Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,822)

Search Parameters:
Keywords = functional fitness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1576 KiB  
Article
Research on the Optimization Method of Injection Molding Process Parameters Based on the Improved Particle Swarm Optimization Algorithm
by Zhenfa Yang, Xiaoping Lu, Lin Wang, Lucheng Chen and Yu Wang
Processes 2025, 13(8), 2491; https://doi.org/10.3390/pr13082491 - 7 Aug 2025
Abstract
Optimization of injection molding process parameters is essential for improving product quality and production efficiency. Traditional methods, which rely heavily on operator experience, often result in inconsistencies, high time consumption, high defect rates, and suboptimal energy consumption. In this study, an improved particle [...] Read more.
Optimization of injection molding process parameters is essential for improving product quality and production efficiency. Traditional methods, which rely heavily on operator experience, often result in inconsistencies, high time consumption, high defect rates, and suboptimal energy consumption. In this study, an improved particle swarm optimization (IPSO) algorithm was proposed, integrating dynamic inertia weight adjustment, adaptive acceleration coefficients, and position constraints to address the issue of premature convergence and enhance global search capabilities. A dual-model architecture was implemented: a constraint validation mechanism based on support vector machine (SVM) was enforced per iteration cycle to ensure stepwise quality compliance, while a fitness function derived by extreme gradient boosting (XGBoost) was formulated to minimize cycle time as the optimization objective. The results demonstrated that the average injection cycle time was reduced by 9.41% while ensuring that the product was qualified. The SVM and XGBoost models achieved high performance metrics (accuracy: 0.92; R2: 0.93; RMSE: 1.05), confirming their robustness in quality classification and cycle time prediction. This method provides a systematic and data-driven solution for multi-objective optimization in injection molding, significantly improving production efficiency and energy utilization. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 - 7 Aug 2025
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 3287 KiB  
Article
Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer
by Bojana Marković, Goran Janjić, Antonije Onjia, Tamara Tadić, Plamen Stefanov and Aleksandra Nastasović
Separations 2025, 12(8), 206; https://doi.org/10.3390/separations12080206 - 7 Aug 2025
Abstract
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A [...] Read more.
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A maximum separation factor (βRe/Mo) of 8.85 was observed at pH 6. The nature of rhenium oxoanions binding to the active sites of mPGMT-deta was analyzed using density functional theory (DFT). The calculations indicated that the formation of MoO42−//hedetaH22+ adduct is electrostatically favored at pH 6, while the inclusion of solvation effects makes the formation of ReO4//hedetaH22+ adduct thermodynamically more favorable. Solvation played a dominant role in determining the selectivity of oxoanion sorption to the nanocomposite. The adsorption isotherm, kinetics, and thermodynamics of Re(VII) onto mPGMT-deta were determined. The equilibrium data were best-fitted using the Langmuir adsorption model (R2 = 0.999), with a maximum sorption capacity for Re(VII) of 0.43 mmol/g. The uptake kinetics of the sorption process obeyed the pseudo-second-order model, with the influence of diffusion and external mass transfer. Based on the thermodynamic parameters, Re(VII) sorption was spontaneous and endothermic. Full article
Show Figures

Figure 1

14 pages, 719 KiB  
Article
Recursive Interplay of Family and Biological Dynamics: Adults with Type 1 Diabetes Mellitus Under the Spotlight
by Helena Jorge, Bárbara Regadas Correia, Miguel Castelo-Branco and Ana Paula Relvas
Diabetology 2025, 6(8), 81; https://doi.org/10.3390/diabetology6080081 - 6 Aug 2025
Abstract
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was [...] Read more.
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was collected through a cross-sectional design comparing patients, aged 22–55, with and without metabolic control. Methods: Participants filled out a set of self-report measures of sociodemographic, clinical and family systems assessment. Patients (91) were also invited to describe their perception about disease management interference regarding family functioning. We first examined the extent to which family variables grouped dataset to determine if there were similarities and dissimilarities that fit with our initial diabetic groups’ classification. Results: Cluster analysis results identify a two-cluster solution validating initial classification of two groups of patients: 49 with metabolic control (MC) and 42 without metabolic control (NoMC). Independent sample tests suggested statistically significant differences between groups in family subscales- family difficulties and family communication (p < 0.05). Binary logistic regression shed light on predictors of explained variance to no metabolic control, in four models: Sociodemographic, Clinical data, SCORE-15/Congruence Scale and Eating Behavior. Furthermore, groups differ on family support, level and sources of family conflict caused by diabetes management issues. Considering only patients who co-habit with a partner for more than one year (N = 44), NoMC patients score lower on marital functioning in all categories (p < 0.05). Discussion: Family-Chronic illness interaction plays a significant role in a patient’s adherence to treatment. This study highlights the Standards of Medical Care for Diabetes, considering caregivers and family members on diabetes care. Full article
Show Figures

