Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (641)

Search Parameters:
Keywords = fuzzy C means

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 607 KiB  
Article
Incremental Beta Distribution Weighted Fuzzy C-Ordered Means Clustering
by Hengda Wang, Mohamad Farhan Mohamad Mohsin, Muhammad Syafiq Mohd Pozi and Zhu Zeng
Information 2025, 16(8), 663; https://doi.org/10.3390/info16080663 - 3 Aug 2025
Viewed by 49
Abstract
Streaming data is becoming more and more common in the field of big data and incremental frameworks can address its complexity. The BDFCOM algorithm achieves good results on common form datasets by introducing the ordering mechanism of beta distribution weighting. In this paper, [...] Read more.
Streaming data is becoming more and more common in the field of big data and incremental frameworks can address its complexity. The BDFCOM algorithm achieves good results on common form datasets by introducing the ordering mechanism of beta distribution weighting. In this paper, based on the BDFCOM algorithm, two incremental beta distribution weighted fuzzy C-ordered means clustering algorithms, SPBDFCOM and OBDFCOM, are proposed by combining the two incremental frameworks of Single-Pass and Online, respectively. In order to validate the performance of SPBDFCOM and OBDFCOM, this paper selects seven real datasets for experiments and compares their performance with six other incremental clustering algorithms using six evaluation metrics. The results show that the two proposed incremental algorithms perform significantly better compared to other algorithms. Full article
(This article belongs to the Topic Soft Computing and Machine Learning)
Show Figures

Figure 1

17 pages, 6625 KiB  
Article
Management Zones for Irrigated and Rainfed Grain Crops Based on Data Layer Integration
by Luiz Gustavo de Góes Sterle and José Paulo Molin
Agronomy 2025, 15(8), 1864; https://doi.org/10.3390/agronomy15081864 - 31 Jul 2025
Viewed by 189
Abstract
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and [...] Read more.
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and 1.50 m, and terrain data were analyzed using multivariate statistics to define MZs. Two clustering methods—fuzzy c-means (FCM) and hierarchical clustering—were compared for variance reduction effectiveness. Rainfed areas showed greater spatial variability (yield CV 9–12%; ECa CV 20–27%) than irrigated fields (yield CV < 7%; ECa CV ~5%). Principal component analysis (PCA) identified subsoil ECa and elevation as key variables in irrigated fields, while surface ECa and topography influenced rainfed variability. FCM produced more homogeneous zones with fewer classes, especially in irrigated fields, whereas hierarchical clustering better detected outliers but required more zones for similar variance reduction. Yield correlated strongly with slope and moisture in rainfed systems. These results emphasize aligning MZ delineation with production system characteristics—enabling variable rate irrigation in irrigated fields and promoting moisture conservation in rainfed systems. FCM is recommended for operational efficiency, while hierarchical clustering offers higher precision in complex contexts. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

33 pages, 7261 KiB  
Article
Comparative Analysis of Explainable AI Methods for Manufacturing Defect Prediction: A Mathematical Perspective
by Gabriel Marín Díaz
Mathematics 2025, 13(15), 2436; https://doi.org/10.3390/math13152436 - 29 Jul 2025
Viewed by 410
Abstract
The increasing complexity of manufacturing processes demands accurate defect prediction and interpretable insights into the causes of quality issues. This study proposes a methodology integrating machine learning, clustering, and Explainable Artificial Intelligence (XAI) to support defect analysis and quality control in industrial environments. [...] Read more.
The increasing complexity of manufacturing processes demands accurate defect prediction and interpretable insights into the causes of quality issues. This study proposes a methodology integrating machine learning, clustering, and Explainable Artificial Intelligence (XAI) to support defect analysis and quality control in industrial environments. Using a dataset based on empirical industrial distributions, we train an XGBoost model to classify high- and low-defect scenarios from multidimensional production and quality metrics. The model demonstrates high predictive performance and is analyzed using five XAI techniques (SHAP, LIME, ELI5, PDP, and ICE) to identify the most influential variables linked to defective outcomes. In parallel, we apply Fuzzy C-Means and K-means to segment production data into latent operational profiles, which are also interpreted using XAI to uncover process-level patterns. This approach provides both global and local interpretability, revealing consistent variables across predictive and structural perspectives. After a thorough review, no prior studies have combined supervised learning, unsupervised clustering, and XAI within a unified framework for manufacturing defect analysis. The results demonstrate that this integration enables a transparent, data-driven understanding of production dynamics. The proposed hybrid approach supports the development of intelligent, explainable Industry 4.0 systems. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

