Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,865)

Search Parameters:
Keywords = functionalized nanotubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3377 KB  
Article
Enhancing Osmotic Power Generation and Water Conservation with High-Performance Thin-Film Nanocomposite Membranes for the Mining Industry
by Sara Pakdaman and Catherine N. Mulligan
Water 2026, 18(2), 248; https://doi.org/10.3390/w18020248 (registering DOI) - 17 Jan 2026
Abstract
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) [...] Read more.
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) membrane containing functionalized multi-walled carbon nanotubes (fMWCNTs) within a polyacrylonitrile (PAN) support layer, followed by polydopamine (PDA) surface modification, was investigated under a PRO operation using pretreated gold mining wastewater as the feed solution. Unlike most previous studies that rely on synthetic feeds, this work evaluates the membrane performance under a PRO operation using a real mining wastewater stream. The membrane with fMWCNTs and PDA exhibited a maximum power density of 25.22 W/m2 at 12 bar, representing performance improvements of 23% and 68% compared with the pristine thin-film composite (TFC) and commercial cellulose triacetate (CTA) membranes, respectively. A high water flux of 75.6 L·m−2·h−1 was also obtained, attributed to enhanced membrane hydrophilicity and reduced internal concentration polarization. The optimized membrane, containing 0.3 wt% fMWCNTs in the support layer and a PDA coating on the active layer, produced a synergistic enhancement in the PRO performance, resulting in a lower reverse salt flux and an improved flux–selectivity trade-off. Furthermore, the ultrafiltration (UF) and nanofiltration (NF) pretreatment effectively reduced the hardness and ionic content, enabling a stable PRO operation with real mining wastewater over a longer period of time. Overall, this study demonstrates the feasibility of achieving both reusable water and enhanced osmotic power generation using modified TFN membranes under realistic mining wastewater conditions. Full article
Show Figures

Figure 1

21 pages, 1613 KB  
Article
Dual-Functional Polyurethane Sponge-Based Pressure Sensors Incorporating BZT/BTO, Polypyrrole, and Carbon Nanotubes with Energy Generation Capability
by Nurhan Onar Camlibel and Baljinder K. Kandola
Polymers 2026, 18(2), 241; https://doi.org/10.3390/polym18020241 - 16 Jan 2026
Abstract
Flexible and wearable pressure sensors are essential for monitoring of human motion and are distinguished by their increased sensitivity and outstanding mechanical robustness. In this study, we systematically engineered a flexible and wearable pressure sensor with a multilayer conductive architecture, arranging a sponge [...] Read more.
Flexible and wearable pressure sensors are essential for monitoring of human motion and are distinguished by their increased sensitivity and outstanding mechanical robustness. In this study, we systematically engineered a flexible and wearable pressure sensor with a multilayer conductive architecture, arranging a sponge substrate coated in a consecutive manner with a barium zirconium titanate thin film, followed by polypyrrole, multiwalled carbon nanotubes, and eventually polydimethylsiloxane. The foundation of additional conductive pathways is enabled via the utilization of a porous framework and the hierarchical arrangement, causing the achievement of an excellent sensitivity of 9.71 kPa–1 (0–9 kPa), a rapid 40 ms response time, and a fast 60 ms recovery period, combined with a particularly low detection limit (125 Pa) and an extended pressure range from 0 to 225 kPa. Furthermore, the integration of a rough and porous barium zirconium titanate/barium titanate thin film is expected to deliver a voltage output (1.25 V) through piezoelectric working mechanisms. This study possesses the potential to provide an innovative architecture design for advancing the development of future electronic devices for health and sports monitoring. Full article
(This article belongs to the Special Issue Advanced Polymers in Sensor Applications)
37 pages, 2140 KB  
Review
Functional Peptide-Based Biomaterials for Pharmaceutical Application: Sequences, Mechanisms, and Optimization Strategies
by Dedong Yu, Nari Han, Hyejeong Son, Sun Jo Kim and Seho Kweon
J. Funct. Biomater. 2026, 17(1), 37; https://doi.org/10.3390/jfb17010037 - 13 Jan 2026
Viewed by 399
Abstract
Peptide-based biomaterials have emerged as versatile tools for pharmaceutical drug delivery due to their biocompatibility and tunable sequences, yet a comprehensive overview of their categories, mechanisms, and optimization strategies remains lacking to guide clinical translation. This review systematically collates advances in peptide-based biomaterials, [...] Read more.
Peptide-based biomaterials have emerged as versatile tools for pharmaceutical drug delivery due to their biocompatibility and tunable sequences, yet a comprehensive overview of their categories, mechanisms, and optimization strategies remains lacking to guide clinical translation. This review systematically collates advances in peptide-based biomaterials, covering peptide excipients (cell penetrating peptides, tight junction modulating peptides, and peptide surfactants/stabilizers), self-assembling peptides (peptide-based nanospheres, cyclic peptide nanotubes, nanovesicles and micelles, peptide-based hydrogels and depots), and peptide linkers (for antibody drug-conjugates, peptide drug-conjugates, and prodrugs). We also dissect sequence-based optimization strategies, including rational design and biophysical optimization (cyclization, stapling, D-amino acid incorporation), functional motif integration, and combinatorial discovery with AI assistance, with examples spanning marketed drugs and research-stage candidates. The review reveals that cell-penetrating peptides enable efficient intracellular payload delivery via direct penetration or endocytosis; self-assembling peptides form diverse nanostructures for controlled release; and peptide linkers achieve site-specific drug release by responding to tumor-associated enzymes or pH cues, while sequence optimization enhances stability and targeting. Peptide-based biomaterials offer precise, biocompatible and tunable solutions for drug delivery, future advancements relying on AI-driven design and multi-functional modification will accelerate their transition from basic research to clinical application. Full article
Show Figures

