Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = fused-thiophenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2045 KiB  
Article
Enhanced Nonlinear Optical Absorption in Fused-Ring Aromatic Donor–Acceptor–Donor Core Units of Y6 Derivatives
by Xingyuan Wen, Tianyang Dong, Xingzhi Wu, Jiabei Xu, Xiaofeng Shi, Yinglin Song, Chunru Wang and Li Jiang
Molecules 2025, 30(13), 2748; https://doi.org/10.3390/molecules30132748 - 26 Jun 2025
Viewed by 358
Abstract
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this [...] Read more.
This fundamental understanding of molecular structure–NLO property relationships provides critical design principles for next-generation optical limiting materials, quantum photonic devices, and ultrafast nonlinear optical switches, addressing the growing demand for high-performance organic optoelectronic materials in laser protection and photonic computing applications. In this study, it was observed that selenophene-incorporated fused D-A-D architectures exhibit a remarkable enhancement in two-photon absorption characteristics. By strategically modifying the heteroatomic composition of the Y6-derived fused-ring core, replacing thiophene (BDS) with selenophene (BDSe), the optimized system achieves unprecedented NLO performance. BDSe displays a nonlinear absorption coefficient (β) of 3.32 × 10−10 m/W and an effective two-photon absorption cross-section (σTPA) of 2428.2 GM under 532 nm with ns pulse excitation. Comprehensive characterization combining Z-scan measurements, transient absorption spectroscopy, and DFT calculations reveals that the heavy atom effect of selenium induces enhanced spin–orbit coupling, optimized intramolecular charge transfer dynamics and stabilized excited states, collectively contributing to the superior reverse saturable absorption behavior. It is believed that this molecular engineering strategy establishes critical structure–property relationships for the rational design of organic NLO materials. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

9 pages, 700 KiB  
Communication
Novel Acid-Catalyzed Transformation of 1-Benzyl-3-Chloro-5-Hydroxy-4-[(4-Methylphenyl)Sulfanyl]-1,5-Dihydro-2H-Pyrrol-2-One
by Liliya S. Kosolapova, Elena Sh. Saigitbatalova, Liliya Z. Latypova, Marat F. Valiev, Darya P. Gerasimova and Almira R. Kurbangalieva
Molbank 2025, 2025(2), M2017; https://doi.org/10.3390/M2017 - 4 Jun 2025
Viewed by 821
Abstract
Nitrogen-containing heterocycles of 3-pyrrolin-2-one series are widely represented in natural and synthetic compounds, with a broad spectrum of pharmacological activity and considerable potential in medicinal and synthetic organic chemistry. In this communication, we report the previously unknown acid-catalyzed transformation of a N-substituted [...] Read more.
Nitrogen-containing heterocycles of 3-pyrrolin-2-one series are widely represented in natural and synthetic compounds, with a broad spectrum of pharmacological activity and considerable potential in medicinal and synthetic organic chemistry. In this communication, we report the previously unknown acid-catalyzed transformation of a N-substituted derivative of 3-pyrrolin-2-one that generates two types of heterocyclic moieties. The reflux of 1-benzyl-3-chloro-5-hydroxy-4-[(4-methylphenyl)sulfanyl]-1,5-dihydro-2H-pyrrol-2-one in toluene in the presence of catalytic amounts of H2SO4 resulted in the formation of a mixture of 1-benzyl-3-[(4-methylphenyl)sulfanyl]-1H-pyrrole-2,5-dione and 1-benzyl-7-methyl-1H-benzo[4,5]thieno[3,2-b]pyrrole-2,3-dione. The structures of four novel nitrogen-containing heterocycles were elucidated through IR, NMR spectroscopy and HRMS spectrometry. A new derivative of the fused tricyclic compounds, possessing benzo[b]thiophene and pyrrole-1,2-dione fragments, was also characterized by single-crystal X-ray diffraction. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Figure 1