23 pages, 3689 KiB  
Article
An Innovative Medical Image Analyzer Incorporating Fuzzy Approaches to Support Medical Decision-Making
by Cristina Ticala, Camelia M. Pintea, Mihaela Chira and Oliviu Matei
Med. Sci. 2025, 13(3), 97; https://doi.org/10.3390/medsci13030097 - 24 Jul 2025
Viewed by 340
Abstract
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, [...] Read more.
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, which offer improved boundary representation in images where uncertainty and soft transitions are prevalent. Results: One of the main novelties in contrast to the initial innovative Medical Image Analyzer, iMIA, is the fact that the system includes fuzzy C-means clustering to support tissue classification and unsupervised segmentation based on pixel intensity distribution. The application also features an interactive zooming and panning module with the option to overlay edge detection results. As another novelty, fuzzy performance metrics were added, including fuzzy false negatives, fuzzy false positives, fuzzy true positives, and the fuzzy index, offering a more comprehensive and uncertainty-aware evaluation of edge detection accuracy. Conclusions: The application executable file is provided at no cost for the purposes of evaluation and testing. Full article
Show Figures

Figure 1

30 pages, 416 KiB  
Article
Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030
by Ibrahim Mutambik
Sustainability 2025, 17(15), 6660; https://doi.org/10.3390/su17156660 - 22 Jul 2025
Viewed by 376
Abstract
This study aimed to investigate the future trajectories of last-mile delivery (LMD), and their implications for sustainable urban logistics and smart city planning. Through a Delphi-based scenario analysis targeting the year 2030, this research draws on inputs from a two-round Delphi study with [...] Read more.
This study aimed to investigate the future trajectories of last-mile delivery (LMD), and their implications for sustainable urban logistics and smart city planning. Through a Delphi-based scenario analysis targeting the year 2030, this research draws on inputs from a two-round Delphi study with 52 experts representing logistics, academia, and government. Four key thematic areas were explored: consumer demand and behavior, emerging delivery technologies, innovative delivery services, and regulatory frameworks. The projections were structured using fuzzy c-means clustering, and analyzed through the Technology Acceptance Model (TAM) and Innovation Diffusion Theory (IDT), supporting a systemic understanding of innovation adoption in urban logistics systems. The findings offer strategic insights for municipal planners, policymakers, logistics service providers, and e-commerce stakeholders, helping align infrastructure development and regulatory planning with the evolving needs of last-mile logistics. This approach contributes to advancing resilient, low-emission, and inclusive smart city ecosystems that align with global sustainability goals, particularly those outlined in the UN 2030 Agenda for Sustainable Development. Full article
21 pages, 9917 KiB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Viewed by 274
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

27 pages, 6169 KiB  
Article
Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
by Hua Xia, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang and Hongxia Luo
Land 2025, 14(7), 1472; https://doi.org/10.3390/land14071472 - 15 Jul 2025
Viewed by 243
Abstract
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address [...] Read more.
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities. Full article
Show Figures

Figure 1

29 pages, 8563 KiB  
Article
A Bridge Crack Segmentation Algorithm Based on Fuzzy C-Means Clustering and Feature Fusion
by Yadong Yao, Yurui Zhang, Zai Liu and Heming Yuan
Sensors 2025, 25(14), 4399; https://doi.org/10.3390/s25144399 - 14 Jul 2025
Viewed by 359
Abstract
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy [...] Read more.
In response to the limitations of traditional image processing algorithms, such as high noise sensitivity and threshold dependency in bridge crack detection, and the extensive labeled data requirements of deep learning methods, this study proposes a novel crack segmentation algorithm based on fuzzy C-means (FCM) clustering and multi-feature fusion. A three-dimensional feature space is constructed using B-channel pixels and fuzzy clustering with c = 3, justified by the distinct distribution patterns of these three regions in the image, enabling effective preliminary segmentation. To enhance accuracy, connected domain labeling combined with a circularity threshold is introduced to differentiate linear cracks from granular noise. Furthermore, a 5 × 5 neighborhood search strategy, based on crack pixel amplitude, is designed to restore the continuity of fragmented cracks. Experimental results on the Concrete Crack and SDNET2018 datasets demonstrate that the proposed algorithm achieves an accuracy of 0.885 and a recall rate of 0.891, outperforming DeepLabv3+ by 4.2%. Notably, with a processing time of only 0.8 s per image, the algorithm balances high accuracy with real-time efficiency, effectively addressing challenges, such as missed fine cracks and misjudged broken cracks in noisy environments by integrating geometric features and pixel distribution characteristics. This study provides an efficient unsupervised solution for bridge damage detection. Full article
Show Figures

