Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = fruit stone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7056 KiB  
Article
Effects of Packaging Constraints on Vibration Damage of ‘Huangguan’ Pear During Simulated Transport
by Lijun Wang, Zechen Xie, Yumeng Wu, Jinguo Gao and Haiyan Song
Horticulturae 2025, 11(7), 749; https://doi.org/10.3390/horticulturae11070749 - 1 Jul 2025
Viewed by 303
Abstract
Fruit is typically transported in stacked packaging units, where external packaging constraints play a critical role in influencing mechanical damage during transit. This study primarily investigated the effects of external packaging constraints on vibration-induced damage and response vibration in ‘Huangguan’ pears (Pyrus [...] Read more.
Fruit is typically transported in stacked packaging units, where external packaging constraints play a critical role in influencing mechanical damage during transit. This study primarily investigated the effects of external packaging constraints on vibration-induced damage and response vibration in ‘Huangguan’ pears (Pyrus bretschneideri Rehd. ‘Huangguan’). Three external packaging constraint types—free constraint, elastic constraint, and fixed constraint—were applied to a two-layer stacked packaging system to limit vertical movement. The pears inside the containers were divided by a corrugated paperboard. Vibration excitation was simulated using the ASTM D4169 spectrum at three vibration levels. Damage indicators, including damage area, flesh firmness, respiratory rate, weight loss, titratable acidity, ascorbic acid, and tissue microstructure, were analyzed after vibration experiments. The results demonstrated that external packaging constraint type significantly affects the mechanical damage of ‘Huangguan’ pears, with damage severity being closely related to constraint strength. Comprehensive analysis revealed that the most severe damage occurred under free constraint, while the least damage was observed under fixed constraint. Stacking position also influenced damage, as pears on the top layer exhibited more severe damage compared to those on the bottom layer. The response vibration results aligned with the observed damage patterns. SEM analysis further revealed that vibration disrupted the tissue microstructure and damaged stone cells, which decreased in number and even disappeared at higher vibration levels. This study provides valuable insights for improving postharvest transport packaging designs and minimizing fruit loss during logistics. Full article
Show Figures