Figure 1

42 pages, 4878 KB  
Review
Carbon Nanotubes and Graphene in Polymer Composites for Strain Sensors: Synthesis, Functionalization, and Application
by Aleksei V. Shchegolkov, Alexandr V. Shchegolkov and Vladimir V. Kaminskii
J. Compos. Sci. 2026, 10(1), 43; https://doi.org/10.3390/jcs10010043 - 13 Jan 2026
Viewed by 131
Abstract
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs [...] Read more.
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs and graphene (chemical vapor deposition (CVD), such as arc discharge, laser ablation, microwave synthesis, and flame synthesis, as well as approaches to their chemical and physical modification aimed at enhancing dispersion within polymer matrices and strengthening interfacial adhesion. A detailed examination is presented on the structural features of the nanofillers, such as the CNT aspect ratio, graphene oxide modification, and the formation of hybrid 3D networks and processing techniques, which enable the targeted control of the nanocomposite’s electrical conductivity, mechanical strength, and flexibility. Central focus is placed on the fundamental mechanisms of the piezoresistive response, analyzing the role of percolation thresholds, quantum tunneling effects, and the reconfiguration of conductive networks under mechanical load. The review summarizes the latest advancements in flexible and stretchable sensors capable of detecting both micro- and macro-strains for structural health monitoring, highlighting the achieved improvements in sensitivity, operational range, and durability of the composites. Ultimately, this analysis clarifies the interrelationship between nanofiller structure (CNTs and graphene), processing conditions, and sensor functionality, highlighting key avenues for future innovation in smart materials and wearable devices. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