Figure 1

26 pages, 2523 KiB  
Article
Optimization of a Cooperative Truck–Drone Delivery System in Rural China: A Sustainable Logistics Approach for Diverse Terrain Conditions
by Debao Dai, Hanqi Cai and Shihao Wang
Sustainability 2025, 17(14), 6390; https://doi.org/10.3390/su17146390 - 11 Jul 2025
Viewed by 482
Abstract
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due [...] Read more.
Driven by the rapid expansion of e-commerce in China, there is a growing demand for high-efficiency, sustainability-oriented logistics solutions in rural regions, particularly for the time-sensitive distribution of perishable agricultural commodities. Traditional logistics systems face considerable challenges in these geographically complex regions due to limited infrastructure and extended travel distances. To address these issues, this study proposes an intelligent cooperative delivery system that integrates automated drones with conventional trucks, aiming to enhance both operational efficiency and environmental sustainability. A mixed-integer linear programming (MILP) model is developed to account for the diverse terrain characteristics of rural China, including forest, lake, and mountain regions. To optimize distribution strategies, the model incorporates an improved Fuzzy C-Means (FCM) algorithm combined with a hybrid genetic simulated annealing algorithm. The performance of three transportation modes, namely truck-only, drone-only, and truck–drone integrated delivery, was evaluated and compared. Sustainability-related externalities, such as carbon emission costs and delivery delay penalties, are quantitatively integrated into the total transportation cost objective function. Simulation results indicate that the cooperative delivery model is especially effective in lake regions, significantly reducing overall costs while improving environmental performance and service quality. This research offers practical insights into the development of sustainable intelligent transportation systems tailored to the unique challenges of rural logistics. Full article
Show Figures

Figure 1

7 pages, 1068 KiB  
Proceeding Paper
Modeling Wheat Height from Sentinel-1: A Cluster-Based Approach
by Andrea Soccolini, Francesco Saverio Santaga and Sara Antognelli
Eng. Proc. 2025, 94(1), 7; https://doi.org/10.3390/engproc2025094007 - 11 Jul 2025
Viewed by 154
Abstract
Crop height is a key indicator of plant development and growth dynamics, offering valuable insights for temporal crop monitoring. However, modeling its variation across phenological stages remains challenging due to canopy structural changes. This study aimed to predict wheat height throughout the growth [...] Read more.
Crop height is a key indicator of plant development and growth dynamics, offering valuable insights for temporal crop monitoring. However, modeling its variation across phenological stages remains challenging due to canopy structural changes. This study aimed to predict wheat height throughout the growth cycle by integrating radar remote sensing data with a phenology-informed clustering approach. The research was conducted in three wheat fields in Umbria, Italy, from 30 January to 10 June 2024, using in-field height measurements, phenological observations, and Sentinel-1 acquisitions. Backscatter variables (VH, VV, and CR) were processed using two speckle filters (Lee 7 × 7 and Refined Lee), alongside additional radar-derived parameters (entropy, anisotropy, alpha, and RVI). Fuzzy C-means clustering enabled the classification of observations into two phenological groups, supporting the development of stage-specific linear regression models. Results demonstrated high accuracy during early growth stages (tillering to stem elongation), with R2 values of 0.76 (RMSE = 6.88) for Lee 7 × 7 and 0.79 (RMSE = 6.35) for Refined Lee. In later stages (booting to maturity), model performance declined, with Lee 7 × 7 outperforming Refined Lee (R2 = 0.51 vs. 0.33). These findings underscore the potential of phenology-based modeling approaches to enhance crop height estimation and improve radar-driven crop monitoring. Full article
Show Figures