Figure 1

21 pages, 4961 KiB  
Article
Application of Vis/NIR Spectroscopy in the Rapid and Non-Destructive Prediction of Soluble Solid Content in Milk Jujubes
by Yinhai Yang, Shibang Ma, Feiyang Qi, Feiyue Wang and Hubo Xu
Agriculture 2025, 15(13), 1382; https://doi.org/10.3390/agriculture15131382 - 27 Jun 2025
Viewed by 255
Abstract
Milk jujube has become an increasingly popular tropical fruit. The sugar content, which is commonly represented by the soluble solid content (SSC), is a key indicator of the flavor, internal quality, and market value of milk jujubes. Traditional methods for assessing SSC are [...] Read more.
Milk jujube has become an increasingly popular tropical fruit. The sugar content, which is commonly represented by the soluble solid content (SSC), is a key indicator of the flavor, internal quality, and market value of milk jujubes. Traditional methods for assessing SSC are time-consuming, labor-intensive, and destructive. These methods fail to meet the practical demands of the fruit market. A rapid, stable, and effective non-destructive detection method based on visible/near-infrared (Vis/NIR) spectroscopy is proposed here. A Vis/NIR reflectance spectroscopy system covering 340–1031 nm was constructed to detect SSC in milk jujubes. A structured spectral modeling framework was adopted, consisting of outlier elimination, dataset partitioning, spectral preprocessing, feature selection, and model construction. Comparative experiments were conducted at each step of the framework. Special emphasis was placed on the impact of outlier detection and dataset partitioning strategies on modeling accuracy. A data-augmentation-based unsupervised anomaly sample elimination (DAUASE) strategy was proposed to enhance the data validity. Multiple data partitioning strategies were evaluated, including random selection (RS), Kennard–Stone (KS), and SPXY methods. The KS method achieved the best preservation of the original data distribution, improving the model generalization. Several spectral preprocessing and feature selection methods were used to enhance the modeling performance. Regression models, including support vector regression (SVR), partial least squares regression (PLSR), multiple linear regression (MLR), and backpropagation neural network (BP), were compared. Based on a comprehensive analysis of the above results, the DAUASE + KS + SG + SNV + CARS + SVR model exhibited the highest prediction performance. Specifically, it achieved an average precision (APp) of 99.042% on the prediction set, a high coefficient of determination (RP2) of 0.976, and a low root-mean-square error of prediction (RMSEP) of 0.153. These results indicate that Vis/NIR spectroscopy is highly effective and reliable for the rapid and non-destructive detection of SSC in milk jujubes, and it may also provide a theoretical basis for the practical application of rapid and non-destructive detection in milk jujubes and other jujube varieties. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 4063 KiB  
Article
Fruit Seed Biomass as an Alternative Material to Use in Recycling Processes of Metals from Industrial Waste
by Lukasz Kortyka, Jerzy Labaj, Lukasz Mycka, Tomasz Matula, Szymon Ptak, Dorota Babilas, Tomasz Wojtal, Leszek Blacha, Albert Smalcerz, Robert Findorak and Bartosz Chmiela
Materials 2025, 18(13), 3063; https://doi.org/10.3390/ma18133063 - 27 Jun 2025
Viewed by 317
Abstract
The metallurgical industry has been constantly changing over the past decades. On the one hand, there has been the modernization and improvement of production efficiency, and on the other hand, we have seen a reduction in the negative impact on the environment. The [...] Read more.
The metallurgical industry has been constantly changing over the past decades. On the one hand, there has been the modernization and improvement of production efficiency, and on the other hand, we have seen a reduction in the negative impact on the environment. The possibility of using alternative materials and the circular economy is significant in this area. In the present work, research was carried out to determine the usefulness of biomass in the form of fruit seeds for the recycling processes of metal-bearing raw materials, including slags from copper production processes, which are characterized by a much higher metal content than ores of this metal. The main carbon-bearing material/reducer used in the process is metallurgical coke. The transformation of the European metal industry has been observed in recent years. To carry out the physicochemical characterization of the tested material, a research methodology was adopted using tools to determine the stability of behavior at high temperatures, chemical composition, and volatile components. Thermodynamic analysis was carried out, indicating the theoretical course of reactions of individual system components and thermal effects, allowing a determination of whether the assumed reactions are endothermic or exothermic. The planned research ends with the reduction process in conditions similar to those carried out in industrial conditions. Enforced by the guidelines for reducing CO2 emissions, it contributes to a significant reduction in the demand for coke. This paper addresses the issue of determining the feasibility of using selected bioreducers, including cherry stones, to verify their suitability in the process of reducing copper oxides. The study used copper slag with a composition similar to slags generated at the copper production stage in a flash furnace. The results obtained in reducing copper content above 98 wt. % indicate the great potential of this type of bioreducer. It should be noted that, unlike conventional fossil fuels, the use of cherry stones to reduce copper slag can be considered an environmentally neutral method of carbon offset. The resulting secondary slag is a waste product that can be stored and disposed of without harmful environmental effects due to its low lead content. An additional advantage is the relatively wide availability of cherry stones. Full article
Show Figures

Figure 1

12 pages, 1384 KiB  
Article
Candidate Gene Variants Linked to Brown Rot Susceptibility in the European Plum Genome
by Raminta Antanynienė, Monika Kurgonaitė, Vidmantas Bendokas and Birutė Frercks
Agronomy 2025, 15(7), 1562; https://doi.org/10.3390/agronomy15071562 - 26 Jun 2025
Viewed by 350
Abstract
European plum (Prunus domestica) is among the most important stone fruits cultivated worldwide. However, its production is significantly affected by fungal brown rot disease, caused by Monilinia spp. pathogens, which threaten the crop throughout the entire vegetation period. This study aimed [...] Read more.
European plum (Prunus domestica) is among the most important stone fruits cultivated worldwide. However, its production is significantly affected by fungal brown rot disease, caused by Monilinia spp. pathogens, which threaten the crop throughout the entire vegetation period. This study aimed to visually assess brown rot resistance and susceptibility in European plum and to perform whole-genome sequencing (WGS) of selected cultivars and hybrids grown in Lithuania, with the goal of identifying candidate single-nucleotide polymorphisms (SNPs) associated with disease response. WGS was performed for 20 European plum cultivars and hybrids with known resistance or susceptibility profiles, generating over 1,4 million SNPs. These SNPs were filtered to identify genetic variants associated with brown rot disease. Three candidate SNPs were found to be significantly associated with disease response (located on chromosomes G5 and G8) and one linked to susceptibility (on chromosome G5). Identified SNPs were located in genes encoding alcohol dehydrogenase family enzymes (resistant cultivars, G5 chromosome) and beta-glucosidase family enzymes (variants found in both resistant and susceptible cultivars, G5 chromosome), which are important for plant biotic stress response. The findings of this study provide a valuable foundation for the development of molecular markers for identifying resistant and susceptible cultivars and may inform future European plum breeding programs. Full article
Show Figures

