Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Landslide Factors
- (1)
- Topographic factors: These include elevation, slope, aspect, surface roughness, plane curvature, profile curvature, and the TWI. Aspect affects the amount of solar radiation received by slopes, thereby influencing moisture and temperature conditions, vegetation growth, and ultimately the spatial distribution of landslides [36]. Slope directly affects runoff, stability, and gravitational forces. Curvature metrics reflect terrain complexity and material transport [37]. Landslides are mainly concentrated in areas with elevation < 1300 m, slope < 28°, aspect < 250°, plan curvature [−0.8, 0.5), profile curvature [−0.4, 0.5), and TWI > 22.6—all corresponding to higher FR values.
- (2)
- Geological factors: Lithology and distance to faults significantly affect landslide potential. Landslides in the study area are primarily distributed in regions dominated by clastic rocks and carbonate rocks. Clastic rocks are highly weathered with high porosity and permeability, making them structurally weak and prone to failure. Carbonate rocks such as limestone and dolomite are susceptible to dissolution, which compromises rock integrity and facilitates the formation of potential sliding surfaces and fracture zones.
- (3)
- Land cover factors: NDVI, land use, soil type, and distance to roads influence landslide occurrence. High susceptibility is observed in areas with NDVI < 0.7, within 2500 m of roads, and land use types such as cultivated land and impervious surfaces. Soils like Entisols and anthropogenic soils further contribute to instability.
- (4)
- Hydrological factors: Distance to rivers and precipitation levels also play a key role. Areas within 4000 m of rivers and with annual precipitation > 1300 mm show elevated FR values, suggesting that excessive rainfall and proximity to water bodies increase the risk of slope saturation, reduced shear strength, and ultimately landslide initiation.
3.3. Methods
3.3.1. Semi-Supervised Fuzzy C-Means Clustering (SFCM)
- (1)
- Incorporate labeled data into the dataset for initial partitioning and obtain the initial cluster centers;
- (2)
- Calculate the distance between all samples (both labeled and unlabeled) and the cluster centers. Then compute the initial membership matrix using Equation (2);
- (3)
- Compute the objective function value using Equation (1). If the value is below a predefined threshold or the change from the previous iteration is smaller than the threshold, stop the iteration and output the membership matrix and cluster centers;
- (4)
- Otherwise, update the cluster centers using Equation (3), return to step (2), and repeat the process until convergence.
3.3.2. Convolutional Neural Network (CNN)
3.3.3. U-Net Model
3.3.4. Support Vector Machine (SVM)
3.3.5. Evaluation Indicators
4. Landslide Susceptibility Assessment
4.1. Influencing Factors Screening
4.2. Selection of Non-Landslide Samples Based on SFCM
4.3. Model Accuracy Analysis
4.4. Results of Landslide Susceptibility Mapping (LSM)
5. Discussion
5.1. Discussion on the Semi-Supervised Sampling Strategy
5.2. Discussion of the Landslide Susceptibility Mapping
5.3. Limitations and Future Work
- (1)
- The selected landslide conditioning factors in this study cover topography, geological environment, land cover, hydrology, and human activities, forming a relatively comprehensive system. However, the variables related to human activities are limited and do not fully reflect external disturbances such as engineering construction. This restricts the model’s sensitivity and generalization to human-induced landslides. Future studies should incorporate more indicators of human activity intensity, such as road density, engineering activity frequency, and settlement density, to enhance model adaptability under complex human disturbances.
- (2)
- Deep learning models (e.g., U-Net and CNN) showed high accuracy and strong ability in capturing spatial patterns, especially excelling in modeling complex nonlinear features. However, they require substantial computational resources and prediction time, which limits their large-scale application. Moreover, their “black-box” nature reduces interpretability and trust in real-world disaster management. Future work should focus on developing lightweight network architectures to balance predictive performance with computational efficiency. In addition, attention mechanisms and explainable AI techniques—such as SHAP—should be employed to investigate internal feature contributions, thereby enhancing model interpretability, transparency, and trustworthiness in landslide risk management.
- (3)
- In this study, the number of non-landslide samples was set equal to that of landslide samples to control for class imbalance effects and isolate the influence of the sampling strategy. While the quantity of non-landslide samples is known to affect susceptibility mapping outcomes, particularly in imbalanced data settings, this factor was intentionally held constant in order to focus the analysis on sampling strategy performance. Future studies may extend this work by exploring how varying non-landslide sample ratios impact model accuracy, stability, and generalization.
