Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030
Abstract
1. Introduction
2. Review of the Literature
2.1. Technology Acceptance Model (TAM) and Innovation Diffusion Theory (IDT)
2.2. Delivery of the Last Mile
3. Methodology
3.1. Delphi Technique and Scenario Planning
3.2. Creation of Delphi Projections
3.3. Expert Panel Selection
3.4. Conducting the Delphi Study
3.4.1. First Delphi Round
3.4.2. Interim Evaluation and Second Delphi Round
3.4.3. Final Evaluation and Conclusion of the Delphi Study
3.5. Formulation of Future Scenarios
- is the membership degree of projection to cluster ;
- is the centroid of cluster ;
- is the fuzziness coefficient (typically set to 2);
- is the Euclidean distance between projection and cluster centroid .
4. Results
4.1. Quantitative Analysis
4.2. Stakeholder Group Analysis
4.3. Future Scenarios
4.3.1. Scenario 1: Infrastructure and Services
4.3.2. Scenario 2: Collaboration and Regulation
4.3.3. Scenario 3: Recipient Pick-Up Solutions
5. Discussion and Implications
Implications
6. Conclusions
7. Limitations and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peráček, T.; Kaššaj, M. Legal Easements as Enablers of Sustainable Land Use and Infrastructure Development in Smart Cities. Land 2025, 14, 681. [Google Scholar] [CrossRef]
- Kaššaj, M.; Peráček, T. Synergies and Potential of Industry 4.0 and Automated Vehicles in Smart City Infrastructure. Appl. Sci. 2024, 14, 3575. [Google Scholar] [CrossRef]
- Ha, N.T.; Akbari, M.; Au, B. Last Mile Delivery in Logistics and Supply Chain Management: A Bibliometric Analysis and Future Directions. Benchmarking Int. J. 2023, 30, 1137–1170. [Google Scholar] [CrossRef]
- Statista. Greenhouse Gas Emissions from the Transportation Sector World-Wide from 1990 to 2018. Available online: https://www.statista.com/statistics/1084096/ghg-emissions-transportation-sector-globally/ (accessed on 7 April 2025).
- Olabi, A.G.; Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Obaideen, K.; Rezk, H.; Wilberforce, T.; Eisa, T.; Chae, K.-J.; Sayed, E.T. Green Hydrogen: Pathways, Roadmap, and Role in Achieving Sustainable Development Goals. Process Saf. Environ. Prot. 2023, 177, 664–687. [Google Scholar] [CrossRef]
- Lei, L.; Hirata, T.; Plank, J. 40 Years of PCE Superplasticizers—History, Current State-of-the-Art and an Outlook. Cem. Concr. Res. 2022, 157, 106826. [Google Scholar] [CrossRef]
- Mutambik, I.; Lee, J.; Almuqrin, A.; Alkhanifer, A.; Baihan, M. Gulf Cooperation Council Countries and Urbanisation: Are Open Government Data Portals Helping? Sustainability 2023, 15, 12823. [Google Scholar] [CrossRef]
- Mutambik, I.; Lee, J.; Almuqrin, A.; Zhang, J.Z.; Baihan, M.; Alkhanifer, A. Privacy Concerns in Social Commerce: The Impact of Gender. Sustainability 2023, 15, 12771. [Google Scholar] [CrossRef]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating Technology Acceptance Model With Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Ejigu, A.K.; Yeshitela, K. Envisioning Sustainable Sanitation Planning: A Unified Approach of Diffusion of Innovation and Theory of Planned Behavior in Predicting Ecosan Toilet Adoption in Arba Minch City, Ethiopia. Front. Environ. Sci. 2024, 12, 1371659. [Google Scholar] [CrossRef]
- Dahri, N.A.; Yahaya, N.; Al-Rahmi, W.M.; Aldraiweesh, A.; Alturki, U.; Almutairy, S.; Shutaleva, A.; Soomro, R.B. Extended TAM Based Acceptance of AI-Powered ChatGPT for Supporting Metacognitive Self-Regulated Learning in Education: A Mixed-Methods Study. Heliyon 2024, 10, e29317. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Migliore, G.; Schifani, G.; Vecchio, R. Key Factors Influencing Farmers’ Adoption of Sustainable Innovations: A Systematic Literature Review and Research Agenda. Org. Agric. 2024, 14, 57–84. [Google Scholar] [CrossRef]
- Mora Lozano, P.E.; Montoya-Torres, J.R. Global Supply Chains Made Visible through Logistics Security Management. Logistics 2024, 8, 6. [Google Scholar] [CrossRef]
- Merkert, R.; Bliemer, M.C.J.; Fayyaz, M. Consumer Preferences for Innovative and Traditional Last-Mile Parcel Delivery. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 261–284. [Google Scholar] [CrossRef]