Figure 1

23 pages, 8569 KiB  
Article
Evidential K-Nearest Neighbors with Cognitive-Inspired Feature Selection for High-Dimensional Data
by Yawen Liu, Yang Zhang, Xudong Wang and Xinyuan Qu
Big Data Cogn. Comput. 2025, 9(8), 202; https://doi.org/10.3390/bdcc9080202 - 6 Aug 2025
Abstract
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular–Elastic Evidential K-Nearest [...] Read more.
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular–Elastic Evidential K-Nearest Neighbor (GEK-NN) approach addresses this gap. In the context of big data, GEK-NN integrates an Elastic Net within the Genetic Algorithm’s fitness function to efficiently sift through vast amounts of data, identifying relevant feature subsets. This process mimics human cognitive behavior of filtering and refining information, similar to concepts in cognitive computing. A granularity metric is further employed to optimize subset size, maximizing its impact. GEK-NN consists of two crucial phases. Initially, an Elastic Net-based feature evaluation is conducted to pinpoint relevant features from the high-dimensional data. Subsequently, granularity-based optimization refines the subset size, adapting to the complexity of big data. Before applying to genomic big data, experiments on UCI datasets demonstrated the feasibility and effectiveness of GEK-NN. By using an Evidence Theory framework, GEK-NN overcomes feature-selection challenges in both low-dimensional UCI datasets and high-dimensional genomic big data, significantly enhancing pattern recognition and classification accuracy. Comparative analyses with existing EK-NN feature-selection methods, using both UCI and high-dimensional gene datasets, underscore GEK-NN’s superiority in handling big data for feature selection and classification. These results indicate that GEK-NN not only enriches EK-NN applications but also offers a cognitive-inspired solution for complex gene data analysis, effectively tackling high-dimensional feature-selection challenges in the realm of big data. Full article
Show Figures

Figure 1

24 pages, 1690 KiB  
Article
Neural Network-Based Predictive Control of COVID-19 Transmission Dynamics to Support Institutional Decision-Making
by Cristina-Maria Stăncioi, Iulia Adina Ștefan, Violeta Briciu, Vlad Mureșan, Iulia Clitan, Mihail Abrudean, Mihaela-Ligia Ungureșan, Radu Miron, Ecaterina Stativă, Michaela Nanu, Adriana Topan and Ioana Nanu
Mathematics 2025, 13(15), 2528; https://doi.org/10.3390/math13152528 - 6 Aug 2025
Abstract
The COVID-19 pandemic was a profoundly influential global occurrence in recent history, impacting daily life, economics, and healthcare systems for an extended period. The abundance of data has been essential in creating models to simulate and forecast the dissemination of infectious illnesses, aiding [...] Read more.
The COVID-19 pandemic was a profoundly influential global occurrence in recent history, impacting daily life, economics, and healthcare systems for an extended period. The abundance of data has been essential in creating models to simulate and forecast the dissemination of infectious illnesses, aiding governments and health organizations in making educated decisions. This research primarily focuses on designing a control technique that incorporates the five most important inputs that impact the spread of COVID-19 on the Romanian territory. Quantitative analysis and data filtering are two crucial aspects to consider when developing a mathematical model. In this study the transfer function principle was used as the most accurate method for modeling the system, based on its superior fit demonstrated in a previous study. For the control strategy, a PI (Proportional-Integral) controller was designed to meet the requirements of the intended behavior. Finally, it is showed that for such complex models, the chosen control strategy, combined with fine tuning, led to very accurate results. Full article
(This article belongs to the Special Issue Control Theory and Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 723 KiB  
Article
Multivariate Modeling of Some Datasets in Continuous Space and Discrete Time
by Rigele Te and Juan Du
Entropy 2025, 27(8), 837; https://doi.org/10.3390/e27080837 - 6 Aug 2025
Abstract
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. [...] Read more.
Multivariate space–time datasets are often collected at discrete, regularly monitored time intervals and are typically treated as components of time series in environmental science and other applied fields. To effectively characterize such data in geostatistical frameworks, valid and practical covariance models are essential. In this work, we propose several classes of multivariate spatio-temporal covariance matrix functions to model underlying stochastic processes whose discrete temporal margins correspond to well-known autoregressive and moving average (ARMA) models. We derive sufficient and/or necessary conditions under which these functions yield valid covariance matrices. By leveraging established methodologies from time series analysis and spatial statistics, the proposed models are straightforward to identify and fit in practice. Finally, we demonstrate the utility of these multivariate covariance functions through an application to Kansas weather data, using co-kriging for prediction and comparing the results to those obtained from traditional spatio-temporal models. Full article
Show Figures