- (4)
- Although the LSI-SFCM sampling strategy effectively enriches the feature representation of non-landslide samples and improves model performance, its reproducibility and adaptability to other geographic regions or hazard domains require further investigation. Landslide susceptibility modeling involves multiple stages—including sample construction, factor selection, and model design—each of which may introduce uncertainty and error. In particular, under conditions of sparse or noisy ground truth data (e.g., incomplete landslide inventories or uncertain labels), model robustness and generalizability may be compromised. To address this, future studies may explore integrating the proposed method with transfer learning, semi-supervised or weakly supervised frameworks, leveraging auxiliary data sources and applying data augmentation techniques to enhance model resilience and extend its applicability to broader, data-limited environments.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, F.; Chen, J.; Liu, W.; Huang, J.; Hong, H.; Chen, W. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology 2022, 408, 108236. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards 2020, 104, 2115–2151. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Bentivenga, M.; Lasaponara, R.; Danese, M.; Potenza, M.R.; Sileo, M.; Masini, N. Natural Hazards, Human Factors, and “Ghost Towns”: A Multi-Level Approach. Geoheritage 2019, 11, 1533–1565. [Google Scholar] [CrossRef]
- Gamperl, M.; Singer, J.; Garcia-Londoño, C.; Seiler, L.; Castañeda, J.; Cerón-Hernandez, D.; Thuro, K. Recommendations for Landslide Early Warning Systems in Informal Settlements Based on a Case Study in Medellín, Colombia. Land 2023, 12, 1451. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Chung, C.-J.; Fabbri, A.G. Predicting landslides for risk analysis—Spatial models tested by a cross-validation technique. Geomorphology 2008, 94, 438–452. [Google Scholar] [CrossRef]
- Xu, S.; Song, Y.; Hao, X. A Comparative Study of Shallow Machine Learning Models and Deep Learning Models for Landslide Susceptibility Assessment Based on Imbalanced Data. Forests 2022, 13, 1908. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Sameen, M.I.; Chen, W.; Xu, C. Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomat. Nat. Hazards Risk 2017, 8, 1997–2022. [Google Scholar] [CrossRef]
- Lu, M.; Tay, L.T.; Mohamad-Saleh, J. Landslide susceptibility analysis using random forest model with SMOTE-ENN resampling algorithm. Geomat. Nat. Hazards Risk 2024, 15, 2314565. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Jiang, S.-H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
- Xiao, X.; Zou, Y.; Huang, J.; Luo, X.; Yang, L.; Li, M.; Yang, P.; Ji, X.; Li, Y. An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest. Geomat. Nat. Hazards Risk 2024, 15, 2347421. [Google Scholar] [CrossRef]
- Khuc, T.D.; Truong, X.Q.; Nguyen, A.B.; Phi, T.T. Application of potential machine learning models in landslide susceptibility assessment: A case study of Van Yen district, Yen Bai province, Vietnam. Quat. Sci. Adv. 2024, 14, 100181. [Google Scholar] [CrossRef]
- Andrieu, C.; De Freitas, N.; Doucet, A.; Jordan, M.I. An introduction to MCMC for machine learning. Mach. Learn. 2003, 50, 5–43. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena 2020, 186, 104249. [Google Scholar] [CrossRef]
- Qin, Z.; Zhou, X.; Li, M.; Tong, Y.; Luo, H. Landslide susceptibility mapping based on resampling method and FR-CNN: A case study of Changdu. Land 2023, 12, 1213. [Google Scholar] [CrossRef]
- Tong, Y.X.; Luo, H.X.; Qin, Z.L.; Xia, H.; Zhou, X.Y. Enhanced Landslide Susceptibility Assessment in Western Sichuan Utilizing DCGAN-Generated Samples. Land 2025, 14, 34. [Google Scholar] [CrossRef]
