active Disturbance Rejection Controller (LADRC) [...] Read more.
In this study, we propose an innovative inner–outer loop control framework for a quadcopter unmanned aerial vehicle (UAV) that significantly enhances the trajectory-tracking speed and accuracy while enhancing robustness against external disturbances. The inner loop employs a Linear Active Disturbance Rejection Controller (LADRC) and the outer loop a proportion integral differential (PID) controller, unified within a fuzzy control scheme. We introduce a Self-Adaptive Bald Eagle Search Optimization algorithm to optimize the initial controller settings, thereby accelerating convergence and improving parameter-tuning precision. Simulation results show that our proposed controller outperforms the conventional two-loop cascade PID configuration, as well as alternative strategies combining an outer-loop PID with a second-order inner-loop LADRC or a fuzzy-enhanced PID-LADRC approach. Moreover, the system maintains the desired position and attitude under external perturbations, underscoring its superior disturbance-rejection capability and stability. Full article
Show Figures

Figure 1

11 pages, 3172 KiB  
Article
Self-Coupling PID Control with Adaptive Transition Function for Enhanced Electronic Throttle Position Tracking
by Cheng Liu, Peilin Liu and Yanming Cheng
Symmetry 2025, 17(5), 673; https://doi.org/10.3390/sym17050673 - 28 Apr 2025
Viewed by 360
Abstract
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the [...] Read more.
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the electronic throttle system, is established, and subsequently, the nonlinear uncertain system is made into a linear uncertain system. Subsequently, a self-coupling PID control law is designed, and an analysis is conducted on the system’s stability and its capacity to reject disturbances. Secondly, taking into consideration that the parameters of the PID controller with self-coupling mechanism are related to the system’s response speed, disturbance rejection capability, and overshoot, a self-adjusting speed factor transition function is put forward to address the conflict between speed and overshoot. Finally, numerical simulations and experimental tests are carried out. The results verify that, compared with the conventional PID controller, ADRC (Active Disturbance Rejection Control), and fuzzy PID, the proposed controller has a faster response speed, higher control accuracy, and better robustness. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry of Applications in Automation and Control Systems)
Show Figures