52 pages, 5391 KB  
Review
Graphene/CNT Nanocomposites: Processing, Properties, and Applications
by Sachin Kumar Sharma, Slavica Miladinović, Lokesh Kumar Sharma, Sandra Gajević, Yogesh Sharma, Mohit Sharma, Stefan Čukić and Blaža Stojanović
Nanomaterials 2026, 16(2), 100; https://doi.org/10.3390/nano16020100 - 12 Jan 2026
Viewed by 408
Abstract
Carbon nanotube (CNT) and graphene-reinforced nanocomposites have become exceptional multifunctional materials because of their exceptional mechanical, thermal, and electrical properties. Recent developments in synthesis methods, dispersion strategies, and interfacial engineering have effectively overcome agglomeration-related limitations by significantly improving filler distribution, matrix compatibility, and [...] Read more.
Carbon nanotube (CNT) and graphene-reinforced nanocomposites have become exceptional multifunctional materials because of their exceptional mechanical, thermal, and electrical properties. Recent developments in synthesis methods, dispersion strategies, and interfacial engineering have effectively overcome agglomeration-related limitations by significantly improving filler distribution, matrix compatibility, and load-transfer efficiency. These nanocomposites have better wear durability, corrosion resistance, and surface properties like super-hydrophobicity. A comparative analysis of polymer, metal, and ceramic matrices finds benefits for applications in biomedical, construction, energy, defense, and aeronautics. Functionally graded architecture, energy-harvesting nanogenerators, and additive manufacturing are some of the new fabrication processes that enhance design flexibility and functional integration. In recent years, scalability, life-cycle evaluation, and environmentally friendly processing have all gained increased attention. The development of next-generation, high-performance graphene and carbon nanotube (CNT)-based nanocomposites is critically reviewed in this work, along with significant obstacles and potential next steps. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

15 pages, 2045 KB  
Article
PLA/MWNTs Conductive Polymer Composites as Stress Sensors—The Role of Supramolecular Ordering
by Łukasz Pietrzak and Michał Puchalski
Sensors 2026, 26(2), 414; https://doi.org/10.3390/s26020414 - 8 Jan 2026
Viewed by 166
Abstract
The incorporation of carbon nanostructures into polymer composites is of significant importance for the development of novel sensor materials, due to the excellent mechanical strength and variable electrical conductivity that these structures provide. It is evident that the significance of polylactide (PLA) and [...] Read more.
The incorporation of carbon nanostructures into polymer composites is of significant importance for the development of novel sensor materials, due to the excellent mechanical strength and variable electrical conductivity that these structures provide. It is evident that the significance of polylactide (PLA) and carbon nanotube (CNT) systems is attributable to two key factors. Firstly, these systems are notable for their environmental sustainability. Secondly, they exhibit enhanced functional properties. Despite the fact that a considerable number of studies have been conducted on conductive PLA/CNT composites, there has been limited research focusing on the supramolecular ordering of the polymer matrix and its impact on electromechanical properties. This factor, however, has been demonstrated in this study to significantly influence their response to applied stress and, consequently, their potential application as stress sensors. The present study has demonstrated that the precipitation method is an effective means of producing conductive PLA/MWNTs nanocomposites. This method is effective in ensuring the uniform dispersion of the filler in the polymer matrix, which creates an interesting prospect for mechanical sensors. It is evident that the durability of the nanocomposites is a key factor in ensuring the ordering of the supramolecular structure of the PLA matrix into the α form. The materials obtained were found to have a low percolation threshold of 0.2 wt.%. Furthermore, the practical application of these sensors, in the form of resistive strain sensors, was demonstrated for materials containing 5 wt.% of carbon nanotubes. The results presented here demonstrate that this methodology provides a novel perspective on the production of sensor materials, with the supramolecular ordering of the PLA matrix being a key factor. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

9 pages, 340 KB  
Communication
Six Weeks of Baker’s Yeast β-Glucan Supplementation Reveals Unique Immune Maturation mRNA Signature: Implications for Immunity?
by Brian K. McFarlin, Anyla L. Paschall, David G. Cooper, Caleb A. Class and Meredith A. McFarlin
Int. J. Mol. Sci. 2026, 27(2), 588; https://doi.org/10.3390/ijms27020588 - 6 Jan 2026
Viewed by 153
Abstract
Baker’s yeast beta-glucan (BYBG) supplementation improves various aspects of immune system function, readiness, and response. The purpose of this study was to determine if the expression of immune maturation mRNA was also changed over the course of 6 weeks of BYBG supplementation at [...] Read more.
Baker’s yeast beta-glucan (BYBG) supplementation improves various aspects of immune system function, readiness, and response. The purpose of this study was to determine if the expression of immune maturation mRNA was also changed over the course of 6 weeks of BYBG supplementation at rest. In this exploratory study, a small group of participants (N = 20) were randomized into two groups: BYBG (weeks 0–2 = 50 mg/d; 2–4 = 125 mg/d; and 4–6 = 250 mg/d) or placebo. Blood samples were collected at 0, 2, 4, and 6 weeks and analyzed for the expression of 785 mRNA (NanoString nCounter platform and Nanotube software; R v3.3.2). A total of 42 mRNAs in 21 annotated pathways (antigen presentation, apoptosis, B cell memory, cell cycle, chemokine signaling, cytotoxicity, DAP12 signaling, hypoxia response, IL-1 signaling, IL-10 signaling, MAPK signaling, myeloid immune response, NF-kB signaling, NK activity, Notch Signaling, PD1 signaling, Senescence/Quiescence, T cell checkpoint signaling, TCR signaling, TLR signaling, and TNF signaling), were significantly affected by BYBG at various time points. It is reasonable to speculate that the observed mRNA and associated pathways may underlie previously reported improvements in immune function with BYBG. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