- Kaššaj, M.; Peráček, T. Sustainable Connectivity—Integration of Mobile Roaming, WiFi4EU and Smart City Concept in the European Union. Sustainability 2024, 16, 788. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. An Examination of Last Mile Delivery Practices of Freight Carriers Servicing Business Receivers in Inner-City Areas. Sustainability 2020, 12, 2837. [Google Scholar] [CrossRef]
- Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al. Understanding the Impact of E-Commerce on Last-Mile Light Goods Vehicle Activity in Urban Areas: The Case of London. Transp. Res. D Transp. Environ. 2018, 61, 325–338. [Google Scholar] [CrossRef]
- Gonzalez, J.N.; Garrido, L.; Vassallo, J.M. Exploring Stakeholders’ Perspectives to Improve the Sustainability of Last Mile Logistics for e-Commerce in Urban Areas. Res. Transp. Bus. Manag. 2023, 49, 101005. [Google Scholar] [CrossRef]
- Giuffrida, N.; Fajardo-Calderin, J.; Masegosa, A.D.; Werner, F.; Steudter, M.; Pilla, F. Optimization and Machine Learning Applied to Last-Mile Logistics: A Review. Sustainability 2022, 14, 5329. [Google Scholar] [CrossRef]
- Chu, X.; Wang, R.; Ren, L.; Li, Y.; Zhang, S. Enabling Joint Distribution with Blockchain Technology in Last-Mile Logistics. Comput. Ind. Eng. 2024, 187, 109832. [Google Scholar] [CrossRef]
- Alejandra Maldonado Bonilla, M.; Bouzon, M.; Cecilia Peña-Montoya, C. Taxonomy of Key Practices for a Sustainable Last-Mile Logistics Network in E-Retail: A Comprehensive Literature Review. Clean. Logist. Supply Chain. 2024, 11, 100149. [Google Scholar] [CrossRef]
- Jazairy, A.; Persson, E.; Brho, M.; von Haartman, R.; Hilletofth, P. Drones in Last-Mile Delivery: A Systematic Literature Review from a Logistics Management Perspective. Int. J. Logist. Manag. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Alverhed, E.; Hellgren, S.; Isaksson, H.; Olsson, L.; Palmqvist, H.; Flodén, J. Autonomous Last-Mile Delivery Robots: A Literature Review. Eur. Transp. Res. Rev. 2024, 16, 4. [Google Scholar] [CrossRef]
- Peppel, M.; Spinler, S.; Winkenbach, M. Integrating Mobile Parcel Lockers into Last-Mile Delivery Networks: An Operational Design for Home Delivery, Stationary, and Mobile Parcel Lockers. Int. J. Phys. Distrib. Logist. Manag. 2024, 54, 418–447. [Google Scholar] [CrossRef]
- Suguna, M.; Shah, B.; Raj, S.K.; Suresh, M. A Study on the Influential Factors of the Last Mile Delivery Projects during COVID-19 Era. Oper. Manag. Res. 2022, 15, 399–412. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Hemmati, A.; Winkenbach, M. A Truck and Drones Model for Last-Mile Delivery: A Mathematical Model and Heuristic Approach. Appl. Math. Model. 2020, 80, 290–318. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance Of. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Granić, A.; Marangunić, N. Technology Acceptance Model in Educational Context: A Systematic Literature Review. Br. J. Educ. Technol. 2019, 50, 2572–2593. [Google Scholar] [CrossRef]
- Iberahim, H.; Mohd Taufik, N.K.; Mohd Adzmir, A.S.; Saharuddin, H. Customer Satisfaction on Reliability and Responsiveness of Self Service Technology for Retail Banking Services. Procedia Econ. Financ. 2016, 37, 13–20. [Google Scholar] [CrossRef]
- Ricardianto, P.; Lembang, A.T.; Tatiana, Y.; Ruminda, M.; Kholdun, A.I.; Kusuma, I.G.N.A.G.E.T.; Sembiring, H.F.A.; Sudewo, G.C.; Suryani, D.; Endri, E. Enterprise Risk Management and Business Strategy on Firm Performance: The Role of Mediating Competitive Advantage. Uncertain Supply Chain. Manag. 2023, 11, 249–260. [Google Scholar] [CrossRef]
- Hammi, B.; Zeadally, S.; Nebhen, J. Security Threats, Countermeasures, and Challenges of Digital Supply Chains. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Patella, S.M.; Grazieschi, G.; Gatta, V.; Marcucci, E.; Carrese, S. The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review. Sustainability 2020, 13, 6. [Google Scholar] [CrossRef]
- Srivatsa Srinivas, S.; Marathe, R.R. Moving towards “Mobile Warehouse”: Last-Mile Logistics during COVID-19 and Beyond. Transp. Res. Interdiscip. Perspect. 2021, 10, 100339. [Google Scholar] [CrossRef] [PubMed]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-Mile Delivery Concepts: A Survey from an Operational Research Perspective. OR Spectr. 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Seghezzi, A.; Siragusa, C.; Mangiaracina, R. Parcel Lockers vs. Home Delivery: A Model to Compare Last-Mile Delivery Cost in Urban and Rural Areas. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 213–237. [Google Scholar] [CrossRef]