Figure 1

26 pages, 7974 KiB  
Article
A Study of a Nonsmooth Fuzzy Active Disturbance Rejection Control Algorithm for Gas Turbines in Maritime Autonomous Surface Ship
by Rui Yang, Yongbao Liu, Xing He, Ge Xia and Zhimeng Liu
J. Mar. Sci. Eng. 2025, 13(4), 664; https://doi.org/10.3390/jmse13040664 - 26 Mar 2025
Viewed by 331
Abstract
To address the dynamic and robust performance limitations of gas turbines in maritime autonomous surface ship applications, this paper proposes a novel nonsmooth fuzzy active disturbance rejection control (NS_FADRC) algorithm. This method combines the strengths of linear active disturbance rejection control (LADRC), nonsmooth [...] Read more.
To address the dynamic and robust performance limitations of gas turbines in maritime autonomous surface ship applications, this paper proposes a novel nonsmooth fuzzy active disturbance rejection control (NS_FADRC) algorithm. This method combines the strengths of linear active disturbance rejection control (LADRC), nonsmooth control, and fuzzy adaptive control. First, the extended state observer (ESO) is improved by using the nonsmooth control method to enhance its convergence rate and estimation capability, while ensuring finite-time convergence characteristics. Next, fuzzy control logic is integrated to enhance the adaptability of the state error feedback (SEF), overcoming the limitations of traditional SEF in handling nonlinearities. The stability of the proposed control algorithm is further validated using Lyapunov stability analysis. Lastly, a Hardware-in-the-Loop (HIL) semi-physical simulation platform, based on automatic code generation technology, is developed to validate the algorithm’s performance. Experimental results demonstrate that, compared to the PID, FPID, and LADRC algorithms, the proposed NS_FADRC algorithm provides superior dynamic response during speed step tracking and excellent robust disturbance rejection performance in the presence of load disturbances, parameter uncertainties, and measurement noise. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 8263 KiB  
Article
Improving Proton Exchange Membrane Fuel Cell Operational Reliability Through Cabin-Based Fuzzy Control in Costal Standalone Observation Systems in Antarctica
by Jin Wang, Yinke Dou, Guangyu Zuo, Bo Fan and Yuru Xing
J. Mar. Sci. Eng. 2025, 13(1), 112; https://doi.org/10.3390/jmse13010112 - 9 Jan 2025
Cited by 1 | Viewed by 3002
Abstract
Hydrogen energy generation plays a crucial role in enhancing the utilization of clean energy at coastal stations with abundant wind and solar resources in Antarctica. In response to the reliable demand for the application of hydrogen fuel cells in standalone observation systems in [...] Read more.
Hydrogen energy generation plays a crucial role in enhancing the utilization of clean energy at coastal stations with abundant wind and solar resources in Antarctica. In response to the reliable demand for the application of hydrogen fuel cells in standalone observation systems in Antarctica, in this research, a power supply scheme based on a proton exchange membrane fuel cell (PEMFC) is introduced. Transient models of the PEMFC are developed, and the optimum operational and environmental conditions are determined through experimental investigations conducted at low temperatures. Based on the findings, a PEMFC-based power supply system is designed, encompassing a fuel cell stack, a measurement and control system, and an operation cabin. A temperature-coordinated control system leveraging a BP neural network, fuzzy logic rules, and the fuzzy-based active disturbance rejection control (Fuzzy-ADRC) strategy are proposed to ensure that the temperature of the PEMFC and cabin can reach the optimal state rapidly and that the output voltage is stable. The results indicate that the stack temperature reaches the specified value more rapidly than with PID and ADRC control methods when the current loading and changes in the ambient temperature are considered, and the output voltage oscillation amplitude can be more effectively minimized. This research provides preliminary guidance for a reliable energy supply scheme for PEMFCs, especially in standalone observation systems in coastal locales. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

19 pages, 6828 KiB  
Article
Research on Quadrotor Control Based on Genetic Algorithm and Particle Swarm Optimization for PID Tuning and Fuzzy Control-Based Linear Active Disturbance Rejection Control
by Kelin Li, Yalei Bai and Haoyu Zhou
Electronics 2024, 13(22), 4386; https://doi.org/10.3390/electronics13224386 - 8 Nov 2024
Cited by 4 | Viewed by 1335
Abstract
The control system of a quadrotor aircraft is characterized by nonlinearity, strong coupling, and underactuation, making it susceptible to external disturbances that can affect flight performance. To address this issue, this paper proposes a novel control system based on inner–outer loop architecture. In [...] Read more.
The control system of a quadrotor aircraft is characterized by nonlinearity, strong coupling, and underactuation, making it susceptible to external disturbances that can affect flight performance. To address this issue, this paper proposes a novel control system based on inner–outer loop architecture. In this system, the outer loop position control adopts a PID controller optimized by Genetic Algorithm-based Particle Swarm Optimization (GA-PSO), while the inner loop attitude control employs a Linear Active Disturbance Rejection Controller (LADRC) with fuzzy algorithm-based adaptive tuning, forming a dual-loop control structure. Comparisons with traditional dual-loop cascaded PID controllers, conventional PID in the outer loop with LADRC in the inner loop, and conventional PID in the outer loop with fuzzy algorithm-based adaptive tuning in the inner loop demonstrate that the proposed control system can stably track the desired position and attitude angles under certain external disturbances, exhibiting excellent anti-disturbance capability and stability. Full article
Show Figures

