Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,393)

Search Parameters:
Keywords = fuel-energy properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2458 KiB  
Article
Numerical Analysis of Heat Transfer in a Double-Pipe Heat Exchanger for an LPG Fuel Supply System
by Seongwoo Lee, Younghun Kim, Ancheol Choi and Sungwoong Choi
Energies 2025, 18(15), 4179; https://doi.org/10.3390/en18154179 - 6 Aug 2025
Abstract
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in [...] Read more.
LPG fuel supply systems are increasingly important for improving energy efficiency and reducing carbon emissions in the shipping industry. The primary objective of this research is to investigate the heat transfer phenomena to enhance the thermal performance of double-pipe heat exchangers (DPHEs) in LPG fuel supply systems. This study investigates the heat transfer performance of a glycol–steam double-pipe heat exchanger (DPHE) within an LPG fuel supply system under varying operating conditions. A computational model and methodology were developed and validated by comparing the numerical results with experimental data obtained from commissioning tests. Additionally, the effects of turbulence models and parametric variations were evaluated by analyzing the glycol–water mixing ratio and flow direction—both of which are critical operational parameters for DPHE systems. Numerical validation against the commissioning data showed a deviation of ±2% under parallel-flow conditions, confirming the reliability of the proposed model. With respect to the glycol–water mixing ratio and flow configuration, thermal conductance (UA) decreased by approximately 11% in parallel flow and 13% in counter flow for every 20% increase in glycol concentration. Furthermore, parallel flow exhibited approximately 0.6% higher outlet temperatures than counter flow, indicating superior heat transfer efficiency under parallel-flow conditions. Finally, the heat transfer behavior of the DPHE was further examined by considering the effects of geometric characteristics, pipe material, and fluid properties. This study offers significant contributions to the engineering design of double-pipe heat exchanger systems for LPG fuel supply applications. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

14 pages, 2082 KiB  
Article
Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
by Tadeusz Dziok, Justyna Łaskawska and František Hopan
Energies 2025, 18(15), 4109; https://doi.org/10.3390/en18154109 - 2 Aug 2025
Viewed by 261
Abstract
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the [...] Read more.
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the leaves can change during the growth period. These changes can result from both the natural growth process and environmental factors—particulate matter adsorption. The main objective was to determine changes in the characteristics of leaves and needles during the growth period (from May to October). Furthermore, to determine the effect of adsorbed particulate matter, the washing process was carried out. Studies were carried out for three tree species: Norway maple, horse chestnut and European larch. Proximate and ultimate analysis was performed and mercury content was determined. During the growth period, beneficial changes were observed: an increase in carbon content and a decrease in hydrogen and sulphur content. The unfavourable change was a significant increase in ash content, which caused a decrease in calorific value. The increase in ash content was caused by adsorbed particulate matter. They were mostly absorbed by the tissues of the needle and leaves and could not be removed by washing the surface. Full article
Show Figures

Figure 1

31 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 132
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Viewed by 257
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 407
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 323
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

36 pages, 4084 KiB  
Review
Exploring Activated Carbons for Sustainable Biogas Upgrading: A Comprehensive Review
by Deneb Peredo-Mancilla, Alfredo Bermúdez, Cécile Hort and David Bessières
Energies 2025, 18(15), 4010; https://doi.org/10.3390/en18154010 - 28 Jul 2025
Viewed by 460
Abstract
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy [...] Read more.
Global energy supply remains, to this day, mainly dominated by fossil fuels, aggravating climate change. To increase and diversify the share of renewable energy sources, there is an urgent need to expand the use of biofuels that could help in decarbonizing the energy mix. Biomethane, obtained by upgrading biogas, simultaneously allows the local production of clean energy, waste valorization, and greenhouse gas emissions mitigation. Among various upgrading technologies, the use of activated carbons in adsorption-based separation systems has attracted significant attention due to their versatility, cost-effectiveness, and sustainability potential. The present review offers a comprehensive analysis of the factors that influence the efficiency of activated carbons on carbon dioxide adsorption and separation for biogas upgrading. The influence of activation methods, activation conditions, and precursors on the biogas adsorption performance of activated carbons is revised. Additionally, the role of adsorbent textural and chemical properties on gas adsorption behavior is highlighted. By synthesizing current knowledge and perspectives, this work provides guidance for future research that could help in developing more efficient, cost-effective, and sustainable adsorbents for biogas upgrading. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 1577 KiB  
Article
Determination of Acidity of Edible Oils for Renewable Fuels Using Experimental and Digitally Blended Mid-Infrared Spectra
by Collin G. White, Ayuba Fasasi, Chanda Swalley and Barry K. Lavine
J. Exp. Theor. Anal. 2025, 3(3), 20; https://doi.org/10.3390/jeta3030020 - 28 Jul 2025
Viewed by 190
Abstract
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages [...] Read more.
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages of renewables, specifically reduced emissions of greenhouse gases. An important property of the feedstock that is crucial for the conversion of edible oils to renewable fuels is the total acid number (TAN), as even a small increase in TAN for the feedstock can lead to corrosion of the catalyst in the refining process. Currently, the TAN is determined by potentiometric titration, which is time-consuming, expensive, and requires the preparation of reagents. As part of an effort to promote the use of renewable fuels, a partial least squares regression method with orthogonal signal correction to remove spectral information related to the sample background was developed to determine the TAN from the mid-infrared (IR) spectra of the feedstock. Digitally blended mid-IR spectral data were generated to fill in regions of the PLS calibration where there were very few samples. By combining experimental and digitally blended mid-IR spectral data to ensure adequate sample representation in all regions of the spectra–property calibration and better understand the spectra–property relationship through the identification of sample outliers in the original data that can be difficult to detect because of swamping, a PLS regression model for TAN (R2 = 0.992, cross-validated root mean square error = 0.468, and bias = 0.0036) has been developed from 118 experimental and digitally blended mid-IR spectra of commercial feedstock. Thus, feedstock whose TAN value is too high for refining can be flagged using the proposed mid-IR method, which is faster and easier to use than the current titrimetric method. Full article
Show Figures