36 pages, 10506 KiB  
Review
HOF•CH3CN—The Most Potent Oxygen Transfer Agent for a Large Variety of Organic Molecules
by Shlomo Rozen
Molecules 2025, 30(6), 1248; https://doi.org/10.3390/molecules30061248 - 11 Mar 2025
Viewed by 1366
Abstract
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here [...] Read more.
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here most of the known organic reactions with this complex, which is easily made by bubbling dilute fluorine through aqueous acetonitrile. The reactions of HOF•CH3CN with double bonds produce epoxides in a matter of minutes at room temperature, even when the olefin is electron-depleted and cannot be epoxidized by any other means. The electrophilic oxygen can also substitute deactivated tertiary C-H bonds via electrophilic substitution, proceeding with full retention of configuration. Using this complex enables transferring oxygen atoms to a carbonyl and oxidizing alcohols and ethers to ketones. The latter could be oxidized to esters via the Baeyer–Villiger reaction, proving once again the validity of the original Baeyer mechanism. Azines are usually avoided as protecting groups for carbonyl since their removal is problematic. HOF•CH3CN solves this problem, as it is very effective in recreating carbonyls from the respective azines. A bonus of the last reaction is the ability to replace the common 16O isotope of the carbonyl with the heavier 17O or 18O in the simplest and cheapest possible way. The reagent can transfer oxygen to most nitrogen-containing molecules. Thus, it turns practically any azide or amine into nitro compounds, including amino acids. This helps to produce novel α-alkylamino acids. It also attaches oxygen atoms to most tertiary nitrogen atoms, including certain aromatic ones, which could not be obtained before. HOF•CH3CN was also used to make five-member cyclic poly-NO derivatives, many of them intended to be highly energetic materials. The nucleophilic sulfur atom also reacts very smoothly with the reagent in a wide range of compounds to form sulfone derivatives. While common sulfides are easily converted to sulfones by many orthodox reagents, electron-depleted ones, such as Rf-S-Ar, can be oxidized to Rf-SO2-Ar only with this reagent. The mild reaction conditions also make it possible to synthesize a whole range of novel episulfones and offer, as a bonus, a very easy way to make SxO2, x being any isotope variation of oxygen. These mild conditions also helped to oxidize thiophene to thiophen-S,S-dioxide without the Diels–Alder dimerizations, which usually follow such dioxide formation. The latter reaction was a prelude to a series of preparations of [all]-S,S-dioxo-oligothiophenes, which are important for the efficient preparation of active layers in field-effect transistors (FETs), as such oligomers are considered to be important for organic semiconductors for light-emitting diodes (LEDs). Several types of these oligothiophenes were prepared, including partly or fully oxygenated ones, star-oligothiophenes, and fused ones. Several [all]-S,S-dioxo-oligo-thienylenevinylenes were also successfully prepared despite the fact that they also possess carbon–carbon p centers in their molecules. All oxygenated derivatives have been prepared for the first time and have lower HOMO-LUMO gaps compared to their parent compounds. HOF•CH3CN was also used to oxidize the surface of the nanoparticles of oligothiophenes, leaving the core of the nanoparticle unchanged. Several highly interesting features have been detected, including their ability to photostimulate the retinal neurons, especially the inner retinal ones. HOF•CH3CN was also used on elements other than carbon, such as selenium and phosphor. Various selenides were oxidized to the respective selenodioxide derivatives (not a trivial task), while various phosphines were converted efficiently to the corresponding phosphine oxides. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Graphical abstract