Figure 1

11 pages, 215 KiB  
Article
Personalised Prevention of Falls in Persons with Dementia—A Registry-Based Study
by Per G. Farup, Knut Hestad and Knut Engedal
Geriatrics 2025, 10(4), 106; https://doi.org/10.3390/geriatrics10040106 - 6 Aug 2025
Abstract
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons [...] Read more.
Background/Objectives: Multifactorial prevention of falls in persons with dementia has minimal or non-significant effects. Personalised prevention is recommended. We have previously shown that gait speed, basic activities of daily living (ADL), and depression (high Cornell scores) were independent predictors of falls in persons with mild and moderate cognitive impairment. This study explored person-specific risks of falls related to physical, mental, and cognitive functions and types of dementia: Alzheimer’s disease (AD), vascular dementia (VD), mixed Alzheimer’s disease/vascular dementia (MixADVD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB). Methods: The study used data from “The Norwegian Registry of Persons Assessed for Cognitive Symptoms” (NorCog). Differences between the dementia groups and predictors of falls, gait speed, ADL, and Cornell scores were analysed. Results: Among study participants, 537/1321 (40.7%) reported a fall in the past year, with significant variations between dementia diagnoses. Fall incidence increased with age, comorbidity/polypharmacy, depression, and MAYO fluctuation score and with reduced physical activity, gait speed, and ADL. Persons with VD and MixADVD had high fall incidences and impaired gait speed and ADL. Training of physical fitness, endurance, muscular strength, coordination, and balance and optimising treatment of comorbidities and medication enhance gait speed. Improving ADL necessitates, in addition, relief of cognitive impairment and fluctuations. Relief of depression and fluctuations by psychological and pharmacological interventions is necessary to reduce the high fall risk in persons with DLB. Conclusions: The fall incidence and fall predictors varied significantly. Personalised interventions presuppose knowledge of each individual’s fall risk factors. Full article
17 pages, 1766 KiB  
Article
The Effects of the Red River Jig on the Wholistic Health of Adults in Saskatchewan
by Nisha K. Mainra, Samantha J. Moore, Jamie LaFleur, Alison R. Oates, Gavin Selinger, Tayha Theresia Rolfes, Hanna Sullivan, Muqtasida Fatima and Heather J. A. Foulds
Int. J. Environ. Res. Public Health 2025, 22(8), 1225; https://doi.org/10.3390/ijerph22081225 - 6 Aug 2025
Abstract
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), [...] Read more.
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), social, physical function, and physical fitness benefits of a Red River Jig intervention. In partnership with Li Toneur Nimiyitoohk Métis Dance Group, Indigenous and non-Indigenous adults (N = 40, 39 ± 15 years, 32 females) completed an 8-week Red River Jig intervention. Social support, cultural identity, memory, and mental wellbeing questionnaires, seated blood pressure and heart rate, weight, pulse-wave velocity, heart rate variability, baroreceptor sensitivity, jump height, sit-and-reach flexibility, one-leg and tandem balance, and six-minute walk test were assessed pre- and post-intervention. Community, family, and friend support scores, six-minute walk distance (553.0 ± 88.7 m vs. 602.2 ± 138.6 m, p = 0.002), jump, leg power, and systolic blood pressure low-to-high-frequency ratio increased after the intervention. Ethnic identity remained the same while affirmation and belonging declined, leading to declines in overall cultural identity, as learning about Métis culture through the Red River Jig may highlight gaps in cultural knowledge. Seated systolic blood pressure (116.5 ± 7.3 mmHg vs. 112.5 ± 10.7 mmHg, p = 0.01) and lower peripheral pulse-wave velocity (10.0 ± 2.0 m·s−1 vs. 9.4 ± 1.9 m·s−1, p = 0.04) decreased after the intervention. Red River Jig dance training can improve social support, physical function, and physical fitness for Indigenous and non-Indigenous adults. Full article
(This article belongs to the Special Issue Improving Health and Mental Wellness in Indigenous Communities)
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Gaming Against Frailty: Effects of Virtual Reality-Based Training on Postural Control, Mobility, and Fear of Falling Among Frail Older Adults
by Hammad S. Alhasan and Mansour Abdullah Alshehri
J. Clin. Med. 2025, 14(15), 5531; https://doi.org/10.3390/jcm14155531 - 6 Aug 2025
Abstract
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on [...] Read more.
Background/Objectives: Frailty is a prevalent geriatric syndrome associated with impaired postural control and elevated fall risk. Although conventional exercise is a core strategy for frailty management, adherence remains limited. Virtual reality (VR)-based interventions have emerged as potentially engaging alternatives, but their effects on objective postural control and task-specific confidence in frail populations remain understudied. This study aimed to evaluate the effectiveness of a supervised VR training program using the Nintendo Ring Fit Plus™ on postural control, functional mobility, and balance confidence among frail community-dwelling older adults. Methods: Fifty-one adults aged ≥65 years classified as frail or prefrail were enrolled in a four-week trial. Participants were assigned to either a VR intervention group (n = 28) or control group (n = 23). Participants were non-randomly assigned based on availability and preference. Outcome measures were collected at baseline and post-intervention. Primary outcomes included center of pressure (CoP) metrics—sway area, mean velocity, and sway path. Secondary outcomes were the Timed Up and Go (TUG), Berg Balance Scale (BBS), Activities-specific Balance Confidence (ABC), and Falls Efficacy Scale–International (FES-I). Results: After adjusting for baseline values, age, and BMI, the intervention group showed significantly greater improvements than the control group across all postural control outcomes. Notably, reductions in sway area, mean velocity, and sway path were observed under both eyes-open and eyes-closed conditions, with effect sizes ranging from moderate to very large (Cohen’s d = 0.57 to 1.61). For secondary outcomes, significant between-group differences were found in functional mobility (TUG), balance performance (BBS), and balance confidence (ABC), with moderate-to-large effect sizes (Cohen’s d = 0.53 to 0.73). However, no significant improvement was observed in fear of falling (FES-I), despite a small-to-moderate effect size. Conclusions: A supervised VR program significantly enhanced postural control, mobility, and task-specific balance confidence in frail older adults. These findings support the feasibility and efficacy of VR-based training as a scalable strategy for mitigating frailty-related mobility impairments. Full article
(This article belongs to the Special Issue Clinical Management of Frailty)
Show Figures