Figure 1

14 pages, 838 KiB  
Article
Impact of Water Vapor on the Predictive Modeling of Full-Scale Indirectly Heated Biomass Torrefaction System Throughput Capacity
by Chaitanya Bhatraju, Matthew Russell and Martijn Dekker
Energies 2025, 18(15), 3978; https://doi.org/10.3390/en18153978 - 25 Jul 2025
Viewed by 242
Abstract
Biomass torrefaction must be self-sustaining and continuous to be commercially viable, eliminating dependence on additional fuels while achieving industrial-scale production. This study presents a predictive model of a full-scale continuous biomass torrefaction process that explicitly incorporates the radiation absorption properties of torrefaction gas, [...] Read more.
Biomass torrefaction must be self-sustaining and continuous to be commercially viable, eliminating dependence on additional fuels while achieving industrial-scale production. This study presents a predictive model of a full-scale continuous biomass torrefaction process that explicitly incorporates the radiation absorption properties of torrefaction gas, with a focus on water vapor. Previous research, primarily based on lab-scale batch processes, has not adequately addressed scale-up challenges or the dynamic evolution of torrefaction gas. Industrial insights from Perpetual Next confirm that water vapor significantly impacts reactor performance by absorbing heat and reducing radiative flux to the biomass. Simulations show that neglecting water vapor absorption in reactor design can lead to throughput deviations of 10–20%, affecting process stability and efficiency. Industrial-scale validation demonstrates that the model accurately predicts this effect, ensuring realistic energy demand and throughput expectations. By explicitly incorporating water vapor absorption into the radiation balance, the model provides a validated framework for optimizing reactor design and process scale-up. It demonstrates that failing to consider this effect can lead to operational instability and deviations from the intended torrefaction severity, ultimately affecting industrial-scale performance and self-sustaining operation. Full article
Show Figures

Figure 1

26 pages, 3489 KiB  
Article
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
by Dapai Shi, Jiaheng Wang, Kangjie Liu, Chengwei Sun, Zhenghong Wang and Xiaoqing Liu
World Electr. Veh. J. 2025, 16(8), 418; https://doi.org/10.3390/wevj16080418 - 24 Jul 2025
Viewed by 248
Abstract
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine [...] Read more.
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited, particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First, a quantitative model evaluates TCO from vehicle purchase to disposal. Second, a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally, a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW, H-FCV can achieve optimal fuel economy and hydrogen consumption. However, even with advanced technology, their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system, assuming negligible fuel cell degradation. In the short term, H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship. Full article
Show Figures

Figure 1

21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 297
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

17 pages, 2649 KiB  
Article
Effect of Low-Temperature Preheating on the Physicochemical Properties and Energy Quality of Pine Sawdust
by Tingzhou Lei, Yang Mei, Yuanna Li, Yunbo Wang, Suyang Liu and Yantao Yang
Energies 2025, 18(14), 3875; https://doi.org/10.3390/en18143875 - 21 Jul 2025
Cited by 1 | Viewed by 268
Abstract
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and [...] Read more.
The advantages of torrefaction preheating, including the production of a hydrophobic solid product, improved particle size distribution, enhanced fuel properties with fewer environmental issues, decreased moisture content, and reduced volatile content. In order to meet the technical requirements of biomass oriented value-added and energy saving and emission reduction, pine sawdust (PS) was taken as the research object, and the physicochemical properties of the PS samples preheated at a low temperature were analyzed by synchronous thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and organic element analyzer (EA). The effect of preheating at a lower temperature on the physicochemical properties of PS was discussed. The results showed that, under the preheating condition of 200 °C, compared with PS, the water content of PS-200 decreased by 3.23%, the volatile content decreased by 3.69%, the fixed carbon increased by 6.81%, the calorific value increased by 6.90%, the equilibrium water content decreases from 7.06% to 4.46%, and the hydrophobicity increases. This research, based on the improvement of the quality of agricultural and forestry waste and the promotion of the strategy of converting waste into energy, has contributed to the advancement of sustainable energy production. Full article
Show Figures