- Kiba-Janiak, M.; Marcinkowski, J.; Jagoda, A.; Skowrońska, A. Sustainable Last Mile Delivery on E-Commerce Market in Cities from the Perspective of Various Stakeholders. Literature Review. Sustain. Cities Soc. 2021, 71, 102984. [Google Scholar] [CrossRef]
- Athanasopoulos, K.; Chatziioannou, I.; Boutsi, A.-M.; Tsingenopoulos, G.; Soile, S.; Chliverou, R.; Petrakou, Z.; Papanikolaou, E.; Karolemeas, C.; Kourmpa, E.; et al. Integrating Cargo Bikes and Drones into Last-Mile Deliveries: Insights from Pilot Deliveries in Five Greek Cities. Sustainability 2024, 16, 1060. [Google Scholar] [CrossRef]
- Buldeo Rai, H.; Verlinde, S.; Macharis, C. The “next Day, Free Delivery” Myth Unravelled. Int. J. Retail. Distrib. Manag. 2019, 47, 39–54. [Google Scholar] [CrossRef]
- Manavalan, E.; Jayakrishna, K. A Review of Internet of Things (IoT) Embedded Sustainable Supply Chain for Industry 4.0 Requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Abbas, J.; Sağsan, M. Impact of Knowledge Management Practices on Green Innovation and Corporate Sustainable Development: A Structural Analysis. J. Clean. Prod. 2019, 229, 611–620. [Google Scholar] [CrossRef]
- Samson, D.; Terziovski, M. The Relationship between Total Quality Management Practices and Operational Performance. J. Oper. Manag. 1999, 17, 393–409. [Google Scholar] [CrossRef]
- Feng, Y.; Lai, K.; Zhu, Q. Green Supply Chain Innovation: Emergence, Adoption, and Challenges. Int. J. Prod. Econ. 2022, 248, 108497. [Google Scholar] [CrossRef]
- Andrukhiv, A.; Sokil, M.; Fedushko, S.; Syerov, Y.; Kalambet, Y.; Peracek, T. Methodology for Increasing the Efficiency of Dynamic Process Calculations in Elastic Elements of Complex Engineering Constructions. Electronics 2021, 10, 40. [Google Scholar] [CrossRef]
- Olsson, J.; Hellström, D.; Vakulenko, Y. Customer Experience Dimensions in Last-Mile Delivery: An Empirical Study on Unattended Home Delivery. Int. J. Phys. Distrib. Logist. Manag. 2023, 53, 184–205. [Google Scholar] [CrossRef]
- Shang, Z. Use of Delphi in Health Sciences Research: A Narrative Review. Medicine 2023, 102, e32829. [Google Scholar] [CrossRef] [PubMed]
- Dolati Neghabadi, P.; Evrard Samuel, K.; Espinouse, M.-L. Systematic Literature Review on City Logistics: Overview, Classification and Analysis. Int. J. Prod. Res. 2019, 57, 865–887. [Google Scholar] [CrossRef]
- Bokrantz, J.; Skoogh, A.; Berlin, C.; Stahre, J. Maintenance in Digitalised Manufacturing: Delphi-Based Scenarios for 2030. Int. J. Prod. Econ. 2017, 191, 154–169. [Google Scholar] [CrossRef]
- Calleo, Y.; Pilla, F. Delphi-Based Future Scenarios: A Bibliometric Analysis of Climate Change Case Studies. Futures 2023, 149, 103143. [Google Scholar] [CrossRef]
- Büchel, H.; Spinler, S. The Impact of the Metaverse on E-Commerce Business Models—A Delphi-Based Scenario Study. Technol. Soc. 2024, 76, 102465. [Google Scholar] [CrossRef]
- Di Zio, S.; Calleo, Y.; Bolzan, M. Delphi-Based Visual Scenarios: An Innovative Use of Generative Adversarial Networks. Futures 2023, 154, 103280. [Google Scholar] [CrossRef]
- Čajková, A.; Čajka, P. Economic and institutional aspects of India’s economic development in the 21st century. Terra Econ. 2025, 23, 103–117. [Google Scholar] [CrossRef]
- Lei, B.; Janssen, P.; Stoter, J.; Biljecki, F. Challenges of Urban Digital Twins: A Systematic Review and a Delphi Expert Survey. Autom. Constr. 2023, 147, 104716. [Google Scholar] [CrossRef]
- Sorvali, J.; Varho, V.; Rikkonen, P.; Kaseva, J.; Peltonen-Sainio, P. Farmers’ Futures: An Application of the Delphi Method in the Context of Finnish Agriculture. Eur. J. Futures Res. 2024, 12, 5. [Google Scholar] [CrossRef]
- Rowe, G.; Wright, G. The Delphi Technique: Past, Present, and Future Prospects—Introduction to the Special Issue. Technol. Forecast. Soc. Chang. 2011, 78, 1487–1490. [Google Scholar] [CrossRef]
- Dalkey, N.; Helmer, O. An Experimental Application of the DELPHI Method to the Use of Experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