- Chen, C.; Fan, L. Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models. Stoch. Environ. Res. Risk Assess. 2023. [Google Scholar] [CrossRef]
- Chang, Z.L.; Huang, J.S.; Huang, F.M.; Bhuyan, K.; Meena, S.R.; Catani, F. Uncertainty analysis of non-landslide sample selection in landslide susceptibility prediction using slope unit-based machine learning models. Gondwana Res. 2023, 117, 307–320. [Google Scholar] [CrossRef]
- Liu, J.; Liang, E.; Xu, S.; Liu, M.; Wang, Y.; Zhang, F.; Luo, A. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility. Acta Geod. Et Cartogr. Sin. 2022, 51, 2034. [Google Scholar] [CrossRef]
- Imtiaz, I.; Umar, M.; Latif, M.; Ahmed, R.; Azam, M. Landslide susceptibility mapping: Improvements in variable weights estimation through machine learning algorithms—A case study of upper Indus River Basin, Pakistan. Environ. Earth Sci. 2022, 81, 112. [Google Scholar] [CrossRef]
- Lucchese, L.V.; de Oliveira, G.G.; Pedrollo, O.C. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks. Catena 2021, 198, 105067. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 2014, 11, 425–439. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Jiang, S.-H.; Yao, C.; Fan, X.; Catani, F.; Chang, Z.; Zhou, X.; Huang, J.; Liu, K. Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory. Earth-Sci. Rev. 2024, 250, 104700. [Google Scholar] [CrossRef]
- Dou, H.; He, J.; Huang, S.; Jian, W.; Guo, C. Influences of non-landslide sample selection strategies on landslide susceptibility mapping by machine learning. Geomat. Nat. Hazards Risk 2023, 14, 2285719. [Google Scholar] [CrossRef]
- Wang, C.H.; Lin, Q.G.; Wang, L.B.; Jiang, T.; Su, B.D.; Wang, Y.J.; Mondal, S.K.; Huang, J.L.; Wang, Y. The influences of the spatial extent selection for non-landslide samples on statistical-based landslide susceptibility modelling: A case study of Anhui Province in China. Nat. Hazards 2022, 112, 1967–1988. [Google Scholar] [CrossRef]
- Liu, M.M.; Liu, J.P.; Xu, S.H.; Zhou, T.; Ma, Y.; Zhang, F.H.; Konecny, M. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province. Int. J. Image Data Fusion 2021, 12, 349–366. [Google Scholar] [CrossRef]
- Chang, L.; Xing, G.; Yin, H.; Fan, L.; Zhang, R.; Zhao, N.; Huang, F.; Ma, J. Landslide susceptibility evaluation and interpretability analysis of typical loess areas based on deep learning. Nat. Hazards Res. 2023, 3, 155–169. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, C.M.; Duan, Z.J.; Liu, H.L.; Liu, X.Y.; Khan, K.U.J. A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping. Remote Sens. 2021, 13, 1464. [Google Scholar] [CrossRef]
- Cai, J.; Hao, J.; Yang, H.; Zhao, X.; Yang, Y. A review on semi-supervised clustering. Inf. Sci. 2023, 632, 164–200. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, L.; Wang, J.; Zhang, L.; Wu, Y.; Jiang, Y.; Xia, K. Semi-supervised fuzzy C means based on membership integration mechanism and its application in brain infarction lesion segmentation in DWI images. J. Intell. Fuzzy Syst. 2023, 46, 2713–2726. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Zou, L.; Cao, Y. Regional landslide susceptibility assessment based on improved semi-supervised clustering and deep learning. Acta Geotech. 2024, 19, 509–529. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2023. Zenodo 2024. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Xiang, Z.; Yang, B. Quantitative evaluation of the landslide susceptibility in Chun’an County based on GIS. Saf. Environ. Eng. 2015, 22, 45–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, M.; Huang, T.; He, Y. Spatial heterogeneity of influencing factors of landslide disasters in Lushan County. Geol. Surv. China 2022, 9, 45–55. [Google Scholar] [CrossRef]