Figure 1

21 pages, 3359 KiB  
Article
Carbonisation of Quercus spp. Wood: Temperature, Yield and Energy Characteristics
by Juan Carlos Contreras-Trejo, Artemio Carrillo-Parra, Maginot Ngangyo-Heya, José Guadalupe Rutiaga-Quiñones, Jorge Armando Chávez-Simental and José Rodolfo Goche-Télles
Processes 2025, 13(7), 2302; https://doi.org/10.3390/pr13072302 - 19 Jul 2025
Viewed by 423
Abstract
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for [...] Read more.
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for 30 min, 700 °C for 30 min and under two progressive heating profiles: one starting at 550 °C for 30 min and increasing to 700 °C for a further 30 min, and another starting at 300 °C for 2 h and rising to 1000 °C for 10 min. Mass and volumetric yield, bulk density, proximate analysis, calorific value, energy yield and fuel ratio were determined. The results showed that carbonisation temperature affected charcoal properties. Mass and volumetric yields were highest at 550 °C (30.10% and 4.81 m3 t−1) in Q. convallata and Q. urbanii. At higher temperatures, bulk density (0.56 g cm−3), fixed carbon (91.51%) and calorific value (32.82 MJ kg−1) increased in Q. urbanii. Lower temperatures led to lower moisture levels (2.46%) and a higher energy yield (48.02%). Overall, temperatures above 700 °C improved energy properties, while those below 550 °C favoured higher yields. Species’ characteristics also influenced charcoal quality. These findings offer valuable insights into optimising the carbonisation of Quercus species and supporting the development of more efficient, sustainable charcoal production methods. Full article
(This article belongs to the Special Issue Research on Conversion and Utilization of Waste Biomass)
Show Figures

Figure 1

27 pages, 2729 KiB  
Review
Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives
by Geon-Ju Choi, Sang-Hyun Sohn, Se-Jin Kim and Il-Kyu Park
Polymers 2025, 17(14), 1962; https://doi.org/10.3390/polym17141962 - 17 Jul 2025
Viewed by 465
Abstract
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged [...] Read more.
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged as a promising technology due to their high voltage output, lightweight design, and simple fabrication. However, the performance of TENGs is often limited by a low surface charge density, inadequate dielectric properties, and poor charge retention of triboelectric materials. To address these challenges, recent research has focused on the use of polymer composites that incorporate various functional fillers. The filler materials play roles in improving dielectric performance and enhancing mechanical durability, thereby boosting triboelectric output even in harsh environments, while also diminishing charge loss. This review comprehensively examines the role of polymer composite design in TENG performance, with particular emphasis on materials categorized by their triboelectric polarity. Tribo-negative polymers, such as PDMS and PVDF, benefit from filler incorporation and phase engineering to enhance surface charge density and charge retention. By contrast, tribo-positive materials like nylon and cellulose have demonstrated notable improvements in mechanical robustness and environmental stability through composite strategies. The interplay between material selection, surface engineering, and filler design is highlighted as a critical path toward developing high-performance, self-powered TENG systems. Finally, this review discusses the current challenges and future opportunities for advancing TENG technology toward practical and scalable applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Influence of Mg/Al Coating on the Ignition and Combustion Behavior of Boron Powder
by Yanjun Wang, Yueguang Yu, Xin Zhang and Siyuan Zhang
Coatings 2025, 15(7), 828; https://doi.org/10.3390/coatings15070828 - 16 Jul 2025
Viewed by 268
Abstract
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using [...] Read more.
Amorphous boron powder, as a high-energy fuel, is widely used in the energy sector. However, its ignition and combustion difficulties have long limited its performance in propellants, explosives, and pyrotechnics. In this study, Mg/Al-coated boron powder with enhanced combustion properties was synthesized using the electrical explosion method. To investigate the effect of Mg/Al coating on the ignition and combustion behavior of boron powder, four samples with different Mg/Al coating contents (4 wt.%, 6 wt.%, 8 wt.%, and 10 wt.%) were prepared. Compared with raw B95 boron powder, the coated powders showed a significant reduction in particle size (from 2.9 μm to 0.2–0.3 μm) and a marked increase in specific surface area (from 10.37 m2/g to over 20 m2/g). The Mg/Al coating formed a uniform layer on the boron surface, which reduced the ignition delay time from 143 ms to 40–50 ms and significantly improved the combustion rate, combustion pressure, and combustion calorific value. These results demonstrate that Mg/Al coating effectively promotes rapid ignition and sustained combustion of boron particles. Furthermore, with the increasing Mg/Al content, the ignition delay time decreased progressively, while the combustion rate, combustion pressure, and heat release increased accordingly, reaching optimal values at 8 wt.% Mg/Al. An analysis of the combustion residues revealed that both Mg and Al reacted with boron oxide to form new multicomponent compounds, which reduced the barrier effect of the oxide layer on oxygen diffusion into the boron core, thereby facilitating continuous combustion and high heat release. This work innovatively employs the electrical explosion method to prepare dual-metal-coated boron powders and, for the first time, reveals the synergistic promotion effect of Mg and Al coatings on the ignition and combustion performance of boron. The results provide both experimental data and theoretical support for the high-energy release and practical application of boron-based fuels. Full article
Show Figures

Graphical abstract

Back to TopTop