24 pages, 5014 KiB  
Article
Synthesis and Psychotropic Properties of Novel Condensed Triazines for Drug Discovery
by Ervand G. Paronikyan, Shushanik Sh. Dashyan, Suren S. Mamyan, Ruzanna G. Paronikyan, Ivetta M. Nazaryan, Kristine V. Balyan, Hrachik V. Gasparyan, Sona A. Buloyan, Lernik S. Hunanyan and Nina G. Hobosyan
Pharmaceuticals 2024, 17(7), 829; https://doi.org/10.3390/ph17070829 - 25 Jun 2024
Cited by 1 | Viewed by 2135
Abstract
The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest [...] Read more.
The exploration of heterocyclic compounds and their fused analogs, featuring key pharmacophore fragments like pyridine, thiophene, pyrimidine, and triazine rings, is pivotal in medicinal chemistry. These compounds possess a wide array of biological activities, making them an intriguing area of study. The quest for new neurotropic drugs among derivatives of these heterocycles with pharmacophore groups remains a significant research challenge. The aim of this research work was to develop a synthesis method for new heterocyclic compounds, evaluate their neurotropic and neuroprotective activities, study histological changes, and perform docking analysis. Classical organic synthesis methods were used in the creation of novel heterocyclic systems containing pharmacophore rings. To evaluate the neurotropic activity of these synthesized compounds, a range of biological assays were employed. Docking analysis was conducted using various software packages and methodologies. The neuroprotective activity of compound 13 was tested in seizures with and without pentylenetetrazole (PTZ) administration. Histopathological examinations were performed in different experimental groups in the hippocampus and the entorhinal cortex. As a result of chemical reactions, 16 new, tetra- and pentacyclic heterocyclic compounds were obtained. The biologically studied compounds exhibited protection against PTZ seizures as well as some psychotropic effects. The biological assays evidenced that 13 of the 16 studied compounds showed a high anticonvulsant activity by antagonism with PTZ. The toxicity of the compounds was low. According to the results of the study of psychotropic activity, it was found that the selected compounds have a sedative effect, except compound 13, which exhibited activating behavior and antianxiety effects (especially compound 13). The studied compounds exhibited antidepressant effects, especially compound 13, which is similar to diazepam. Histopathological examination showed that compound 13 produced moderate changes in the brain and exhibited neuroprotective effects in the entorhinal cortex against PTZ-induced damage, reducing gliosis and neuronal loss. Docking studies revealed that out of 16 compounds, 3 compounds bound to the γ-aminobutyric acid type A (GABAA) receptor. Thus, the selected compounds demonstrated anticonvulsant, sedative, and activating behavior, and at the same time exhibited antianxiety and antidepressant effects. Compound 13 bound to the GABAA receptor and exhibited antianxiety, antidepressant, and neuroprotective effects in the entorhinal cortex against PTZ-induced changes. Full article
(This article belongs to the Special Issue New Perspectives on Chemoinformatics and Drug Design)
Show Figures

Graphical abstract

20 pages, 7986 KiB  
Article
Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production
by Jian Liu, Shengling Zhang, Xinshu Long, Xiaomin Jin, Yangying Zhu, Shengxia Duan and Jinsheng Zhao
Molecules 2024, 29(12), 2807; https://doi.org/10.3390/molecules29122807 - 12 Jun 2024
Cited by 2 | Viewed by 1468
Abstract
Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and [...] Read more.
Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and thiophene as building blocks. Based on UV diffuse reflection spectra, the photonic band gaps of PhIN-CPP and ThIN-CPP were calculated as 2.05 eV and 1.79 eV. The PhIN-CPP exhibited a high hydrogen evolution rate (HER) of 5359.92 μmol·g−1·h−1, which is 10 times higher than that of Thin-CPP (538.49 μmol·g−1·h−1). The remarkable disparity in the photocatalytic performance can be primarily ascribed to alterations in the band structure of the polymers, which includes its more stable benzene units, fluffier structure, larger specific surface area, most pronounced absorption occurring in the visible region and highly extended conjugation with a high density of electrons. The ΔEST values for PhIN-CPP and ThIN-CPP were calculated as 0.79 eV and 0.80 eV, respectively, based on DFT and TD-DFT calculations, which revealed that the incorporation of triazine units in the as-prepared CMPs could enhance the charge transfer via S1 ↔ T1 and was beneficial to the photocatalytic decomposition of H2O. This study presents a novel concept for developing a hybrid system for preparation of H2 by photocatalysis with effectiveness, sustainability, and economy. Full article
Show Figures

Graphical abstract

13 pages, 899 KiB  
Article
Synthesis of Thiophene-Fused Siloles through Rhodium-Catalyzed Trans-Bis-Silylation
by Akinobu Naka, Maho Inoue, Haruna Kawabe and Hisayoshi Kobayashi
AppliedChem 2024, 4(1), 29-41; https://doi.org/10.3390/appliedchem4010003 - 2 Feb 2024
Viewed by 2176
Abstract
Rhodium-catalyzed reactions of 3-ethynyl-2-pentamethyldisilanylthiophene derivatives (1a1c) have been reported. At 110 °C, compounds 1a1c reacted in the presence of a rhodium complex catalyst, yielding thiophene-fused siloles (2a2c) through intramolecular trans-bis-silylation. To understand [...] Read more.
Rhodium-catalyzed reactions of 3-ethynyl-2-pentamethyldisilanylthiophene derivatives (1a1c) have been reported. At 110 °C, compounds 1a1c reacted in the presence of a rhodium complex catalyst, yielding thiophene-fused siloles (2a2c) through intramolecular trans-bis-silylation. To understand the production of 2a from 1a, the mechanism was investigated using density functional theory (DFT) calculations. Full article
Show Figures