Graphical abstract

28 pages, 1969 KiB  
Article
A Fuzzy-XAI Framework for Customer Segmentation and Risk Detection: Integrating RFM, 2-Tuple Modeling, and Strategic Scoring
by Gabriel Marín Díaz
Mathematics 2025, 13(13), 2141; https://doi.org/10.3390/math13132141 - 30 Jun 2025
Viewed by 330
Abstract
This article presents an interpretable framework for customer segmentation and churn risk detection, integrating fuzzy clustering, explainable AI (XAI), and strategic scoring. The process begins with Fuzzy C-Means (FCM) applied to normalized RFM indicators (Recency, Frequency, Monetary), which were then mapped to a [...] Read more.
This article presents an interpretable framework for customer segmentation and churn risk detection, integrating fuzzy clustering, explainable AI (XAI), and strategic scoring. The process begins with Fuzzy C-Means (FCM) applied to normalized RFM indicators (Recency, Frequency, Monetary), which were then mapped to a 2-tuple linguistic scale to enhance semantic interpretability. Cluster memberships and centroids were analyzed to identify distinct behavioral patterns. An XGBoost classifier was trained to validate the coherence of the fuzzy segments, while SHAP and LIME provided global and local explanations for the classification decisions. Following segmentation, an AHP-based strategic score was computed for each customer, using weights derived from pairwise comparisons reflecting organizational priorities. These scores were also translated into the 2-tuple domain, reinforcing interpretability. The model then identified customers at risk of disengagement, defined by a combination of low Recency, high Frequency and Monetary values, and a low AHP score. Based on Recency thresholds, customers are classified as Active, Latent, or Probable Churn. A second XGBoost model was applied to predict this risk level, with SHAP used to explain its predictive behavior. Overall, the proposed framework integrated fuzzy logic, semantic representation, and explainable AI to support actionable, transparent, and human-centered customer analytics. Full article
Show Figures

Figure 1

22 pages, 4991 KiB  
Article
Delineating Soil Management Zones for Site-Specific Nutrient Management in Cocoa Cultivation Areas with a Long History of Pesticide Usage
by Isong Abraham Isong, Denis Michael Olim, Olayinka Ibiwumi Nwachukwu, Mabel Ifeoma Onwuka, Sunday Marcus Afu, Victoria Oko Otie, Peter Ereh Oko, Brandon Heung and Kingsley John
Land 2025, 14(7), 1366; https://doi.org/10.3390/land14071366 - 28 Jun 2025
Viewed by 517
Abstract
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). [...] Read more.
Delineating soil management zones in cocoa cultivation areas can help optimize production and minimize ecological and environmental risks. This research assessed the spatial distribution of heavy metal concentration and soil fertility indicators in Cross River State, Nigeria, to delineate soil management zones (MZs). A total of n = 63 georeferenced, composite soil samples were collected at the 0–30 cm depth increment, air-dried, and subjected to physicochemical analysis. The soil data were subjected to principal component analysis (PCA), and the selected principal components (PCs) were used for fuzzy c-means clustering analysis to delineate the MZs. The result indicated that soil pH varied from 4.8 (strongly acidic) to 6.3 (slightly acidic), with high average organic carbon contents. The degree of contamination was low, while the ecological risk indicator (RI) of the environment under cocoa cultivation ranged from low risk (RI = 18.24) to moderate risk (RI = 287.15), with moderate risk areas mostly found in patches around the central and upper regions. Higher pH was associated with increased levels of exchangeable Ca, Mg, and K, and TN and OC. Strong spatial dependence was observed for silt, pH, OC, Mg, Zn, Cu, Pb, Cd, Cr, and DC. The result showed the first six principal components (PCs) with eigenvalues >1 accounting for 83.33% of the cumulative variance, and three MZs were derived via the selected six PCs using fuzzy c-means clustering analysis. The results of this study further indicated that MZ3 had the highest pH (6.06), TN (0.24%), OC (2.79%), exchangeable Ca (10.62 cmol/kg), Mg (4.01 cmol/kg), and K (0.12 cmol/kg). These were significantly (p < 0.05) higher than those observed in MZ2 and MZ1, and they represent the most fertile parts of the study area. Furthermore, 40.6% of the study area had marginal soil (i.e., soil under MZ2). Full article
Show Figures