Figure 1

26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

22 pages, 2219 KiB  
Article
Numerical Modeling of Expansive Soil Behavior Using an Effective Stress-Based Constitutive Relationship for Unsaturated Soils
by Sahand Seyfi, Ali Ghassemi and Rashid Bashir
Geotechnics 2025, 5(3), 53; https://doi.org/10.3390/geotechnics5030053 - 5 Aug 2025
Abstract
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that [...] Read more.
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that links the soil void ratio to both net stress and matric suction. A large number of fitting parameters are typically needed to accurately fit a two-variable void ratio surface equation to laboratory test data. In this study, a single-stress state variable framework was adopted to describe the void ratio as a function of effective stress for unsaturated soils. The proposed approach was applied to fit void ratio–effective stress constitutive curves to laboratory test data for two different expansive clays. Additionally, a finite element model coupling variably saturated flow and stress–strain analysis was developed to simulate the volume change behavior of expansive clay subjected to moisture fluctuations. The model utilizes suction stress to compute the effective stress field and incorporates the dependency of soil modulus on volumetric water content based on the proposed void ratio–effective stress relationship. The developed numerical model was validated against a benchmark problem in which a layer of Regina expansive clay was subjected to a constant infiltration rate. The results demonstrate the effectiveness of the proposed model in simulating expansive soil deformations under varying moisture conditions over time. Full article
Show Figures