- Beiderbeck, D.; Frevel, N.; von der Gracht, H.A.; Schmidt, S.L.; Schweitzer, V.M. The Impact of COVID-19 on the European Football Ecosystem—A Delphi-Based Scenario Analysis. Technol. Forecast. Soc. Chang. 2021, 165, 120577. [Google Scholar] [CrossRef]
- Niederberger, M.; Spranger, J. Delphi Technique in Health Sciences: A Map. Front. Public Health 2020, 8, 457. [Google Scholar] [CrossRef] [PubMed]
- Babbar, S.; Addae, H.; Gosen, J.; Prasad, S. Organizational Factors Affecting Supply Chains in Developing Countries. Int. J. Commer. Manag. 2008, 18, 234–251. [Google Scholar] [CrossRef]
- Spranger, J.; Homberg, A.; Sonnberger, M.; Niederberger, M. Reporting Guidelines for Delphi Techniques in Health Sciences: A Methodological Review. Z. Evidenz Fortbild. Qual. Gesundheitswesen 2022, 172, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frehe, V.; Mehmann, J.; Teuteberg, F. Understanding and Assessing Crowd Logistics Business Models—Using Everyday People for Last Mile Delivery. J. Bus. Ind. Mark. 2017, 32, 75–97. [Google Scholar] [CrossRef]
- Bates, O.; Friday, A.; Allen, J.; Cherrett, T.; McLeod, F.; Bektas, T.; Nguyen, T.; Piecyk, M.; Piotrowska, M.; Wise, S.; et al. Transforming Last-Mile Logistics. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; ACM: New York, NY, USA, 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Tiberius, V.; Weyland, M. Improving Curricula for Higher Entrepreneurship Education: An International Real-Time Delphi. Educ. Sci. 2024, 14, 130. [Google Scholar] [CrossRef]
- Gebhardt, M.; Spieske, A.; Kopyto, M.; Birkel, H. Increasing Global Supply Chains’ Resilience after the COVID-19 Pandemic: Empirical Results from a Delphi Study. J. Bus Res. 2022, 150, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Fosso Wamba, S.; Bawack, R.E.; Guthrie, C.; Queiroz, M.M.; Carillo, K.D.A. Are We Preparing for a Good AI Society? A Bibliometric Review and Research Agenda. Technol. Forecast. Soc. Chang. 2021, 164, 120482. [Google Scholar] [CrossRef]
- Acciarini, C.; Cappa, F.; Boccardelli, P.; Oriani, R. How Can Organizations Leverage Big Data to Innovate Their Business Models? A Systematic Literature Review. Technovation 2023, 123, 102713. [Google Scholar] [CrossRef]
- Shetty, L.; Srivastava, S.; Dwivedi, A.; Pamucar, D.; Patil, A. Shaping Sustainable Paths for Perishable Food Supply Chains—Contemporary Insights and Future Prospects. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Geissler, D.; Beiderbeck, D.; Schmidt, S.L.; Schreyer, D. Emerging Technologies and Shifting Consumer Motives: Projecting the Future of the Top-Tier Sports Media Product. Technol. Forecast. Soc. Chang. 2024, 203, 123366. [Google Scholar] [CrossRef]
- Abe, Y.; Yamada, K.; Tanaka, R.; Ando, K.; Ueno, M. Dynamic Living Space: Toward a Society Where People Can Live Anywhere in 2050. Futures 2024, 161, 103363. [Google Scholar] [CrossRef]
- Sætra, H.S. Science Fiction, Sustainability, and Scenario Use: Comprehensive Scenarios for Improved Strategy Development and Innovation. Technovation 2024, 132, 102976. [Google Scholar] [CrossRef]
- Ewedairo, K.; Chhetri, P.; Dodson, J.; Shee, H.K. Developing A Strategic Framework to Build Future Last Mile Delivery Scenarios: A Scenario Thinking Approach. Oper. Supply Chain. Manag. Int. J. 2024, 17, 32–49. [Google Scholar] [CrossRef]
- Nieto, I.; Mayo, X.; Davies, L.; Reece, L.; Strafford, B.W.; Jimenez, A. Consensus on a Social Return on Investment Model of Physical Activity and Sport: A Delphi Study Protocol. Front. Sports Act. Living 2024, 6, 1334805. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Kleer, R.; Piller, F.T. Predicting the Future of Additive Manufacturing: A Delphi Study on Economic and Societal Implications of 3D Printing for 2030. Technol. Forecast. Soc. Chang. 2017, 117, 84–97. [Google Scholar] [CrossRef]
- Beiderbeck, D.; Frevel, N.; von der Gracht, H.A.; Schmidt, S.L.; Schweitzer, V.M. Preparing, Conducting, and Analyzing Delphi Surveys: Cross-Disciplinary Practices, New Directions, and Advancements. MethodsX 2021, 8, 101401. [Google Scholar] [CrossRef] [PubMed]