Figure 1

16 pages, 5585 KiB  
Article
Effect of Storage Conditions on the Quality Attributes of UV-C Light-Pretreated Plums (Prunus salicina cv. “Moscatel”)
by Paola Hernández-Carranza, María Nüzhet Trejo-Salauz, Raúl Avila-Sosa Sánchez, Diana Milena Torres-Cifuentes, Carolina Ramírez-López, Irving Israel Ruiz-López and Carlos Enrique Ochoa-Velasco
Horticulturae 2025, 11(6), 683; https://doi.org/10.3390/horticulturae11060683 - 14 Jun 2025
Viewed by 766
Abstract
Plums are one of the most important stone fruits worldwide. Surprisingly, the effect of UV-C light on improving their bioactive compounds and its effect during storage has not been explored. This research aimed to assess the effect of UV-C light on the bioactive [...] Read more.
Plums are one of the most important stone fruits worldwide. Surprisingly, the effect of UV-C light on improving their bioactive compounds and its effect during storage has not been explored. This research aimed to assess the effect of UV-C light on the bioactive compounds and antioxidant capacity of plums, as well as to evaluate the storage conditions on the quality attributes of these fruits. Plums were UV-C light-irradiated (0, 0.175, and 0.356 kJ/m2) to analyze their effect on phenolic compounds, total anthocyanins, and antioxidant capacity. A selected dose of UV-C light treatment was applied to plums as a pretreatment to assess the effect of packaging (non-packed, packed in closed polyethylene boxes, and packed in closed polyethylene boxes with perforations) and temperature (5, 15, and 20 °C) on the quality characteristics of plums using a 32 experimental design. The results showed that phenolic compounds (3–10%), total anthocyanins (22–39%), and antioxidant capacity (8–15%) increased with the UV-C light treatment (0.356 kJ/m2). In storage, firmness remained constant, and color parameters (a* and b*) were reduced in all conditions, whereas weight loss was lower in plums stored in closed packages. Moreover, total anthocyanins and antioxidant capacity were enhanced under all storage conditions. The microbial load decreased due to the UV-C light treatment and remained constant during storage time (<100 CFU/g). Storing the plums at a low temperature in a closed package effectively preserved the quality attributes of plums for 40 days without affecting the sensory acceptance. Full article
Show Figures

Figure 1

14 pages, 540 KiB  
Article
Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits
by Balnur Kabylbekova, Toigul Nurseitova, Zarina Yussupova, Timur Turdiyev, Irina Kovalchuk, Svetlana Dolgikh, Sagi Soltanbekov, Aigerim Seisenova and Aigul Madenova
Horticulturae 2025, 11(6), 633; https://doi.org/10.3390/horticulturae11060633 - 5 Jun 2025
Viewed by 603
Abstract
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is [...] Read more.
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is the most critical viral pathogen worldwide, severely threatening the sustainable cultivation of stone fruits and posing risks to food security. This study aimed to evaluate virus management strategies in stone fruit crops to facilitate the production of healthy planting material from valuable genotypes. Field surveys were conducted in plum and apricot orchards located in the Almaty region (Southeast Kazakhstan) and the Saryagash region (Southern Kazakhstan). Plant samples were tested for the presence of the following viruses: apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), PPV, prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), cherry green ring mottle virus (CGRMV), and myrobalan latent ringspot virus (MLRSV). Real-time RT-PCR diagnostics confirmed the presence of PPV in the ‘Stanley’ and ‘Ansar’ cultivars and Prunus armeniaca genotypes, while both PPV and ACLSV were detected in the ‘Ayana’ variety. Chemotherapy (Ribavirin), thermotherapy, cryotherapy, and shoot apical meristem (SAM) culture, both individually and in combination, were used to eliminate viruses and regenerate virus-free plants. Successful virus eradication was achieved for PPV and ACLSV. However, the ‘Stanley’ and ‘Ansar’ cultivars did not survive the treatment process, likely due to high thermo- or cryo-sensitivity. As a result of this research, an in vitro collection of virus-free plants was established, comprising eight rootstocks, six plum cultivars, and three apricot genotypes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