- Huang, F.M.; Yin, K.L.; Huang, J.S.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Luino, F.; Barriendos, M.; Gizzi, F.T.; Glaser, R.; Gruetzner, C.; Palmieri, W.; Porfido, S.; Sangster, H.; Turconi, L. Historical Data for Natural Hazard Risk Mitigation and Land Use Planning. Land 2023, 12, 1777. [Google Scholar] [CrossRef]
- Verma, H.; Verma, D.; Tiwari, P.K. A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Syst. Appl. 2021, 167, 114121. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Bezdek†, J.C. Cluster Validity with Fuzzy Sets. J. Cybern. 1973, 3, 58–73. [Google Scholar] [CrossRef]
- Pedrycz, W.; Waletzky, J. Fuzzy clustering with partial supervision. IEEE Trans. Syst. Man Cybern. Part B 1997, 27, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wang, C.M.; Han, S.L.; Khan, K.U.J.; Liu, Y.A. Classification and susceptibility assessment of debris flow based on a semi-quantitative method combination of the fuzzy C-means algorithm, factor analysis and efficacy coefficient. Nat. Hazards Earth Syst. Sci. 2020, 20, 1287–1304. [Google Scholar] [CrossRef]
- Gao, R.Y.; Wu, D.; Liu, H.L.; Liu, X.Y. A debris flow susceptibility mapping study considering sample heterogeneity. Earth Sci. Inform. 2024, 17, 5459–5470. [Google Scholar] [CrossRef]
- Su, Y.; Huang, S.; Lai, X.; Chen, Y.; Yang, L.; Lin, C.; Xie, X.; Huang, B. Evaluation of Trans-Regional Landslide Susceptibility of Reservoir Bank Based on Transfer Component Analysis. Earth Sci. 2024, 49, 1636–1653. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Niu, R. A landslide susceptibility assessment method using SMOTE and convolutional neural network. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1223–1232. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Melgar-García, L.; Martínez-Alvarez, F.; Bui, D.T.; Troncoso, A. A novel semantic segmentation approach based on U-Net, WU-Net, and U-Net plus plus deep learning for predicting areas sensitive to pluvial flood at tropical area. Int. J. Digit. Earth 2023, 16, 3661–3679. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.; Srivastava, S.K. Benchmarking Artificial Neural Networks and U-Net Convolutional Architectures for Wildfire Susceptibility Prediction: Innovations in Geospatial Intelligence. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4700915. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.M.; Wang, Q.J.; Chen, Y.; Xie, J.J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, L.; Wei, X.; Liu, D.; Du, C.; Li, H. Study on regional landslide susceptibility assessment method based on U-Net semantic segmentation network and its cross-generalization ability. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2024, 58, 103–116. [Google Scholar] [CrossRef]
- Su, J.; Yang, L.; Jing, W. U-Net Based Semantic Segmentation Method for High Resolution Remote Sensing Image. Comput. Eng. Appl. 2019, 55, 207–213. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, Y.; Wang, F.; Wang, S.; Wang, Z.; Ji, J.; Wang, J.; Zou, W.; You, D.; Qin, G. A novel intelligent method based on the gaussian heatmap sampling technique and convolutional neural network for landslide susceptibility mapping. Remote Sens. 2022, 14, 2866. [Google Scholar] [CrossRef]
- Schneider, M.J.; Gorr, W.L. ROC-based model estimation for forecasting large changes in demand. Int. J. Forecast. 2015, 31, 253–262. [Google Scholar] [CrossRef][Green Version]
- Pradhan, B.; Lee, S.; Buchroithner, M.F. A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput. Environ. Urban Syst. 2010, 34, 216–235. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Li, Y. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Sci. 2020, 45, 1865. [Google Scholar] [CrossRef]