- Belton, I.; MacDonald, A.; Wright, G.; Hamlin, I. Improving the Practical Application of the Delphi Method in Group-Based Judgment: A Six-Step Prescription for a Well-Founded and Defensible Process. Technol. Forecast. Soc. Chang. 2019, 147, 72–82. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U.; Jetter, A. A Review of Scenario Planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Yuan, S. Spatial Diffusion of E-Commerce in China’s Counties: Based on the Perspective of Regional Inequality. Land 2021, 10, 1141. [Google Scholar] [CrossRef]
- Sarpong, D.; Maclean, M. Scenario Thinking: A Practice-Based Approach for the Identification of Opportunities for Innovation. Futures 2011, 43, 1154–1163. [Google Scholar] [CrossRef]
- Kolasińska-Morawska, K.; Sułkowski, Ł.; Buła, P.; Brzozowska, M.; Morawski, P. Smart Logistics—Sustainable Technological Innovations in Customer Service at the Last-Mile Stage: The Polish Perspective. Energies 2022, 15, 6395. [Google Scholar] [CrossRef]
- Sorooshian, S.; Khademi Sharifabad, S.; Parsaee, M.; Afshari, A.R. Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology. Appl. Syst. Innov. 2022, 5, 82. [Google Scholar] [CrossRef]
- Saha, A.; Simic, V.; Senapati, T.; Dabic-Miletic, S.; Ala, A. A Dual Hesitant Fuzzy Sets-Based Methodology for Advantage Prioritization of Zero-Emission Last-Mile Delivery Solutions for Sustainable City Logistics. IEEE Trans. Fuzzy Syst. 2023, 31, 407–420. [Google Scholar] [CrossRef]
- Neupane, S.M.; Bhattarai, P.C. Constructing the Scale to Measure Entrepreneurial Traits by Using the Modified Delphi Method. Heliyon 2024, 10, e28410. [Google Scholar] [CrossRef] [PubMed]
- Fritschy, C.; Spinler, S. The Impact of Autonomous Trucks on Business Models in the Automotive and Logistics Industry–A Delphi-Based Scenario Study. Technol. Forecast. Soc. Chang. 2019, 148, 119736. [Google Scholar] [CrossRef]
- González-Varona, J.M.; Villafáñez, F.; Acebes, F.; Redondo, A.; Poza, D. Reusing Newspaper Kiosks for Last-Mile Delivery in Urban Areas. Sustainability 2020, 12, 9770. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Optimizing the Changing Locations of Mobile Parcel Lockers in Last-Mile Distribution. Eur. J. Oper. Res. 2020, 285, 1077–1094. [Google Scholar] [CrossRef]
- Tedeschi, G. Integrating Urban Energy Resilience in Strategic Urban Planning: Sustainable Energy and Climate Action Plans and Urban Plans in Three Case Studies in Italy. Land 2024, 13, 450. [Google Scholar] [CrossRef]
- Alfnes, F.; Wasenden, O.C. Your Privacy for a Discount? Exploring the Willingness to Share Personal Data for Personalized Offers. Telecomm. Policy 2022, 46, 102308. [Google Scholar] [CrossRef]
- Benndorf, V.; Normann, H. The Willingness to Sell Personal Data. Scand. J. Econ. 2018, 120, 1260–1278. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Weber, R.A. Revealed Privacy Preferences: Are Privacy Choices Rational? Manag. Sci. 2024, 71, 2657–2677. [Google Scholar] [CrossRef]
- Bastida-Molina, P.; Ribó-Pérez, D.; Gómez-Navarro, T.; Hurtado-Pérez, E. What Is the Problem? The Obstacles to the Electrification of Urban Mobility in Mediterranean Cities. Case Study of Valencia, Spain. Renew. Sustain. Energy Rev. 2022, 166, 112649. [Google Scholar] [CrossRef]
- Hamels, S.; Himpe, E.; Laverge, J.; Delghust, M.; Van den Brande, K.; Janssens, A.; Albrecht, J. The Use of Primary Energy Factors and CO2 Intensities for Electricity in the European Context—A Systematic Methodological Review and Critical Evaluation of the Contemporary Literature. Renew. Sustain. Energy Rev. 2021, 146, 111182. [Google Scholar] [CrossRef]
- Mutambik, I. The Sustainability of Smart Cities: Improving Evaluation by Combining MCDA and PROMETHEE. Land 2024, 13, 1471. [Google Scholar] [CrossRef]
- Garg, V.; Niranjan, S.; Prybutok, V.; Pohlen, T.; Gligor, D. Drones in Last-Mile Delivery: A Systematic Review on Efficiency, Accessibility, and Sustainability. Transp. Res. D Transp. Environ. 2023, 123, 103831. [Google Scholar] [CrossRef]
- Li, X.; Peng, Y.; Yao, Y. Will Transaction Cost Be Reduced in the E-Commerce Model of Farmland Transfer in China? Land 2023, 12, 450. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, G.; Ding, Y.; Chen, N.; Zhang, H.; He, T.; Zhang, D. Route Prediction for Instant Delivery. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–25. [Google Scholar] [CrossRef]
- Gutenschwager, K.; Rabe, M.; Chicaiza-Vaca, J. Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile. Algorithms 2023, 17, 4. [Google Scholar] [CrossRef]