10 pages, 1262 KB  
Review
T-LysYal for Managing Dry Eye Disease, the Advent of Supramolecular Aggregates in Ophthalmology: A Narrative Review
by Stefano Barabino, Marisa Meloni, Demetrio Manenti and Pauline Cipriano-Bonvin
J. Clin. Med. 2026, 15(2), 429; https://doi.org/10.3390/jcm15020429 - 6 Jan 2026
Viewed by 145
Abstract
Dry Eye Disease (DED) is a highly characterised multifactorial disease resulting in the loss of tear film homeostasis and associated with a major impact on patient quality of life. DED affects up to half of the global population, with modern lifestyle factors playing [...] Read more.
Dry Eye Disease (DED) is a highly characterised multifactorial disease resulting in the loss of tear film homeostasis and associated with a major impact on patient quality of life. DED affects up to half of the global population, with modern lifestyle factors playing a critical role in disease development, particularly excessive use of digital devices. The ultimate treatment goal is restoration of tear film homeostasis and breaking the ‘vicious circle’ of DED. Today, the use of tear substitutes represents the main option for the treatment of DED. These topical formulations aim to provide lubrication, reduce osmolarity, and improve tear clearance. However, they do not interact with the ocular surface epithelium nor modulate ocular inflammation, and do not fully restore natural tear function. T-LysYal is the first supramolecular ocular surface modulator for DED. Studies demonstrate that T-LysYal promotes tissue repair, improves tear breakup time, restores corneal epithelial cell damage, and modulates inflammation processes, significantly reducing the severity of DED symptoms in patients. In addition, T-LysYal provides stability that prolongs activity and favours cell adhesion. Through its 3D nanotube structure, movement of water in the eye is retained and improved, enhancing ocular hydrodynamics. This narrative review introduces T-LysYal for DED whilst highlighting both its in vitro activity and clinical profile against hyaluronic acid, a mainstay of disease management. Full article
(This article belongs to the Special Issue Advances in Dry Eye Disease Treatment: 2nd Edition)
Show Figures

Figure 1

23 pages, 7506 KB  
Article
Enhancing Tensile Performance of Lithium Slag Geopolymers Using Hybrid Fibers and Modified Multi-Walled Carbon Nanotubes
by Qing Li, Chong Deng, Yali Hu, Mingxing Luo, Daopei Zhu and Cai Wu
Materials 2026, 19(1), 213; https://doi.org/10.3390/ma19010213 - 5 Jan 2026
Viewed by 225
Abstract
This study investigates the synergistic effects of hybrid fibers and functionalized multi-walled carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of lithium slag–based geopolymers (FL-EGC). Unlike conventional studies that focus on single reinforcement strategies, this work combines nanoscale modification with macroscale fiber [...] Read more.
This study investigates the synergistic effects of hybrid fibers and functionalized multi-walled carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of lithium slag–based geopolymers (FL-EGC). Unlike conventional studies that focus on single reinforcement strategies, this work combines nanoscale modification with macroscale fiber reinforcement to overcome the inherent brittleness of geopolymers. Results show that while hybrid fibers and MWCNTs reduce flowability, the incorporation of 2.5% PVA, 1.0% steel fibers, and 0.15% MWCNTs yielded the best balance of performance, improving ultimate tensile stress by 12.7%, strain by 69.2%, and specific fracture energy by 78.2%. Microstructural analysis confirmed that MWCNTs enhanced crack-bridging and matrix densification, while hybrid fibers improved strength and ductility. These findings demonstrate a novel reinforcement pathway for developing sustainable, high-performance geopolymers from industrial by-products, providing both theoretical insights and practical guidance for green construction materials. Full article
(This article belongs to the Special Issue Geopolymers and Fiber-Reinforced Concrete Composites (Second Edition))
Show Figures