Figure 1

19 pages, 3061 KiB  
Article
Improved Control Strategy for Dual-PWM Converter Based on Equivalent Input Disturbance
by Zixin Huang, Wei Wang, Chengsong Yu and Junjie Lu
Electronics 2024, 13(18), 3777; https://doi.org/10.3390/electronics13183777 - 23 Sep 2024
Cited by 1 | Viewed by 1204
Abstract
Aiming at the problems of jittering waveforms and poor power quality caused by external disturbances during the operation of a dual-pulse-width-modulation (PWM) converter, an improved terminal sliding mode control and an improved active disturbance rejection control (ADRC) are investigated. The method is based [...] Read more.
Aiming at the problems of jittering waveforms and poor power quality caused by external disturbances during the operation of a dual-pulse-width-modulation (PWM) converter, an improved terminal sliding mode control and an improved active disturbance rejection control (ADRC) are investigated. The method is based on mathematical models of grid-side and machine-side converters to design the controllers separately, and the balance between the two sides is maintained by the capacitor voltage. An improved terminal fuzzy sliding mode control and equivalent input disturbance (EID)-error-estimation-based active disturbance rejection control are presented on the grid side to improve the voltage response rate, and an improved support vector modulation (SVM)–direct torque control (DTC)–ADRC method is developed on the motor side to improve the robustness against disturbances. Finally, theoretical simulation experiments are built in MATLAB R2023a/Simulink to verify the effectiveness and superiority of this method. Full article
(This article belongs to the Special Issue Advanced Control Strategies and Applications of Multi-Agent Systems)
Show Figures

Figure 1

27 pages, 6715 KiB  
Article
Enhancing Active Disturbance Rejection Control for a Vehicle Active Stabiliser Bar with an Improved Chicken Flock Optimisation Algorithm
by Zhenglin Tang, Qiang Zhao, Duc Truong Pham and Xuesong Zhang
Processes 2024, 12(9), 1979; https://doi.org/10.3390/pr12091979 - 13 Sep 2024
Cited by 2 | Viewed by 897
Abstract
An active stabiliser bar significantly enhances the anti-roll capabilities of vehicles. The control strategy is a crucial factor in enabling the active stabiliser bar to function effectively. This paper investigates an active disturbance rejection control (ADRC) strategy. Given the numerous parameters of the [...] Read more.
An active stabiliser bar significantly enhances the anti-roll capabilities of vehicles. The control strategy is a crucial factor in enabling the active stabiliser bar to function effectively. This paper investigates an active disturbance rejection control (ADRC) strategy. Given the numerous parameters of the ADRC and their significant mutual influence, optimising these parameters is challenging. To address this, an improved chicken flock optimisation algorithm is proposed to optimise the ADRC parameters and enhance its performance. First, a three-degree-of-freedom dynamic model of the vehicle is established, and an active disturbance rejection control-based optimisation model utilising a chicken flock optimisation algorithm is constructed. To tackle the issues of getting stuck in local optima and low precision when dealing with complex problems in the traditional chicken flock optimisation (CFO) algorithm, several strategies, including improved Lévy flight, have been adopted. Subsequently, the twelve parameters of the ADRC are optimised using the improved chicken flock optimisation algorithm. Comprehensive testing on multiple benchmark functions demonstrates that the improved chicken flock optimisation (ICFO) algorithm is distinctly superior to other advanced algorithms in terms of solution quality and robustness. Simulation results show that the ICFO-ADRC controller is significantly superior. In four different complex road condition tests, the ICFO-ADRC controller shows an average performance improvement of 8% compared to the fuzzy PI-PD controller, an average improvement of 82% compared to the non-optimised ADRC controller, and an average improvement of 18% compared to the CFO-ADRC controller. Our findings confirm that this paper was able to provide new solutions for vehicle stability control whilst opening up new possibilities for the application of metaheuristic algorithms. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