- Kahr, M. Determining Locations and Layouts for Parcel Lockers to Support Supply Chain Viability at the Last Mile. Omega 2022, 113, 102721. [Google Scholar] [CrossRef] [PubMed]
- Janinhoff, L.; Klein, R.; Sailer, D.; Schoppa, J.M. Out-of-Home Delivery in Last-Mile Logistics: A Review. Comput. Oper. Res. 2024, 168, 106686. [Google Scholar] [CrossRef]
- Peppel, M.; Spinler, S. The Impact of Optimal Parcel Locker Locations on Costs and the Environment. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 324–350. [Google Scholar] [CrossRef]
- Küffner, C.; Kopyto, M.; Wohlleber, A.J.; Hartmann, E. The Interplay between Relationships, Technologies and Organizational Structures in Enhancing Supply Chain Resilience: Empirical Evidence from a Delphi Study. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 673–699. [Google Scholar] [CrossRef]
- Galarza-María, J.; Díaz de Junguitu, A.; Labaien, I. Social Dimension of the Circular Economy: Impact Categories through Fuzzy Delphi Method. Sustain. Dev. 2024, 32, 4726–4737. [Google Scholar] [CrossRef]
- Sterling, S.; Plonsky, L.; Larsson, T.; Kytö, M.; Yaw, K. Introducing and Illustrating the Delphi Method for Applied Linguistics Research. Res. Methods Appl. Linguist. 2023, 2, 100040. [Google Scholar] [CrossRef]
- Belhadi, A.; Venkatesh, M.; Kamble, S.; Abedin, M.Z. Data-Driven Digital Transformation for Supply Chain Carbon Neutrality: Insights from Cross-Sector Supply Chain. Int. J. Prod. Econ. 2024, 270, 109178. [Google Scholar] [CrossRef]
- Culot, G.; Orzes, G.; Sartor, M.; Nassimbeni, G. The Future of Manufacturing: A Delphi-Based Scenario Analysis on Industry 4.0. Technol. Forecast. Soc. Chang. 2020, 157, 120092. [Google Scholar] [CrossRef] [PubMed]
- Roßmann, B.; Canzaniello, A.; von der Gracht, H.; Hartmann, E. The Future and Social Impact of Big Data Analytics in Supply Chain Management: Results from a Delphi Study. Technol. Forecast. Soc. Chang. 2018, 130, 135–149. [Google Scholar] [CrossRef]
- von Briel, F. The Future of Omnichannel Retail: A Four-Stage Delphi Study. Technol. Forecast. Soc. Chang. 2018, 132, 217–229. [Google Scholar] [CrossRef]
- von der Gracht, H.A. Consensus Measurement in Delphi Studies. Technol. Forecast. Soc. Chang. 2012, 79, 1525–1536. [Google Scholar] [CrossRef]
- Pahker, A.-K.; Keller, M.; Karo, E.; Vihalemm, T.; Solvak, M.; Orru, K.; Tammiksaar, E.; Ukrainski, K.; Noorkõiv, M. What’s Worse, Communism or Carbon? Using the Transitions Delphi Approach to Identify Viable Interventions for the Estonian Energy Transition. Energy Res. Soc. Sci. 2024, 109, 103421. [Google Scholar] [CrossRef]
- Wang, Y.; Singgih, M.; Wang, J.; Rit, M. Making Sense of Blockchain Technology: How Will It Transform Supply Chains? Int. J. Prod. Econ. 2019, 211, 221–236. [Google Scholar] [CrossRef]
- Adusei, S.; Nuertey, D.; Poku, E. Last-Mile Distribution and Commodity Availability, Security and Access: The Moderating Role of Supply Chain Integration. Benchmarking Int. J. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Dabic-Miletic, S. Autonomous Vehicles as an Essential Component of Industry 4.0 for Meeting Last-Mile Logistics Requirements. J. Ind. Intell. 2023, 1, 55–62. [Google Scholar] [CrossRef]
- Arend, R.J. Uncertainty’s Connections to Strategy. In Uncertainty in Strategic Decision Making; Springer Nature: Cham, Switzerland, 2024; pp. 179–191. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, R.; Kotagiri, R.; Bouvry, P. Strategic Decisions: Survey, Taxonomy, and Future Directions from Artificial Intelligence Perspective. ACM Comput. Surv. 2023, 55, 1–30. [Google Scholar] [CrossRef]
- Bruni, M.E.; Khodaparasti, S.; Perboli, G. A Bi-Level Approach for Last-Mile Delivery with Multiple Satellites. Transp. Res. Part C Emerg. Technol. 2024, 160, 104495. [Google Scholar] [CrossRef]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Mutambik, I.; Lee, J.; Almuqrin, A.; Zhang, J.Z.; Homadi, A. The Growth of Social Commerce: How It Is Affected by Users’ Privacy Concerns. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 725–743. [Google Scholar] [CrossRef]
- Jahanmiri, F.; Parker, D.C. An Overview of Fractal Geometry Applied to Urban Planning. Land 2022, 11, 475. [Google Scholar] [CrossRef]