Graphical abstract

14 pages, 2709 KiB  
Article
Fused Triazinobenzimidazoles Bearing Heterocyclic Moiety: Synthesis, Structure Investigations, and In Silico and In Vitro Biological Activity
by Kameliya Anichina, Nikolai Georgiev, Nikolay Lumov, Dimitar Vuchev, Galya Popova-Daskalova, Georgi Momekov, Emiliya Cherneva, Rositsa Mihaylova, Anelia Mavrova, Stela Atanasova-Vladimirova, Iskra Piroeva and Denitsa Yancheva
Molecules 2023, 28(13), 5034; https://doi.org/10.3390/molecules28135034 - 27 Jun 2023
Cited by 4 | Viewed by 2453
Abstract
[1,3,5]Triazino[1,2-a]benzimidazole-2-amines bearing heterocyclic moiety in 4-position were synthesized. The compounds were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. The molecular geometry and electron structure of these molecules were theoretically studied using density functional theory (DFT) methods. [...] Read more.
[1,3,5]Triazino[1,2-a]benzimidazole-2-amines bearing heterocyclic moiety in 4-position were synthesized. The compounds were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, and HRMS spectroscopy. The molecular geometry and electron structure of these molecules were theoretically studied using density functional theory (DFT) methods. The molecular structure of the synthesized fused triazinobenzimidazole was confirmed to correspond to the 3,4-dihydrotriazinobenzimidazole structure through the analysis of spectroscopic NMR data and DFT calculations. The antinematodic activity was evaluated in vitro on isolated encapsulated muscle larvae (ML) of Trichinella spiralis. The results showed that the tested triazinobenzimidazoles exhibit significantly higher efficiency than the conventional drug used to treat trichinosis, albendazole, at a concentration of 50 μg/mL. The compound 3c substituted with a thiophen-2-yl moiety exhibited the highest anthelmintic activity, with a larvicidal effect of 58.41% at a concentration of 50 μg/mL after 24 h of incubation. Following closely behind, the pyrrole analog 3f demonstrated 49.90% effectiveness at the same concentration. The preliminary structure-anti-T. spiralis activity relationship (SAR) of the analogues in the series was discussed. The cytotoxicity of the benzimidazole derivatives against two normal fibroblast cells (3T3 and CCL-1) and two cancer human cell lines (MCF-7 breast cancer cells and chronic myeloid leukemia cells AR-230) was evaluated using the MTT-dye reduction assay. The screening results indicated that the compounds showed no cytotoxicity against the tested cell lines. An in silico study of the physicochemical and pharmacokinetic characteristics of the novel synthesized fused triazinobenzimidazoles showed that they were characterized by a significant degree of drug-likeness and optimal properties for anthelmintic agents. Full article
(This article belongs to the Special Issue Synthesis and Biologically Relevant Heterocyclic Compounds)
Show Figures

Figure 1

11 pages, 2487 KiB  
Article
Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production
by Dongnai Ye, Lei Liu, Qimin Peng, Jiabin Qiu, Hao Gong, Aiguo Zhong and Shiyong Liu
Molecules 2023, 28(11), 4507; https://doi.org/10.3390/molecules28114507 - 1 Jun 2023
Cited by 82 | Viewed by 3414
Abstract
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C–H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and [...] Read more.
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C–H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor–acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h−1 g−1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Graphical abstract