15 pages, 2059 KiB  
Article
Intelligent Fuzzy Logic-Based Internal Model Control for Rotary Flexible Robots
by Omar Mohamed Gad, Raouf Fareh, Sofiane Khadraoui, Maamar Bettayeb and Mohammad Habibur Rahman
Processes 2024, 12(9), 1908; https://doi.org/10.3390/pr12091908 - 5 Sep 2024
Cited by 3 | Viewed by 1366
Abstract
Recently, there has been widespread and vital adoption of flexible manipulators due to their increased prevalence. This is attributed to the growing demand for flexibility in various tasks like refueling operations, inspections, and maintenance activities. Nevertheless, these robots are under-actuated systems characterized by [...] Read more.
Recently, there has been widespread and vital adoption of flexible manipulators due to their increased prevalence. This is attributed to the growing demand for flexibility in various tasks like refueling operations, inspections, and maintenance activities. Nevertheless, these robots are under-actuated systems characterized by a nonlinear behavior and present dynamic coupling interactions that contribute to the complexity of the control process. The main control objective is to achieve an accurate tracking of the desired position while simultaneously reducing oscillations occurring in the link. Therefore, this paper proposes integrating the tuning and adaptive control by employing fuzzy logic methodology in conjunction with internal model control (IMC). The suggested controller takes advantage of intelligent techniques, simple structure, robustness, and easy tuning of the conventional IMC. Both triangular and trapezoidal Membership Functions (MFs) are applied in this study to create a pair of Fuzzy Logic Controllers (FLCs) based on the Mamdani method. These controllers are employed to dynamically adjust the parameters of the IMC, in contrast to the fixed parameters used in the conventional IMC approach. The effectiveness of the suggested Adaptive-based Fuzzy IMC (AFIMC) is showcased through simulation and practical experimentation, in scenarios both with and without disturbances. Results indicate that this technique outperforms conventional IMC in achieving control objectives and rejecting disturbances. Full article
(This article belongs to the Special Issue Modeling and Simulation of Robot Intelligent Control System)
Show Figures

Figure 1

20 pages, 7147 KiB  
Article
Motion Control of Macro–Micro Linear Platform Based on Adaptive Fuzzy Active Disturbance Rejection Control
by Mingyi Wang, Tianrun Kang, Kai Kang, Chengming Zhang and Liyi Li
Symmetry 2024, 16(6), 707; https://doi.org/10.3390/sym16060707 - 7 Jun 2024
Cited by 2 | Viewed by 4188
Abstract
To ensure precise positioning of the macro–micro platform with a symmetrical structure, it is crucial to mitigate the impact of various perturbations, including disturbances, as well as complex factors such as external loads, electrical noise, and model parameter variations. This paper proposes a [...] Read more.
To ensure precise positioning of the macro–micro platform with a symmetrical structure, it is crucial to mitigate the impact of various perturbations, including disturbances, as well as complex factors such as external loads, electrical noise, and model parameter variations. This paper proposes a novel macro–micro master–slave control structure that incorporates adaptive fuzzy linear active disturbance rejection control (AFLADRC). The Kp and Kd parameters of the linear state error feedback (LSEF) are dynamically tuned and adjusted using fuzzy reasoning. This approach enhances the robustness of the system and simplifies the tuning process. In addition, this paper also analyzes the symmetry of the coupling effect between macro and micro, as the coupling will affect the motor force and the reaction potential of the motor. The macro–micro platform adopts a symmetric design; the macro stage is driven by a permanent magnet synchronous linear motor (PMLSM), and the micro stage is driven by a voice coil motor. Finally, we built the macro–micro linear motion experimental platform to verify the control effect of the proposed method by conducting trajectory tracking experiments and comparison experiments. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Motor Control, Drives and Power Electronics)
Show Figures