16 pages, 889 KiB  
Article
Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars
by Monika Mieszczakowska-Frąc, Niall John Dickinson and Dorota Konopacka
Agronomy 2025, 15(6), 1351; https://doi.org/10.3390/agronomy15061351 - 30 May 2025
Viewed by 554
Abstract
The purpose of this study was to determine the effect of postharvest ripening on the concentration of phenolic compounds and antioxidant activity in fruits of ten plum cultivars. The degree of ripeness was defined as the CIRG index, based on the CIE Lab [...] Read more.
The purpose of this study was to determine the effect of postharvest ripening on the concentration of phenolic compounds and antioxidant activity in fruits of ten plum cultivars. The degree of ripeness was defined as the CIRG index, based on the CIE Lab color values and ranging from 1.05 to 10.04, soluble solids (12.9 to 20.7%), and firmness (4.47 to 13.64 N). Fruits were analyzed directly after harvest and after 3 and 6 days of storage at 18 °C. The CIRG index increased by 2% to 23% after 3 days of storage, and by as much as 64% after 6 days, depending on the cultivar. Ripening resulted in increased concentration of phenolic compounds and in higher antioxidant activity. The predominant compounds in the majority of the cultivars were proanthocyanidins, which constituted over 50% of the total polyphenols, at concentrations between 30 and 453 mg 100 g−1 FW. Additionally, postharvest ripening caused the proanthocyanidins to increase up to 76%. The polymerization of proanthocyanidins ranged from 6.6 to 20.0. For some cultivars, the concentration of anthocyanins approximately doubled after 6 days of fruit storage. Fruits of ‘Čačanska Najbolja’ and ‘Čačanska Lepotica’ were characterized by the highest concentration of bioactive compounds and the highest antioxidant activity. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 736 KiB  
Review
Application of Smart Packaging on the Preservation of Different Types of Perishable Fruits
by Andreas Panou, Dimitrios G. Lazaridis and Ioannis K. Karabagias
Foods 2025, 14(11), 1878; https://doi.org/10.3390/foods14111878 - 26 May 2025
Viewed by 1526
Abstract
The packaging of perishable products, such as fruits, contributes to their preservation during storage and safe transportation. The use of suitable packaging materials contributes to forming a desirable atmosphere inside the package so that the level of respiration, transpiration, and ethylene emission can [...] Read more.
The packaging of perishable products, such as fruits, contributes to their preservation during storage and safe transportation. The use of suitable packaging materials contributes to forming a desirable atmosphere inside the package so that the level of respiration, transpiration, and ethylene emission can be kept low. However, it would be useful for consumers to know relevant information on the deterioration rate of different types of fruit (tree fruits, berries, stone fruits, and aggregate accessory fruits). The technology of intelligent and active packaging systems (smart packaging) enables the provision of information related to the deterioration rate of fruits to consumers and, in parallel, extends the shelf life of fruits and other plant-based foods, maintaining a high quality. Intelligent packaging systems include biosensors and gas sensors, along with microbial, freshness, and time–temperature indicators. On the other hand, the active packaging system includes the use of moisture, odor, and gas absorbers, along with antioxidant and antimicrobial agents to maintain the quality of plant-based foods and extend their shelf life. This review article aims to make an in-depth evaluation of the most relevant literature on this topic by highlighting the challenges, trends, and future directions related to different types of fruits. Full article
Show Figures

Figure 1

40 pages, 10249 KiB  
Review
Utilizing Agro-Waste as Aggregate in Cement Composites: A Comprehensive Review of Properties, Global Trends, and Applications
by Ivanka Netinger Grubeša, Dunja Šamec, Sandra Juradin and Marijana Hadzima-Nyarko
Materials 2025, 18(10), 2195; https://doi.org/10.3390/ma18102195 - 9 May 2025
Viewed by 1427
Abstract
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with [...] Read more.
Amid growing environmental concerns and the increasing demand for sustainable construction practices, the exploration of alternative materials in building applications has garnered significant attention. This paper provides a comprehensive review of the use of agricultural waste as an aggregate in cementitious composites, with a particular focus on palm kernel shells, coconut shells, hazelnut, peanut and pistachio shells, stone fruit shells and pits, date and grape seeds, rice husks, maize (corn) cobs, and sunflower seed shells. For each type of agro-waste, the paper discusses key physical and mechanical properties, global production volumes, and primary countries of origin. Furthermore, it offers an in-depth analysis of existing research on the incorporation of these materials into cement-based composites, highlighting both the advantages and limitations of their use. Although the integration of agro-waste into construction materials presents certain challenges, the vast quantities of agricultural residues generated globally underscore the urgency and potential of their reuse. In line with circular economy principles, this review advocates for the valorization of agro-waste through innovative and sustainable applications within the construction industry. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