Graphical abstract

17 pages, 1279 KB  
Review
Polysulfone Membranes: Here, There and Everywhere
by Pere Verdugo, Iwona Gulaczyk, Magdalena Olkiewicz, Josep M. Montornes, Marta Woźniak-Budych, Filip F. Pniewski, Iga Hołyńska-Iwan and Bartosz Tylkowski
Membranes 2026, 16(1), 35; https://doi.org/10.3390/membranes16010035 - 5 Jan 2026
Viewed by 374
Abstract
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains [...] Read more.
Polysulfone (PSU) membranes are widely recognized for their thermal stability, mechanical strength, and chemical resistance, making them suitable for diverse separation applications. This review highlights recent advances in PSU membrane development, focusing on fabrication techniques, structural modifications, and emerging applications. Phase inversion remains the predominant method for membrane synthesis, allowing precise control over morphology and performance. Functional enhancements through blending, chemical grafting, and incorporation of nanomaterials—such as metal–organic frameworks (MOFs), carbon nanotubes, and zwitterionic polymers—have significantly improved gas separation, and water purification., In gas separation, PSU-based mixed matrix membranes demonstrate enhanced CO2/CH4 selectivity, particularly when integrated with MOFs like ZIF-7 and ZIF-8. In water treatment, PSU membranes effectively remove algal toxins and heavy metals, with surface modifications improving hydrophilicity and antifouling properties. Despite these advancements, challenges remain in optimizing cross-linking strategies and understanding structure–property relationships. This review provides a comprehensive overview of PSU membrane technologies and outlines future directions for their development in sustainable and high-performance separation systems. Full article
Show Figures

Figure 1

23 pages, 6219 KB  
Article
Functional Nanocomposites with a Positive Temperature Coefficient of Resistance Based on Carbon Nanotubes Synthesized by Laser Ablation
by Alexandr V. Shchegolkov, Aleksei V. Shchegolkov, Ivan D. Parfimovich, Vladimir V. Kaminskii and Mariya Y. Putyrskaya
J. Compos. Sci. 2026, 10(1), 19; https://doi.org/10.3390/jcs10010019 - 4 Jan 2026
Viewed by 266
Abstract
This study presents the development of high-performance polymer composites designed for operation under extreme conditions. The research aimed to investigate the influence of laser ablation parameters on the synthesis of carbon nanotubes (CNTs) and to evaluate their efficacy as electrically conductive fillers. CNTs [...] Read more.
This study presents the development of high-performance polymer composites designed for operation under extreme conditions. The research aimed to investigate the influence of laser ablation parameters on the synthesis of carbon nanotubes (CNTs) and to evaluate their efficacy as electrically conductive fillers. CNTs were synthesized using a 200 W laser ablation setup, with the graphite-to-ferrocene ratio in the target varied from 3:1 to 8:1 at a constant pulse duration of 0.1 s. Comprehensive analysis by Raman spectroscopy and scanning electron microscopy (SEM) demonstrated that this method enables the production of nanotubes with controlled morphology and diameters ranging from 20 to 70 nm. It was established that varying the target composition serves as an effective tool for managing the specific surface area and structure of the synthesized CNTs. The obtained nanotubes exhibited high efficiency in forming conductive networks within polymer matrices (exemplified by silicone), thereby imparting the composites with tailored electrophysical properties. A key finding of the work is the identified dependence of the positive temperature coefficient of resistance (PTCR) of the composites on the morphology and composition of the carbon filler. This property opens prospects for creating “smart” self-regulating heating elements based on the developed materials, including for anti-icing systems. Thus, the study results confirm that the targeted synthesis of CNTs via laser ablation and their subsequent incorporation into polymer matrices constitutes an effective strategy for expanding the functional capabilities of composite materials in modern technical applications. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