14 pages, 2801 KiB  
Article
Development of Benzobisoxazole-Based Novel Conjugated Polymers for Organic Thin-Film Transistors
by WonJo Jeong, Kyumin Lee, Jaeyoung Jang and In Hwan Jung
Polymers 2023, 15(5), 1156; https://doi.org/10.3390/polym15051156 - 24 Feb 2023
Cited by 4 | Viewed by 2549
Abstract
Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, [...] Read more.
Benzo[1,2-d:4,5-d′]bis(oxazole) (BBO) is a heterocyclic aromatic ring composed of one benzene ring and two oxazole rings, which has unique advantages on the facile synthesis without any column chromatography purification, high solubility on the common organic solvents and planar fused aromatic ring structure. However, BBO conjugated building block has rarely been used to develop conjugated polymers for organic thin film transistors (OTFTs). Three BBO-based monomers, BBO without π-spacer, BBO with non-alkylated thiophene π-spacer and BBO with alkylated thiophene π-spacer, were newly synthesized and they were copolymerized with a strong electron-donating cyclopentadithiophene conjugated building block to give three p-type BBO-based polymers. The polymer containing non-alkylated thiophene π-spacer showed the highest hole mobility of 2.2 × 10−2 cm2 V−1 s−1, which was 100 times higher than the other polymers. From the 2D grazing incidence X-ray diffraction data and simulated polymeric structures, we found that the intercalation of alkyl side chains on the polymer backbones was crucial to determine the intermolecular ordering in the film states, and the introduction of non-alkylated thiophene π-spacer to polymer backbone was the most effective to promote the intercalation of alkyl side chains in the film states and hole mobility in the devices. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors II)
Show Figures

Figure 1

15 pages, 2640 KiB  
Article
Theoretical Study on the Structures, Electronic Properties, and Aromaticity of Thiophene Analogues of Anti-Kekulene
by Shingo Hashimoto and Kazukuni Tahara
Chemistry 2022, 4(4), 1546-1560; https://doi.org/10.3390/chemistry4040102 - 11 Nov 2022
Cited by 3 | Viewed by 4422
Abstract
We predict the geometries, electronic properties, and aromaticity of thiophene analogues of anti-kekulene with six to nine thiophene rings 14, together with those of cyclobutadithiophenes (CDTs) and anti-kekulene as reference compounds, using density functional theory calculations. Investigation of the simplest [...] Read more.
We predict the geometries, electronic properties, and aromaticity of thiophene analogues of anti-kekulene with six to nine thiophene rings 14, together with those of cyclobutadithiophenes (CDTs) and anti-kekulene as reference compounds, using density functional theory calculations. Investigation of the simplest reference compounds, CDTs, reveals that the local aromaticity of their thiophene rings is influenced by their fused position (b- or c-bond) to the four-membered ring (4MR). A thiophene ring fused at the b-position (b-TR) retains its aromatic character to some extent, whereas the aromatic character of one fused at the c-position is attenuated. The 4MR with two fused b-TRs retains a strong anti-aromatic character. Thiophene analogues of anti-kekulene with six to eight thiophene rings 13 favor bowl-shaped structures, in contrast to the planar structure of anti-kekulene, because of the shorter distances of the sulfur bridges. Compound 4, with nine thiophene rings, adopts a planar structure. The local aromaticity and anti-aromaticity of the thiophene ring and 4MR are significantly attenuated in 14 compared with the reference compounds, the CDTs and anti-kekulene. This can be attributed to the considerable contribution of the quinoidal electronic structure in 14. The present study provides new insight into the aromatic and electronic nature of systems containing cyclobutadienothiophene. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

24 pages, 5791 KiB  
Review
Thienothiophene Scaffolds as Building Blocks for (Opto)Electronics
by Jan Podlesný and Filip Bureš
Organics 2022, 3(4), 446-469; https://doi.org/10.3390/org3040029 - 3 Nov 2022
Cited by 7 | Viewed by 3358
Abstract
Thieno[3,2-b]thiophene and isomeric thieno[2,3-b]thiophene represent fused, bicyclic and electron rich heterocycles. These small planar organic compounds belong to the remarkable family of annulated building blocks for various organic materials. The first part of this review focuses on the synthesis [...] Read more.
Thieno[3,2-b]thiophene and isomeric thieno[2,3-b]thiophene represent fused, bicyclic and electron rich heterocycles. These small planar organic compounds belong to the remarkable family of annulated building blocks for various organic materials. The first part of this review focuses on the synthesis of the primary unsubstituted thienothiophene scaffolds. All synthetic pathways available in the literature, dating from the 19th century, are summarized. The second part is devoted to the applications of the thienothiophene-derived materials across (opto)electronics. Organic light emitting diodes, organic solar cells, organic field-effect transistors and nonlinear optics were identified as the most successful application areas of both thienothiophenes. The fundamental structure-property relationships were evaluated for each particular group of derivatives. Full article
(This article belongs to the Special Issue Aromatic Heterocycles: A Wonderful Pool of Organic Materials)
Show Figures