Figure 1

22 pages, 1254 KiB  
Systematic Review
How Do the Psychological Functions of Eating Disorder Behaviours Compare with Self-Harm? A Systematic Qualitative Evidence Synthesis
by Faye Ambler, Andrew J. Hill, Thomas A. Willis, Benjamin Gregory, Samia Mujahid, Daniel Romeu and Cathy Brennan
Healthcare 2025, 13(15), 1914; https://doi.org/10.3390/healthcare13151914 - 5 Aug 2025
Abstract
Background: Eating disorders (EDs) and self-harm (SH) are both associated with distress, poor psychosocial functioning, and increased risk of mortality. Much of the literature discusses the complex interplay between SH and ED behaviours where co-occurrence is common. The onset of both is typically [...] Read more.
Background: Eating disorders (EDs) and self-harm (SH) are both associated with distress, poor psychosocial functioning, and increased risk of mortality. Much of the literature discusses the complex interplay between SH and ED behaviours where co-occurrence is common. The onset of both is typically seen during teenage years into early adulthood. A better understanding of the functions of these behaviours is needed to guide effective prevention and treatment, particularly during the crucial developmental years. An earlier review has explored the functions of self-harm, but an equivalent review for eating disorder behaviours does not appear to have been completed. Objectives: This evidence synthesis had two objectives. First, to identify and synthesise published first-hand accounts of the reasons why people engage in eating disorder behaviours with the view to develop a broad theoretical framework of functions. Second, to draw comparisons between the functions of eating disorder behaviours and self-harm. Methods: A qualitative evidence synthesis reporting first-hand accounts of the reasons for engaging in eating disorder behaviours. A ‘best fit’ framework synthesis, using the a priori framework from the review of self-harm functions, was undertaken with thematic analysis to categorise responses. Results: Following a systematic search and rigorous screening process, 144 studies were included in the final review. The most commonly reported functions of eating disorder behaviours were distress management (affect regulation) and interpersonal influence. This review identified significant overlap in functions between self-harm and eating disorder behaviours. Gender identity, responding to food insecurity, to delay growing up and responding to weight, shape, and body ideals were identified as functions more salient to eating disorder behaviours. Similarly, some self-harm functions were not identified in the eating disorder literature. These were experimenting, averting suicide, personal language, and exploring/maintaining boundaries. Conclusions: This evidence synthesis identified a prominent overlap between psychological functions of eating disorder behaviours and self-harm, specifically in relation to distress management (affect regulation). Despite clear overlap in certain areas, some functions were found to be distinct to each behaviour. The implications for delivering and adapting targeted interventions are discussed. Full article
Show Figures

Figure 1

20 pages, 9066 KiB  
Article
Dynamic Modeling of Poultry Litter Composting in High Mountain Climates Using System Identification Techniques
by Alvaro A. Patiño-Forero, Fabian Salazar-Caceres, Harrynson Ramirez-Murillo, Fabiana F. Franceschi, Ricardo Rincón and Geraldynne Sierra-Rueda
Automation 2025, 6(3), 36; https://doi.org/10.3390/automation6030036 - 5 Aug 2025
Viewed by 39
Abstract
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these [...] Read more.
Poultry waste composting is a necessary technique for agricultural farm sustainability. Composting is a dynamic process influenced by multiple variables. Humidity and temperature play fundamental roles in analyzing its different phases according to the environment and composting technique. Current developments for monitoring these variables include automation via intelligent Internet of Things (IoT)-based sensor networks for variable tracking. These advancements serve as efficient tools for modeling that facilitate the simulation and prediction of composting process variables to improve system efficiency. Therefore, this paper presents the dynamic modeling of composting via forced aeration processes in high-mountain climates, with the intent of estimating biomass temperature dynamics in different phases using system identification techniques. To this end, four dynamic model estimation structures are employed: transfer function (TF), state space (SS), process (P), and Hammerstein–Wiener (HW). The and model quality, fitting results, and standard error metrics of the different models found in each phase are assessed through residual analysis from each structure by validation with real system data. Our results show that the second-order underdamped multiple-input–single-output (MISO) process model with added noise demonstrates the best fit and validation performance. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 487
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

Back to TopTop