- Du, G.-l.; Zhang, Y.-s.; Iqbal, J.; Yang, Z.-h.; Yao, X. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. J. Mt. Sci. 2017, 14, 249–268. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef]
- Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, Y.; Huang, F.; Fan, X.; Huang, J. Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geosci. Front. 2021, 12, 101249. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Zhang, L. Transfer learning improves landslide susceptibility assessment. Gondwana Res. 2023, 123, 238–254. [Google Scholar] [CrossRef]
- Bornaetxea, T.; Rossi, M.; Marchesini, I.; Alvioli, M. Effective surveyed area and its role in statistical landslide susceptibility assessments. Nat. Hazards Earth Syst. Sci. 2018, 18, 2455–2469. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, B.; Zhu, Y.; He, J.; Zhang, T. How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment?—A catchment-scale case study from China. J. Rock Mech. Geotech. Eng. 2024, 16, 877–894. [Google Scholar] [CrossRef]
- Zhu, Y.; Deliang, S.; Haijia, W.; Qiang, Z.; Qin, J.; Changming, L.; Pinggen, Z.; Zhao, J. Considering the effect of non-landslide sample selection on landslide susceptibility assessment. Geomat. Nat. Hazards Risk 2024, 15, 2392778. [Google Scholar] [CrossRef]
- Melchiorre, C.; Matteucci, M.; Azzoni, A.; Zanchi, A. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 2008, 94, 379–400. [Google Scholar] [CrossRef]
Data | Sources | Resolution |
---|---|---|
Elevation | Geospatial Data Cloud Platform (http://www.gscloud.cn, accessed on 1 June 2024) | 30 m |
Geological faults | Geological Cloud Platform (https://geocloud.cgs.gov.cn, accessed on 1 June 2024) | 1:1,000,000 |
Lithology | National 1:200,000 digital geological map (https://geocloud.cgs.gov.cn, accessed on 1 June 2024) | 1:200,000 |
NDVI | National Ecosystem Science Data Center (http://www.nesdc.org.cn, accessed on 1 June 2024) | 30 m |
Land use | China Land Cover Dataset (CLCD) (https://zenodo.org/records/12779975, accessed on 1 June 2024) | 30 m |
Soil | Soil map of the People’s Republic of China (https://www.resdc.cn, accessed on 1 June 2024) | 1:1,000,000 |
Road | National Basic Geographic Database (https://www.webmap.cn, accessed on 1 June 2024) | 1:1,000,000 |
River | National Basic Geographic Database (https://www.webmap.cn, accessed on 1 June 2024) | 1:1,000,000 |
Precipitation | Sichuan Meteorological Bureau | - |
Factors | Category | FR | Category | FR |
---|---|---|---|---|
Elevation (m) | <1300 | 3.01 | 2700–3500 | 0.07 |
1300–2000 | 0.95 | >3500 | 0.00 | |
2000–2700 | 0.16 | |||
Aspect (°) | <106 | 0.94 | 250–288 | 0.97 |
106–142 | 1.04 | >288 | 0.84 | |
142–250 | 1.17 | |||
Slope (°) | 0–15 | 1.90 | 35–48 | 0.32 |
15–28 | 1.43 | 48–55 | 0.11 | |
28–35 | 0.48 | >55 | 0.23 | |
Plane curvature | <−3.2 | 0.00 | 0.5–3.3 | 0.65 |
−3.2–−0.8 | 0.67 | >3.3 | 0.18 | |
−0.8–0.5 | 1.33 | |||
Profile curvature | <−2.5 | 0.20 | 0.5–2.9 | 0.95 |
−2.5–−0.4 | 0.78 | >2.9 | 0.53 | |
−0.4–0.5 | 1.36 | |||
Surface roughness | <1.2 | 1.36 | 1.7–2.8 | 0.20 |
1.2–1.3 | 0.29 | >2.8 | 0.00 | |
1.3–1.7 | 0.24 | |||
TWI | <5.2 | 0.76 | 15.7–22.6 | 2.97 |
5.2–12.5 | 1.21 | >22.6 | 3.66 | |
12.5–15.7 | 1.35 | |||
Lithology | Urban | 0.15 | Basalt | 0.94 |
Metamorphic rock | 0.11 | Granite | 0.95 | |
Continental deposit | 0.54 | Lake | 6.45 | |
Clastic rock | 1.92 | Outcrop | 0.00 | |
Carbonatite | 1.04 | |||
Distance to faults (m) | <2000 | 0.71 | 8000–12,000 | 2.00 |
2000–5000 | 0.91 | 12,000–16,000 | 1.33 | |
5000–8000 | 1.35 | >16,000 | 0.51 | |
NDVI | <0.2 | 0.29 | 0.5–0.7 | 1.07 |
0.2–0.4 | 1.05 | >0.7 | 0.68 | |
0.4–0.5 | 1.55 | |||
Land use | Cropland | 4.72 | Water | 0.81 |