Graphical abstract

18 pages, 4157 KiB  
Article
Bis(chloroacetamidino)-Derived Heteroarene-Fused Anthraquinones Bind to and Cause Proteasomal Degradation of tNOX, Leading to c-Flip Downregulation and Apoptosis in Oral Cancer Cells
by Jeng Shiun Chang, Chien-Yu Chen, Alexander S. Tikhomirov, Atikul Islam, Ru-Hao Liang, Chia-Wei Weng, Wei-Hou Wu, Andrey E. Shchekotikhin and Pin Ju Chueh
Cancers 2022, 14(19), 4719; https://doi.org/10.3390/cancers14194719 - 28 Sep 2022
Cited by 3 | Viewed by 2486
Abstract
Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been [...] Read more.
Anthraquinone-based intercalating compounds, namely doxorubicin and mitoxantrone, have been used clinically based on their capacity to bind DNA and induce DNA damage. However, their applications have been limited by side effects and drug resistance. New-generation anthraquinone derivatives fused with different heterocycles have been chemically synthesized and screened for higher anticancer potency. Among the compounds reported in our previous study, 4,11-bis(2-(2-chloroacetamidine)ethylamino)anthra[2,3-b]thiophene-5,10-dione dihydrochloride (designated 2c) was found to be apoptotic, but the direct cellular target responsible for the cytotoxicity remained unknown. Here, we report the synthesis and anticancer properties of two other derivatives, 4,11-bis(2-(2-chloroacetamidine)ethylamino)naphtho[2,3-f]indole-5,10-dione dihydrochloride (2a) and 4,11-bis(2-(2-chloroacetamidine)ethylamino)-2-methylanthra[2,3-b]furan-5,10-dione dihydrochloride (2b). We sought to identify and validate the protein target(s) of these derivatives in oral cancer cells, using molecular docking simulations and cellular thermal shift assays (CETSA). Our CETSA results illustrate that these derivatives targeted the tumor-associated NADH oxidase (tNOX, ENOX2), and their direct binding downregulated tNOX in p53-functional SAS and p53-mutated HSC-3 cells. Interestingly, the compounds targeted and downregulated tNOX to reduce SIRT1 deacetylase activity and increase Ku70 acetylation, which triggers c-Flip ubiquitination and induces apoptosis in oral cancer cells. Together, our data highlight the potential value of these heteroarene-fused anthraquinones in managing cancer by targeting tNOX and augmenting apoptosis. Full article
Show Figures

Graphical abstract

12 pages, 30628 KiB  
Article
Alkyl Chain Engineering of Low Bandgap Non-Fullerene Acceptors for High-Performance Organic Solar Cells: Branched vs. Linear Alkyl Side Chains
by Youngwan Lee, Telugu Bhim Raju, Hyerim Yeom, Peddaboodi Gopikrishna, Kwangmin Kim, Hye Won Cho, Jung Woo Moon, Jeong Ho Cho, Jin Young Kim and BongSoo Kim
Polymers 2022, 14(18), 3812; https://doi.org/10.3390/polym14183812 - 12 Sep 2022
Cited by 2 | Viewed by 3282
Abstract
In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the [...] Read more.
In this work, we report the synthesis and photovoltaic properties of IEBICO-4F, IEHICO-4F, IOICO-4F, and IDICO-4F non-fullerene acceptors (NFAs) bearing different types of alkyl chains (2-ehtylhexyl (EH), 2-ethylbutyl (EB), n-octyl (O), and n-decyl (D), respectively). These NFAs are based on the central indacenodithiophene (IDT) donor core and the same terminal group of 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F), albeit with different side chains appended to the thiophene bridge unit. Although the side chains induced negligible differences between the NFAs in terms of optical band gaps and molecular energy levels, they did lead to changes in their melting points and crystallinity. The NFAs with branched alkyl chains exhibited weaker intermolecular interactions and crystallinity than those with linear alkyl chains. Organic solar cells (OSCs) were fabricated by blending these NFAs with the p-type polymer PTB7-Th. The NFAs with appended branched alkyl chains (IEHICO-4F and IEBICO-4F) possessed superior photovoltaic properties than those with appended linear alkyl chains (IOICO-4F and IDICO-4F). This result can be ascribed mainly to the thin-film morphology. Furthermore, the NFA-based blend films with appended branched alkyl chains exhibited the optimal degree of aggregation and miscibility, whereas the NFA-based blend films with appended linear alkyl chains exhibited higher levels of self-aggregation and lower miscibility between the NFA molecule and the PTB7-Th polymer. We demonstrate that changing the alkyl chain on the π-bridging unit in fused-ring-based NFAs is an effective strategy for improving their photovoltaic performance in bulk heterojunction-type OSCs. Full article
(This article belongs to the Special Issue Polymers for Energy Conversion and Storage)
Show Figures