12 pages, 1763 KB  
Article
Label-Free Electrochemical Detection of K-562 Leukemia Cells Using TiO2-Modified Graphite Nanostructured Electrode
by Martha Esperanza Sevilla, Rubén Jesús Camargo Amado and Pablo Raúl Valle
Biosensors 2026, 16(1), 28; https://doi.org/10.3390/bios16010028 - 1 Jan 2026
Viewed by 328
Abstract
This manuscript presents the development of an electrochemical biosensor designed to detect K-562 chronic myeloid leukemia (CML) cells. The biosensor was made of highly oriented pyrolytic graphite (HOPG), functionalized with -OH and -COOH groups by surface etching with strong acids, and subsequently coated [...] Read more.
This manuscript presents the development of an electrochemical biosensor designed to detect K-562 chronic myeloid leukemia (CML) cells. The biosensor was made of highly oriented pyrolytic graphite (HOPG), functionalized with -OH and -COOH groups by surface etching with strong acids, and subsequently coated with modified titanium dioxide (TiO2-m). TiO2-m is TiO2 modified during its synthesis process using carbon nanotubes functionalized with -OH and -COOH groups. These changes improve the electron transfer kinetics and physicochemical properties of the electrode surface. TiO2-m improves the sensitivity and selectivity towards leukemic cells. The detection process involved three stages: cell culture, cell adhesion onto the TiO2–m electrode, and measurement of the electrochemical signal. Fluorescence microscopy and SEM-EDS confirmed cell adhesion and pseudopod formation on the TiO2-m surface, which is an important finding because K-562 cells are typically nonadherent. Cyclic voltammetry (VC) and differential pulse voltammetry (VDP) demonstrated rapid and sensitive detection of leukemic cells within the concentration range of 6250 to 1,000,000 cells/mL, achieving high reproducibility and strong linearity (R2 = 98%) with a detection time of 25 s. The VC and VDP demonstrated rapid and sensitive detection of leukemic cells over a concentration range of 6250 to 1,000,000 cells/mL, achieving adequate reproducibility and stable linearity (R2 = 98%), with a detection time of 25 s. These results indicate that the TiO2-m biosensor is a promising platform for the rapid and efficient electrochemical detection of leukemia cells. Full article
Show Figures

Figure 1

22 pages, 4723 KB  
Article
Effect of Paraffin Microcapsule and Carbon Nanotube Content on the Thermal Behavior of Thermoplastic Polyurethane Nanocomposites with Thermal Energy Storage Capability
by Daniele Rigotti, Andrea Dorigato and Alessandro Pegoretti
J. Compos. Sci. 2026, 10(1), 10; https://doi.org/10.3390/jcs10010010 - 1 Jan 2026
Viewed by 211
Abstract
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) [...] Read more.
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) were systematically investigated. The microstructure, thermal stability, specific heat capacity, thermal diffusivity and conductivity of these composites were analyzed as a function of the PCM and MWCNTs content. SEM observations revealed the homogeneous dispersion of PCM microcapsules and the presence of localized MWCNT aggregates in PCM-rich domains. Thermal diffusivity measurements indicated a monotonic decrease with increasing temperature for all compositions, from 0.097 mm2·s−1 at 5 °C to 0.091 mm2·s−1 at 25 °C for neat TPU, and from 0.186 mm2·s−1 to 0.173 mm2·s−1 for TPU with 5 vol.% MWCNTs. Distinct non-linear behavior was observed around 25 °C, i.e., in correspondence to the paraffin melting, where the apparent diffusivity temporarily decreased due to latent heat absorption. The trend of the thermal conductivity (λ) was determined by the competing effects of PCM and MWCNTs: PCM addition reduced λ at 25 °C from 0.162 W·m−1·K−1 (neat TPU) to 0.128 W·m−1·K−1 at 30 vol.% PCM, whereas the incorporation of 5 vol.% of MWCNTs increased λ up to 0.309 W·m−1·K−1. In PCM-containing nanocomposites, MWCNT networks efficiently bridged the polymer–microcapsule interfaces, creating continuous conductive pathways that mitigated the insulating effect of the encapsulated paraffin and ensured stable heat transfer even across the solid–liquid transition. A one-dimensional transient heat-transfer model confirmed that increasing the matrix thermal conductivity accelerates the melting of the PCM, improving the dynamic thermal buffering capacity of these materials. Therefore, these results underlined the potential of TPU/MWCNT/PCM composites as versatile materials for applications requiring both rapid heat dissipation and effective thermal management. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