Figure 1

25 pages, 1827 KiB  
Article
Fault Location and Route Selection Strategy of Distribution Network Based on Distributed Sensing Configuration and Fuzzy C-Means
by Bo Li, Guochao Qian, Lijun Tang, Peng Sun and Zhensheng Wu
Energies 2025, 18(13), 3271; https://doi.org/10.3390/en18133271 - 23 Jun 2025
Viewed by 311
Abstract
To solve the problem of high cost and low efficiency of measuring equipment in traditional distribution network fault location, a fault section location and line selection strategy combining dynamic binary particle swarm optimization (DBPSO) configuration and fuzzy C-means (FCM) clustering is proposed in [...] Read more.
To solve the problem of high cost and low efficiency of measuring equipment in traditional distribution network fault location, a fault section location and line selection strategy combining dynamic binary particle swarm optimization (DBPSO) configuration and fuzzy C-means (FCM) clustering is proposed in this paper. Firstly, the DBPSO algorithm is used to optimize the configuration scheme of the distributed voltage and current sensing device, which reduces the number of measuring devices and system cost on the premise of ensuring the global observability of the distribution network. When a fault occurs in the distribution network, the sensor device based on optimal configuration collects fault feature data, combines it with the FCM clustering algorithm to classify nodes according to fault feature similarity, and divides the most significant fault-affected section as the core fault area. Further, by calculating the Euclidean distance between each node in the fault section and the cluster center, the fault line is accurately identified. Finally, a fault simulation model based on an IEEE 11-node system is constructed to verify the effectiveness of the proposed method. The results show that, compared with the traditional fault section location and route selection strategy, this method can reduce the number of measurement devices optimally configured by 19–36% and significantly reduce the number of algorithm iterations. In addition, it can realize rapid fault location and precise line screening at a low equipment cost under multiple fault types and different fault locations, which significantly improves fault location accuracy while reducing economic investment. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 5666 KiB  
Article
Implementation of a Neural Network for Adaptive PID Tuning in a High-Temperature Thermal System
by Juan Carlos Almachi, Ramiro Vicente, Edwin Bone, Jessica Montenegro, Edgar Cando and Salvatore Reina
Energies 2025, 18(12), 3113; https://doi.org/10.3390/en18123113 - 13 Jun 2025
Viewed by 1060
Abstract
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 [...] Read more.
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 kW retrofitted Blue-M furnace, the system was characterized by second-order transfer functions for heating and forced convection cooling. A dataset of 9702 samples was built from eight fixed PID configurations tested under a multi-ramp thermal profile. The selected 3-64-64-32-2 ANN, executed in Python and interfaced with LabVIEW, computes optimal gains in 0.054 ms while preserving real-time monitoring capabilities. Experimental results show that the ANN-assisted PID reduces the mean absolute error to 5.08 °C, limits overshoot to 41% (from 53%), and shortens settling time by 20% compared to the best fixed-gain loop. It also outperforms a fuzzy controller and remains stable under ±5% signal noise. Notably, gain reversals during cooling prevent temperature spikes, improving transient response. Relying on commodity hardware and open-source tools, this approach offers a cost-effective solution for legacy furnace upgrades and provides a replicable model for adaptive control in high-temperature, safety-critical environments like metal processing, battery cycling, and nuclear systems. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

16 pages, 5551 KiB  
Article
An Enhanced Interval Type-2 Fuzzy C-Means Algorithm for Fuzzy Time Series Forecasting of Vegetation Dynamics: A Case Study from the Aksu Region, Xinjiang, China
by Yongqi Chen, Li Liu, Jinhua Cao, Kexin Wang, Shengyang Li and Yue Yin
Land 2025, 14(6), 1242; https://doi.org/10.3390/land14061242 - 10 Jun 2025
Viewed by 415
Abstract
Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models [...] Read more.
Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models based on the Fuzzy C-Means (FCM) clustering algorithm address some of these uncertainties by enabling soft partitioning through membership functions. However, the method remains limited by its reliance on expert experience in setting fuzzy parameters, which introduces uncertainty in the definition of fuzzy intervals and negatively affects prediction performance. To overcome these limitations, this study enhances the interval type-2 fuzzy clustering time series (IT2-FCM-FTS) model by developing a pixel-level time series forecasting framework, optimizing fuzzy interval divisions, and extending the model from unidimensional to spatial time series forecasting. Experimental results from 2021 to 2023 demonstrate that the proposed model outperforms both the Autoregressive Integrated Moving Average (ARIMA) and conventional FCM-FTS models, achieving the lowest RMSE (0.0624), MAE (0.0437), and SEM (0.000209) in 2021. Predictive analysis indicates a general ecological improvement in the Aksu region (Xinjiang, China), with persistent growth areas comprising 61.12% of the total and persistent decline areas accounting for 2.6%. In conclusion, this study presents an improved fuzzy model for NDVI time series prediction, providing valuable insights into regional desertification prevention and ecological strategy formulation. Full article
Show Figures

Figure 1

Back to TopTop