Graphical abstract

10 pages, 2765 KiB  
Article
Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells
by Kun Wang, Qing Guo, Zengkun Nie, Huiyan Wang, Jingshun Gao, Jianqi Zhang, Linfeng Yu, Xia Guo and Maojie Zhang
Int. J. Mol. Sci. 2022, 23(17), 10079; https://doi.org/10.3390/ijms231710079 - 3 Sep 2022
Cited by 4 | Viewed by 2597
Abstract
We designed and synthesized an asymmetric non-fullerene small molecule acceptor (NF-SMA) IDT-TNIC with an A–D–π–A structure, based on an indacenodithiophene (IDT) central core, with a unidirectional non-fused alkylthio-thiophene (T) π-bridge, and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (NIC) extended terminal groups. IDT-TNIC molecules still maintain a good coplanar [...] Read more.
We designed and synthesized an asymmetric non-fullerene small molecule acceptor (NF-SMA) IDT-TNIC with an A–D–π–A structure, based on an indacenodithiophene (IDT) central core, with a unidirectional non-fused alkylthio-thiophene (T) π-bridge, and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (NIC) extended terminal groups. IDT-TNIC molecules still maintain a good coplanar structure, which benefits from the non-covalent conformational locks (NCL) between O···S and S···S. The asymmetric structure increases the molecular dipole moment, and the extended terminal group broadens the absorption of the material, resulting in an excellent photovoltaic performance of IDT-TNIC. The photovoltaic device, based on PBDB-T:IDT-TNIC, exhibits an energetic PCE of 11.32% with a high Voc of 0.87 V, high Jsc of 19.85 mA cm−2, and a low energy loss of 0.57 eV. More importantly, IDT-TNICs with asymmetric structures show a superior property compared to symmetric IDT-Ns. The results demonstrate that it is an effectual strategy to enhance the properties of asymmetric A–D–π–A-based NF-SMAs with non-fused NCL π-bridges and extended terminal groups. Full article
Show Figures

Figure 1

16 pages, 3081 KiB  
Article
Furan-Containing Chiral Spiro-Fused Polycyclic Aromatic Compounds: Synthesis and Photophysical Properties
by Koji Nakano, Ko Takase and Keiichi Noguchi
Molecules 2022, 27(16), 5103; https://doi.org/10.3390/molecules27165103 - 11 Aug 2022
Cited by 5 | Viewed by 2862
Abstract
Spiro-fused polycyclic aromatic compounds (PACs) have received growing interest as rigid chiral scaffolds. However, furan-containing spiro-fused PACs have been quite limited. Here, we design spiro[indeno[1,2-b][1]benzofuran-10,10′-indeno[1,2-b][1]benzothiophene] as a new family of spiro-fused PACs that contains a furan unit. The compound [...] Read more.
Spiro-fused polycyclic aromatic compounds (PACs) have received growing interest as rigid chiral scaffolds. However, furan-containing spiro-fused PACs have been quite limited. Here, we design spiro[indeno[1,2-b][1]benzofuran-10,10′-indeno[1,2-b][1]benzothiophene] as a new family of spiro-fused PACs that contains a furan unit. The compound was successfully synthesized in enantiopure form and also transformed to its S,S-dioxide derivative and the pyrrole-containing analog via aromatic metamorphosis. The absorption and emission properties of the obtained furan-containing chiral spiro-fused PACs are apparently different from those of their thiophene analogs that have been reported, owing to the increased electron-richness of furan compared to thiophene. All of the furan-containing chiral spiro-fused PACs were found to be circularly polarized luminescent materials. Full article
(This article belongs to the Special Issue Synthesis of Heteroaromatic Compounds)
Show Figures

Graphical abstract

Back to TopTop