- de Mello Bandeira, R.A.; Goes, G.V.; Schmitz Gonçalves, D.N.; de D’Agosto, M.A.; de Oliveira, C.M. Electric Vehicles in the Last Mile of Urban Freight Transportation: A Sustainability Assessment of Postal Deliveries in Rio de Janeiro-Brazil. Transp. Res. D Transp. Environ. 2019, 67, 491–502. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, G.; Huang, J. The Impact of Rural E-Commerce Environment Development on Orchard Expansion from the Perspective of Tele-Coupling: The Case of Pinghe County in Southeast China. Land 2023, 12, 1991. [Google Scholar] [CrossRef]
- Cano, J.A.; Londoño-Pineda, A.; Rodas, C. Sustainable Logistics for E-Commerce: A Literature Review and Bibliometric Analysis. Sustainability 2022, 14, 12247. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- Mashalah, H.A.; Hassini, E.; Gunasekaran, A.; Bhatt (Mishra), D. The Impact of Digital Transformation on Supply Chains through E-Commerce: Literature Review and a Conceptual Framework. Transp. Res. E Logist. Transp. Rev. 2022, 165, 102837. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- Zhou, R.; Ji, M.; Zhao, S. Does E-Commerce Participation among Farming Households Affect Farmland Abandonment? Evidence from a Large-Scale Survey in China. Land 2024, 13, 376. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, B.; Zheng, L.; Lu, M.; Zhang, D.; Wang, S.; Son, S.H.; He, T. A City-Wide Crowdsourcing Delivery System with Reinforcement Learning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–22. [Google Scholar] [CrossRef]
- Wen, H.; Lin, Y.; Mao, X.; Wu, F.; Zhao, Y.; Wang, H.; Zheng, J.; Wu, L.; Hu, H.; Wan, H. Graph2Route: A Dynamic Spatial-Temporal Graph Neural Network for Pick-up and Delivery Route Prediction. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; ACM: New York, NY, USA, 2022; pp. 4143–4152. [Google Scholar] [CrossRef]
- Bouncken, R.; Kumar, A.; Connell, J.; Bhattacharyya, A.; He, K. Coopetition for Corporate Responsibility and Sustainability: Does It Influence Firm Performance? Int. J. Entrep. Behav. Res. 2024, 30, 128–154. [Google Scholar] [CrossRef]
- Cozzolino, A.; Corbo, L.; Aversa, P. Digital Platform-Based Ecosystems: The Evolution of Collaboration and Competition between Incumbent Producers and Entrant Platforms. J. Bus Res. 2021, 126, 385–400. [Google Scholar] [CrossRef]
- Oh, H.; Park, S.; Lee, G.M.; Heo, H.; Choi, J.K. Personal Data Trading Scheme for Data Brokers in IoT Data Marketplaces. IEEE Access 2019, 7, 40120–40132. [Google Scholar] [CrossRef]
- Abedini, A.; Aram, F.; Khalili, A.; Hasanlouei, M.S.; Asadi, H. Localization of the Urban Planning Process with the Knowledge-Based Sustainable Development Approach. Land 2022, 11, 2266. [Google Scholar] [CrossRef]
- Mutambik, I. Assessing Urban Vulnerability to Emergencies: A Spatiotemporal Approach Using K-Means Clustering. Land 2024, 13, 1744. [Google Scholar] [CrossRef]
- Cai, L.; Yuen, K.F.; Xie, D.; Fang, M.; Wang, X. Consumer’s Usage of Logistics Technologies: Integration of Habit into the Unified Theory of Acceptance and Use of Technology. Technol. Soc. 2021, 67, 101789. [Google Scholar] [CrossRef]
- Koutra, S.; Ioakimidis, C.S. Unveiling the Potential of Machine Learning Applications in Urban Planning Challenges. Land 2023, 12, 83. [Google Scholar] [CrossRef]
- Lemardelé, C.; Estrada, M.; Pagès, L.; Bachofner, M. Potentialities of Drones and Ground Autonomous Delivery Devices for Last-Mile Logistics. Transp. Res. E Logist. Transp. Rev. 2021, 149, 102325. [Google Scholar] [CrossRef]
- Kafa, N.; Ruel, S.; Jaegler, A. Factors Influencing Career Advancement in Supply Chain Management with Gender Perspectives: French Case Study. Int. J. Logist. Manag. 2023, 35, 1549–1576. [Google Scholar] [CrossRef]
No. | Category | Projection |
---|---|---|
Consumer Demand and Behavior | ||
1 | Recipients are likely to demand 15 min instant deliveries for essential items like food, repairs, and fast-moving consumer goods (FMCGs). | |
2 | Customers will schedule 30 min slots for next-day deliveries, with penalties imposed on both the customers and logistics service providers (LSPs) if the delivery window is missed. | |
3 | Consumers need to share personal data to tailor parcel delivery locations based on their daily movements. | |
Emerging Delivery Technologies | ||