14 pages, 1612 KB  
Article
Nanotube Alignment and Surface Chemistry in Altering Water and Salt Permeabilities for Imogolite-Polyamide Membranes
by Savannah Bachmann and Jonathan Brant
Membranes 2026, 16(1), 20; https://doi.org/10.3390/membranes16010020 - 1 Jan 2026
Viewed by 203
Abstract
Reducing the specific energy consumption of reverse osmosis (RO) processes motivates the development of new membrane materials that have enhanced water permeability while maintaining low salt permeability (high rejection). Nanocomposite membranes have shown great promise in achieving these goals, particularly those using nanotubes [...] Read more.
Reducing the specific energy consumption of reverse osmosis (RO) processes motivates the development of new membrane materials that have enhanced water permeability while maintaining low salt permeability (high rejection). Nanocomposite membranes have shown great promise in achieving these goals, particularly those using nanotubes as fillers. Here, we report on the relationships between the orientations and surface functionalities of imogolite nanotubes (INTs) with water and salt permeabilities for polyamide nanocomposite membranes. An external electric field was used to manipulate the INT orientation within the polyamide active layer. The INT interior and exterior chemistries, respectively, were made hydrophobic using methyl triethoxysilane as a precursor during INT synthesis and post-synthesis modification with alkali-phosphate groups. Irrespective of nanotube orientation or surface chemistry, membrane permeance increased from 0.3 to ≥1.0 L m−2 h−1 bar−1. A salt permeability comparable to the conventional polyamide membrane was maintained by making the INT pore throat hydrophobic. These findings indicated that salt rejection could be tailored by manipulating the INT interior surface chemistry without sacrificing water permeability. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

29 pages, 12546 KB  
Article
Enhancing Processability and Multifunctional Properties of Polylactic Acid–Graphene/Carbon Nanotube Composites with Cellulose Nanocrystals
by Siting Guo, Evgeni Ivanov, Vladimir Georgiev, Paul Stanley, Iza Radecka, Ahmed M. Eissa, Roberta Tolve and Fideline Tchuenbou-Magaia
Polymers 2026, 18(1), 99; https://doi.org/10.3390/polym18010099 - 29 Dec 2025
Viewed by 354
Abstract
The growing accumulation of plastic and electronic waste highlights the urgent need for sustainable and biodegradable polymers. However, developing intrinsically conductive biodegradable polymers remains challenging, particularly for packaging and sensing applications. Poly(lactic acid) (PLA) is intrinsically non-conductive, and enhancing its functionality without compromising [...] Read more.
The growing accumulation of plastic and electronic waste highlights the urgent need for sustainable and biodegradable polymers. However, developing intrinsically conductive biodegradable polymers remains challenging, particularly for packaging and sensing applications. Poly(lactic acid) (PLA) is intrinsically non-conductive, and enhancing its functionality without compromising structural integrity is a key research goal. In this study, PLA-based filaments were developed using melt extrusion, incorporating cellulose nanocrystals (CNCs), graphene nanoplatelets (GNPs), and carbon nanotubes (CNTs), individually and in hybrid combinations with total filler contents between 1 and 5 wt%. The inclusion of CNC enhanced the dispersion of GNP and CNT, promoting the formation of interconnected conductive networks within the PLA matrix, allowing the percolation threshold to be reached at a lower fillers concentration. Hybrid formulations showed a balance melt strength and processability suitable for fused deposition modelling (FDM) 3D printing and prototypes successfully made. This study also provides the first systematic evaluation of temperature-dependent thermal conductivity of PLA-based composites at multiple temperatures (25, 5, and −20 °C), relevant to typical food and medical supply chains conditions. Full article
Show Figures

Graphical abstract

Back to TopTop