Forest | 0.48 | Snow/Ice | 0.00 | |
Shrub | 0.41 | Barren | 0.00 | |
Grassland | 0.19 | Impervious | 1.92 | |
Soil | Leached soil | 0.29 | Alpine Soil | 0.00 |
Semi-leached soil | 0.00 | Pedalfer | 0.90 | |
Primitive Soil | 2.62 | Rock | 0.00 | |
Half-Hydromorphic Soil | 0.00 | Glacial Snow Cover | 0.00 | |
Anthropic Soil | 2.80 | |||
Distance to roads (m) | <500 | 3.31 | 2500–3500 | 0.88 |
500–1500 | 1.61 | 3500–4500 | 0.50 | |
1500–2500 | 1.06 | >4500 | 0.30 | |
Precipitation (mm) | <1100 | 0.78 | 1500–1600 | 3.07 |
1100–1300 | 0.38 | >1600 | 3.93 | |
1300–1500 | 2.47 | |||
Distance to rivers (m) | <1000 | 2.74 | 4000–5000 | 0.90 |
1000–2000 | 2.12 | 5000–6000 | 0.61 | |
2000–3000 | 1.49 | >6000 | 0.33 | |
3000–4000 | 1.01 |
Factors | VIF | TOL |
---|---|---|
Elevation | 3.780 | 0.265 |
Aspect | 1.013 | 0.987 |
Slope | 6.084 | 0.164 |
Surface roughness | 4.686 | 0.213 |
Profile curvature | 1.764 | 0.567 |
Plane curvature | 1.759 | 0.569 |
Distance to faults | 1.151 | 0.868 |
NDVI | 1.222 | 0.818 |
Precipitation | 1.727 | 0.579 |
TWI | 1.335 | 0.749 |
Lithology | 1.624 | 0.616 |
Land use | 1.663 | 0.601 |
Soil | 2.158 | 0.463 |
Distance to rivers | 1.379 | 0.725 |
Distance to roads | 1.734 | 0.577 |
Sampling Strategy | Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | Specificity (%) |
---|---|---|---|---|---|---|
LSI-SFCM | CNN | 0.895 | 0.877 | 0.881 | 0.879 | 0.906 |
U-Net | 0.902 | 0.895 | 0.877 | 0.886 | 0.921 | |
SVM | 0.882 | 0.898 | 0.859 | 0.878 | 0.904 | |
SFCM | CNN | 0.878 | 0.897 | 0.815 | 0.854 | 0.927 |
U-Net | 0.884 | 0.890 | 0.837 | 0.863 | 0.920 | |
SVM | 0.850 | 0.901 | 0.794 | 0.844 | 0.909 | |
RS | CNN | 0.820 | 0.767 | 0.846 | 0.805 | 0.800 |
U-Net | 0.815 | 0.761 | 0.840 | 0.799 | 0.795 | |
SVM | 0.772 | 0.747 | 0.818 | 0.781 | 0.727 |
Sample Selection | Model | Area Percentage (%) | ||||
---|---|---|---|---|---|---|
Very Low | Low | Moderate | High | Very High | ||
LSI-SFCM | CNN | 50.29 | 18.43 | 8.14 | 6.37 | 16.77 |
U-Net | 50.17 | 18.46 | 9.63 | 5.85 | 15.90 | |
SVM | 21.45 | 44.01 | 13.17 | 9.57 | 11.80 | |
SFCM | CNN | 64.36 | 11.64 | 4.87 | 4.92 | 14.20 |
U-Net | 59.34 | 13.90 | 8.11 | 6.15 | 12.50 | |
SVM | 6.35 | 66.23 | 6.35 | 6.58 | 14.48 | |
RS | CNN | 60.99 | 14.28 | 5.89 | 10.73 | 8.12 |
U-Net | 61.62 | 13.24 | 8.79 | 10.44 | 5.91 | |
SVM | 3.41 | 67.23 | 8.34 | 12.20 | 8.82 |
Sample Selection | Model | Landslides Percentage (%) | ||||
---|---|---|---|---|---|---|
Very Low | Low | Moderate | High | Very High | ||
LSI-SFCM | CNN | 1.67 | 4.06 | 5.51 | 11.39 | 77.37 |
U-Net | 1.52 | 3.77 | 8.70 | 10.01 | 75.78 | |
SVM | 0.80 | 4.21 | 8.56 | 12.33 | 74.11 | |
SFCM | CNN | 4.35 | 5.87 | 7.69 | 11.75 | 70.34 |
U-Net | 2.90 | 4.86 | 9.43 | 15.95 | 66.86 | |
SVM | 0.29 | 17.69 | 3.34 | 10.30 | 68.38 | |
RS | CNN | 3.63 | 7.47 | 6.96 | 28.21 | 53.73 |
U-Net | 3.05 | 7.03 | 11.39 | 35.17 | 43.36 | |
SVM | 0.07 | 16.24 | 6.60 | 30.17 | 46.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Qin, Z.; Tong, Y.; Li, Y.; Zhang, R.; Luo, H. Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment. Land 2025, 14, 1472. https://doi.org/10.3390/land14071472
Xia H, Qin Z, Tong Y, Li Y, Zhang R, Luo H. Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment. Land. 2025; 14(7):1472. https://doi.org/10.3390/land14071472
Chicago/Turabian StyleXia, Hua, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang, and Hongxia Luo. 2025. "Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment" Land 14, no. 7: 1472. https://doi.org/10.3390/land14071472
APA StyleXia, H., Qin, Z., Tong, Y., Li, Y., Zhang, R., & Luo, H. (2025). Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment. Land, 14(7), 1472. https://doi.org/10.3390/land14071472