10 pages, 1423 KiB  
Article
Viral and Viroid Communities in Peach Cultivars Grown in Bulgaria
by Mariyana Gozmanova, Vesselin Baev, Rumyana Valkova, Elena Apostolova-Kuzova, Stoyanka Jurac, Galina Yahubyan, Lilyana Nacheva and Snezhana Milusheva
Horticulturae 2025, 11(5), 503; https://doi.org/10.3390/horticulturae11050503 - 7 May 2025
Viewed by 469
Abstract
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may [...] Read more.
Peaches (Prunus persica L. Batsch) and nectarines (Prunus persica L. Batsch var. nectarina [Ait.] Maxim) are economically important stone fruits consumed worldwide, both fresh and processed. Viruses and viroids significantly constrain the cultivation and productivity of peach orchards. Climate change may alter vector populations and lead to shifts in agricultural practices, influencing the spread of these viruses and viroids. Additionally, market globalization further intensifies the pressure on peach crops by facilitating the movement of pathogens, increasing the incidence of virus-induced diseases. In this study, we identified the viral and viroid communities in five peach cultivars from Bulgaria and assessed their impact on symptom development. RNA sequencing of symptomatic leaf samples revealed the presence of common peach viruses, such as plum pox virus and prunus necrotic ringspot virus. Notably, we identified peach latent mosaic viroid and cherry green ring mottle virus in Bulgarian peach orchards for the first time. Furthermore, bioassays of indicator plants, ELISA, and Sanger sequencing were performed for each peach tree to complement the RNA sequencing data. These findings provide valuable insights into the composition of viral and viroid pathogens affecting peaches in Bulgaria and will support the development of targeted strategies for monitoring and managing these pathogens, contributing to the sustainable production of peaches in the region. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

14 pages, 4013 KiB  
Article
Imidacloprid Resistance Challenges in Brazilian Strains of Drosophila suzukii (Diptera: Drosophilidae)
by Felipe Andreazza, Flávio Roberto Mello Garcia, Pedro Bento da Silva, Lucas Bretas Barbosa, Joel Marques de Oliveira, Gabriel Netto Araújo and Eugenio E. Oliveira
Insects 2025, 16(5), 494; https://doi.org/10.3390/insects16050494 - 5 May 2025
Viewed by 696
Abstract
Drosophila suzukii (Matsumura) is a relevant pest affecting berries and stone fruits globally, including in the Neotropical region, where its invasion was reported about a decade ago. Despite chemical control being the main management method for D. suzukii, data on insecticide susceptibility [...] Read more.
Drosophila suzukii (Matsumura) is a relevant pest affecting berries and stone fruits globally, including in the Neotropical region, where its invasion was reported about a decade ago. Despite chemical control being the main management method for D. suzukii, data on insecticide susceptibility in Neotropical D. suzukii populations are scarce. Here, we assessed the susceptibility of three field-collected Brazilian D. suzukii populations to four insecticides (i.e., deltamethrin, permethrin, spinetoram, imidacloprid) and contrasted this with a standard insecticide-susceptible population. Using the discriminating concentration (LC90) from the standard susceptible population, we identified resistant populations. Synergist exposure (piperonyl butoxide, triphenyl phosphate, diethyl maleate) indicated the role of detoxification enzymes in resistance. Our results showed that deltamethrin was the most toxic, followed by spinetoram, permethrin, and imidacloprid. While all field populations were similarly susceptible to pyrethroids and spinosyns, one population from Minas Gerais (i.e., Paula Candido) had significantly lower imidacloprid susceptibility, with only 53.4 ± 5.2% mortality at 10.0 g/L (the equivalent of 10-fold the estimated imidacloprid LC90). Only piperonyl butoxide increased the imidacloprid susceptibility of Paula Candido flies. Our findings indicate the occurrence of cytochrome P450 enzyme-based imidacloprid resistance in the state of Minas Gerais, which can challenge the management of D. suzukii in Brazil. Full article
(This article belongs to the Special Issue Fly Biology, Ecology, Behavior and Management—2nd Edition)
Show Figures