Figure 1

17 pages, 5988 KiB  
Article
Optimizing Active Disturbance Rejection Control for a Stubble Breaking and Obstacle Avoiding Control System
by Huibin Zhu, Tao Huang, Lizhen Bai and Wenkai Zhang
Agriculture 2024, 14(5), 786; https://doi.org/10.3390/agriculture14050786 - 20 May 2024
Cited by 3 | Viewed by 1192
Abstract
In order to improve the obstacle avoidance control performance and anti-interference ability of a stubble breaking device of a no-tillage planter, a back-propagation neural network (BPNN)-optimized fuzzy active disturbance rejection control (ADRC) controller was designed to optimize the control performance of a servo [...] Read more.
In order to improve the obstacle avoidance control performance and anti-interference ability of a stubble breaking device of a no-tillage planter, a back-propagation neural network (BPNN)-optimized fuzzy active disturbance rejection control (ADRC) controller was designed to optimize the control performance of a servo motor. Firstly, a negative feedback mathematical model was established for the obstacle avoidance control system. Then, the nonlinear state error feedback (NLSEF) parameters in the fuzzy ADRC were intelligently optimized by the BPNN algorithm. In this way, a fuzzy ADRC controller based on BPNN optimization was formed to optimize the control process of a servo motor. Matlab/Simulink (R2022b) was used to complete the simulation model design and parameter adjustment. Consequently, the response time was 0.089 s using the BPNN fuzzy ADRC controller, which was shorter than the 0.303 s of the ADRC controller and the 0.100 s of the fuzzy ADRC controller. The overshoot was 0.1% using a BPNN fuzzy ADRC controller, which was less than the 2% of the ADRC controller and the 1% of the fuzzy ADRC controller. After noise signal interference was introduced into the control system, the regression steady state time of the BPNN fuzzy ADRC controller was 0.22 s, which was shorter than the 0.56 s of the ADRC controller and the 0.45 s of the fuzzy ADRC controller. A hardware-in-the-loop simulation experimental platform of the obstacle avoidance control system was constructed. The experiment results show that the servo motor control system has a fast dynamic response, small steady-state error and strong anti-interference ability for obstacle avoidance at the target height. Then, the control system error was within the allowable range. The servo motor control effect of the BPNN fuzzy ADRC was better than the ADRC and fuzzy ADRC. This optimized servo motor control method can provide a reference for improving the obstacle avoidance control effect problem of no-tillage seeders in stubble breaking operations on rocky desertification areas. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Research on a Torque Ripple Suppression Method of Fuzzy Active Disturbance Rejection Control for a Permanent Magnet Synchronous Motor
by Congxin Lv, Bo Wang, Jingbo Chen, Ruiping Zhang, Haiying Dong and Shaoqi Wan
Electronics 2024, 13(7), 1280; https://doi.org/10.3390/electronics13071280 - 29 Mar 2024
Cited by 6 | Viewed by 1380
Abstract
In order to meet the necessities of steady and protected operation of a permanent magnet synchronous motor (PMSM) in electromechanical pressure gadget aviation beneath complicated working conditions, a three-phase four-arm inverter fuzzy self-disturbance suppression management (Fuzzy-ADRC) approach for PMSM is proposed to suppress [...] Read more.
In order to meet the necessities of steady and protected operation of a permanent magnet synchronous motor (PMSM) in electromechanical pressure gadget aviation beneath complicated working conditions, a three-phase four-arm inverter fuzzy self-disturbance suppression management (Fuzzy-ADRC) approach for PMSM is proposed to suppress the motor torque pulsation beneath complicated working conditions. Firstly, the defects of the common inverter are analyzed, the three-phase four-bridge inverter is changed via the standard three-phase three-bridge inverter, and the present-day harmonic suppression’s overall performance of the three-phase four-bridge inverter is modeled, analyzed, and verified. Secondly, the ADRC and fuzzy management approach is analyzed, the Kalman filter is delivered into the motor pace loop management to enhance the overall performance of ADRC, and then the fuzzy manipulate and ADRC are blended to similarly enhance the torque ripple suppression’s overall performance of the everlasting magnet synchronous motor. Finally, the proposed three-phase four-arm inverter and fuzzy-ADRC approach are combined, and contrasted with the normal three-phase three-arm inverter and ADRC method. The simulation consequences exhibit that the proposed manipulation technique can efficiently suppress the torque ripple of everlasting magnet synchronous motor and has robust reliability. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

Back to TopTop