4 | Mobile delivery systems will rely entirely on electric power generated from sustainable sources. | |
5 | A substantial share of last-mile delivery (LMD) will be handled by delivery robots. | |
6 | Mobile parcel lockers will dominate last-mile parcel deliveries. | |
7 | Drones will be used for parcel deliveries only in remote areas. | |
Innovative Delivery Services | ||
8 | Cargo bikes are expected to become a favored method for deliveries. | |
9 | Standard deliveries will require recipients to pick up parcels from designated locations such as gas stations and supermarkets. | |
10 | Logistics Service Providers (LSPs) will offer an optional 24 h night delivery service. | |
11 | LSPs will collaborate by sharing their delivery networks, including vehicles, parcel lockers, and pick-up/drop-off stations, as well as data, to efficiently manage deliveries within specific areas. | |
Regulation | ||
12 | Access to the city will only be granted to delivery vehicles that maintain a high capacity utilization, such as exceeding 90%. | |
13 | Municipalities will mandate that LSPs work together, limiting each to serve particular areas on specific days. | |
14 | Cities will be redesigned by municipalities into 15 min cities, significantly dropping the essential for online shopping. |
No. | Projection | Probability Round 1 (n = 54)—IQR | Probability Round 2 (n = 52)—Median | SD Change (Mean) | Impact (SD) | Desirability (IQR) |
---|---|---|---|---|---|---|
Consumer Demand and Behavior | ||||||
1 | Instant Delivery Demand | 2.10 | 4.9 | 4.60 | 1.70 | 1.90 |
2 | Time Window Booking | 2.90 | 4.4 | 4.40 | 1.80 | 1.80 |
3 | Personalized Delivery Points | 2.00 | 6.1 | 5.50 | 1.60 | 1.60 |
Emerging Delivery Technologies | ||||||
4 | Sustainable Electric Delivery | 2.00 | 6.1 | 5.70 | 1.70 | 1.10 |
5 | Delivery Delivery Robot Usage | 3.10 | 4.1 | 3.80 | 1.70 | 2.30 |
6 | Mobile Parcel Lockers | 1.80 | 2.0 | 3.00 | 1.80 | 2.00 |
7 | Drone Delivery in Remote Areas | 2.00 | 4.1 | 4.10 | 1.60 | 2.00 |
Innovative Delivery Services | ||||||
8 | Cargo Bikes for Delivery | 2.60 | 6.1 | 5.10 | 1.90 | 1.90 |
9 | Collection Point Usage | 2.80 | 5.1 | 5.00 | 1.80 | 2.10 |
10 | Night Delivery Option | 2.70 | 4.1 | 4.00 | 1.70 | 3.20 |
11 | LSP Infrastructure Ownership | 4.10 | 3.8 | 4.00 | 1.90 | 2.60 |
Regulation | ||||||
12 | High-Capacity City Access | 2.60 | 5.0 | 4.70 | 2.00 | 2.50 |
13 | Mandated LSP Collaboration | 3.80 | 4.0 | 4.00 | 1.80 | 4.0 |
14 | 15 Minute City Planning | 2.00 | 3.8 | 3.80 | 1.70 | 2.60 |
# | Projection | Cluster 1 | Cluster 2 | Cluster 3 |
---|---|---|---|---|
Consumer Demand and Behavior | ||||
1 | Instant Delivery Demand | 0.7020 | 0.2320 | 0.0660 |
2 | Time Window Booking | 0.3880 | 0.5050 | 0.1070 |
3 | Personalized Delivery Points | 0.7470 | 0.1850 | 0.0680 |
Emerging Delivery Technologies | ||||
4 | Sustainable Electric Delivery | 0.6100 | 0.2500 | 0.1400 |
5 | Delivery Delivery Robot Usage | 0.0040 | 0.0060 | 0.9900 |
6 | Mobile Parcel Lockers | 0.1200 | 0.1700 | 0.7100 |
7 | Drone Delivery in Remote Areas | 0.0600 | 0.0800 | 0.8600 |
Innovative Delivery Services | ||||
8 | Cargo Bikes for Delivery | 0.1950 | 0.1800 | 0.6250 |
9 | Collection Point Usage | 0.9300 | 0.0400 | 0.0300 |
10 | Night Delivery Option | 0.0550 | 0.8900 | 0.0550 |
11 | LSP Infrastructure Ownership | 0.6000 | 0.1600 | 0.2400 |
Regulation | ||||
12 | High-Capacity City Access | 0.0060 | 0.9900 | 0.0040 |
13 | Mandated LSP Collaboration | 0.0250 | 0.9400 | 0.0350 |
14 | 15 Minute City Planning | 0.1050 | 0.3150 | 0.5800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutambik, I. Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030. Sustainability 2025, 17, 6660. https://doi.org/10.3390/su17156660
Mutambik I. Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030. Sustainability. 2025; 17(15):6660. https://doi.org/10.3390/su17156660
Chicago/Turabian StyleMutambik, Ibrahim. 2025. "Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030" Sustainability 17, no. 15: 6660. https://doi.org/10.3390/su17156660
APA StyleMutambik, I. (2025). Foresight for Sustainable Last-Mile Delivery: A Delphi-Based Scenario Study for Smart Cities in 2030. Sustainability, 17(15), 6660. https://doi.org/10.3390/su17156660