Figure 1

12 pages, 1884 KiB  
Article
The Effect of 3′,4′-Methylenedioxychalcone Derivatives on Mycelial Growth and Conidial Germination of Monilinia fructicola: An In Silico and In Vitro Study
by Catalina Ferreira, Valentina Silva, Evelyn Muñoz, Gissella Valle, Manuel Martínez-Lobos, Francisca Valdés, Katy Díaz, Iván Montenegro, Patricio Godoy, Nelson Caro and Alejandro Madrid
Agriculture 2025, 15(9), 983; https://doi.org/10.3390/agriculture15090983 - 1 May 2025
Viewed by 524
Abstract
Monilinia fructicola causes brown rot on a wide variety of stone fruits, causing several losses in the field and during storage of fruits. Due to the diverse biological activity of chalcones and their derivatives, they have emerged as a promising alternative for controlling [...] Read more.
Monilinia fructicola causes brown rot on a wide variety of stone fruits, causing several losses in the field and during storage of fruits. Due to the diverse biological activity of chalcones and their derivatives, they have emerged as a promising alternative for controlling phytopathogenic fungi. The aim of this study was to synthesize 3′,4′-methylenedioxychalcone derivatives and evaluate their in vitro inhibitory effect on mycelial growth and the conidial germination of M. fructicola. Additionally, a molecular docking study and the prediction of lipophilicity were carried out to investigate their chemical behavior. The results showed that compound F exhibited the most potent antifungal activity, with EC50 and MIC values of 20.61 µg/mL and <10 µg/mL for mycelial growth and conidial germination, respectively, presenting an adequate lipophilicity (Log p values = 2.79), which would allow proper diffusion through the fungal cell membrane. The in silico study revealed a great number of interactions between compound F and the different active sites of the succinate dehydrogenase enzyme, suggesting a favorable interaction with a binding energy score value of −6.9 kcal/mol, similar to CBE, the native ligand of this enzyme. These types of compounds could provide preventive protection in various stone and other crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

20 pages, 2161 KiB  
Review
Rootstock Breeding of Stone Fruits Under Modern Cultivation Regime: Current Status and Perspectives
by Juanjuan Ling, Wenjian Yu, Li Yang, Junhuan Zhang, Fengchao Jiang, Meiling Zhang, Yuzhu Wang and Haoyuan Sun
Plants 2025, 14(9), 1320; https://doi.org/10.3390/plants14091320 - 27 Apr 2025
Viewed by 1041
Abstract
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified [...] Read more.
Stone fruits (Prunus spp.) occupy a pivotal position in global fruit production due to their significant nutritional profile and distinctive organoleptic characteristics. Contemporary orchard systems are undergoing transformation through innovative cultivation approaches, notably high-density dwarfing systems, greenhouse cultivation, agri-tech integration, and simplified management. As a crucial agronomic component in modern stone fruit cultivation, rootstock systems confer multi-benefits including enhanced environmental resilience, improved scion productivity, superior fruit quality, controlled vigor, and dwarfing capacity. While the majority of European apple orchards have transitioned to dwarfing rootstock systems, achieving substantial gains in productivity and profitability, stone fruit cultivation lags significantly due to the key gaps in prunus rootstock development, including genetic complexity, extended evaluation cycles, clonal propagation barriers, and limited research programs. Urgent innovation is required to address these challenges in rootstock breeding to meet the demand of sustainable stone fruit production. This review systematically examines strategic breeding objectives and innovative molecular methodologies in prunus rootstock development, with particular emphasis on marker-assisted selection and genomic prediction technologies. We provide a comprehensive synthesis of breeding achievements across major commercial rootstock cultivars, while proposing forward-looking research strategies incorporating CRISPR-based genome editing and multi-omics approaches. The synthesized insights establish a theoretical pathway for advancing rootstock genetic improvement and sustainable orchard management practices in stone fruit cultivation systems. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

25 pages, 5069 KiB  
Article
Bioactive Potential of Sweet Cherry (Prunus avium L.) Waste: Antioxidant and Anti-Inflammatory Properties for Sustainable Applications
by Luisa Frusciante, Collins Nyaberi Nyong’a, Alfonso Trezza, Behnaz Shabab, Tommaso Olmastroni, Roberta Barletta, Pierfrancesco Mastroeni, Anna Visibelli, Maurizio Orlandini, Luisa Raucci, Michela Geminiani and Annalisa Santucci
Foods 2025, 14(9), 1523; https://doi.org/10.3390/foods14091523 - 26 Apr 2025
Cited by 3 | Viewed by 874
Abstract
This study presents an innovative approach to the sustainable valorization of industrial sweet cherry (Prunus avium L.) waste from the Vignola Region, Italy, transforming what is typically discarded into a high-value bioactive resource. Unlike conventional extractions, our hydroethanolic extract (VCE) was obtained [...] Read more.
This study presents an innovative approach to the sustainable valorization of industrial sweet cherry (Prunus avium L.) waste from the Vignola Region, Italy, transforming what is typically discarded into a high-value bioactive resource. Unlike conventional extractions, our hydroethanolic extract (VCE) was obtained from the entire cherry waste, including the pericarp, pulp, and stone, as generated by industrial processing. This full-fruit extraction strategy represents a novel and efficient use of agricultural by-products, aligning with circular bioeconomy principles. Sweet cherries are known for their phenolic richness, and spectrophotometric assays (TPC, TFC, reducing power, DPPH, and ABTS) confirmed the extract’s antioxidant capacity. In vitro studies using RAW 264.7 macrophages revealed no cytotoxic effects (MTT assay), along with significant anti-inflammatory activity, evidenced by reduced ROS and NO production and downregulation of iNOS and COX-2. Western blotting showed inhibition of NF-κB nuclear translocation and MAPK pathway signaling. Additionally, agarose gel electrophoresis showed protection against oxidative DNA damage. UPLC-MS/MS analysis identified sakuranetin, aequinetin, and dihydrowogonin as the most representative compounds in VCE. Molecular docking simulations revealed strong and specific binding affinities of these compounds to NF-κB p65 and key MAPK targets. These findings highlight whole sweet cherry waste—including the pit—as a potent and sustainable source of bioactive compounds with promising nutraceutical and pharmaceutical applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

23 pages, 3021 KiB  
Article
The Combination of Start-Codon-Targeted (SCoT) and Falling Stone (FaSt) Transposon-Specific Primers Provides an Efficient Marker Strategy for Prunus Species
by Beti Ivanovska, Thanyarat Onlamun, Júlia Halász and Attila Hegedűs
Int. J. Mol. Sci. 2025, 26(9), 3972; https://doi.org/10.3390/ijms26093972 - 23 Apr 2025
Viewed by 590
Abstract
A novel primer (FaSt-R) targeting the Prunus-specific Falling Stone (FaSt) non-autonomous transposon was combined with start-codon-targeted (SCoT) primers to assess genetic diversity in 12 cultivars from six Prunus species and 28 cultivars of European plum. Compared to SCoT-only analyses, the [...] Read more.
A novel primer (FaSt-R) targeting the Prunus-specific Falling Stone (FaSt) non-autonomous transposon was combined with start-codon-targeted (SCoT) primers to assess genetic diversity in 12 cultivars from six Prunus species and 28 cultivars of European plum. Compared to SCoT-only analyses, the SCoT–FaSt combination produced fewer total bands but a higher percentage of polymorphic bands, while maintaining comparable values for polymorphism information content, resolving power, gene diversity, and Shannon’s index. SCoT–FaSt markers generated bands across a broader size range, which made gel patterns less dense, enabling the more accurate detection of differentially amplified fragments. Neighbor-joining and principal component analyses confirmed that SCoT–FaSt markers provided sufficient phylogenetic resolution at both interspecific and intraspecific levels. The sequencing of 32 SCoT–FaSt amplicons revealed FaSt elements in 26 fragments, with SCoT primers preferentially annealing to GC-rich exonic and intergenic regions. Seventeen protein-coding and one RNA-coding gene were partially identified, with FaSt elements localized in UTRs and introns of genes with key physiological functions. Comparative analysis indicated a biased distribution of FaSt elements between the Cerasus and Prunus subgenera. In silico findings suggest that FaSt elements are more fragmented in cherry species, potentially contributing to subgeneric divergence. Overall, the SCoT–FaSt marker system is effective for evaluating Prunus genetic diversity, reconstructing phylogenetic relationships, and elucidating the genomic impact of an active Mutator-like transposon. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop