Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Survey and Plant Materials
2.2. Extraction of Total RNA and RT-PCR
2.3. In Vitro Cultures and Clonal Micropropagation
2.4. Management of Viral Infections
2.5. Thermotherapy + Shoot Apical Meristem (SAM)
2.6. Chemotherapy (Treatment with Ribavirin) + SAM
2.7. Cryotherapy + SAM
2.8. Chemotherapy + Thermotherapy + SAM + Cryotherapy + SAM
2.9. Data Collection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Cuellar, W.J.; Rajamäkı, M.L.; Hirata, Y.; Valkonen, J.P. Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol. Plant Pathol. 2008, 9, 237–250. [Google Scholar] [CrossRef] [PubMed]
- James, D. Perspective on strategies for controlling the spread of Plum pox virus, causal agent of sharka/plum pox disease. Acta Hortic. 2017, 1163, 129–136. [Google Scholar] [CrossRef]
- Cambra, M.; Vidal, E. Sharka, a vector-borne disease caused by Plum pox virus: Vector species, transmission mechanism, epidemiology and mitigation strategies to reduce its natural spread. In III International Symposium on Plum Pox Virus 1163; ISHS: Antalya, Turkey, 2016; pp. 57–68. [Google Scholar] [CrossRef]
- Kinoti, W.M.; Nancarrow, N.; Dann, A.; Rodoni, B.C.; Constable, F.E. Updating the quarantine status of Prunus infecting viruses in Australia. Viruses 2020, 12, 246. [Google Scholar] [CrossRef]
- Dallot, S.; Karychev, R.; Dolgikh, S.; Thébaud, G.; Jacquot, E.; Decroocq, V. First Report of Plum pox virus Strain W in Kazakhstan, on Prunus domestica. Plant Dis. 2019, 103, 2702. [Google Scholar] [CrossRef]
- Spiegel, S.; Kovalenko, E.M.; Varga, A.; James, D. Detection and Partial Molecular Characterization of Two Plum pox virus Isolates from Plum and Wild Apricot in Southeast Kazakhstan. Plant Dis. 2004, 88, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Romadanova, N.V.; Mishustina, S.A.; Gritsenko, D.A.; Omasheva, M.Y.; Galiakparov, N.N.; Reed, B.M.; Kushnarenko, S.V. Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). CryoLetters 2016, 37, 1–9. [Google Scholar] [CrossRef]
- Gritsenko, D.A.; Aubakirova, K.P.; Voitsekhovskiy, I.; Soldatova, I.; Galiakparov, N.N. Simultaneous detection of five apple viruses by RT-PCR. Int. J. Biol. Chem. 2020, 13, 129–134. [Google Scholar] [CrossRef]
- Kerimbek, N.; Kapytina, A.I.; Taskuzhina, A.K. Assessment of occurrence and diversity of apple viruses in South Kazakhstan. Ġylym ža̋ne bìlìm. 2024, 1, 79–85. [Google Scholar] [CrossRef]
- Decroocq, S.; Cornille, A.; Tricon, D.; Babayeva, S.; Chague, A.; Eyquard, J.P.; Karychev, R.; Dolgikh, S.; Kostritsyna, T.; Liu, S.; et al. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 2016, 25, 4712–4729. [Google Scholar] [CrossRef]
- Uzun, A.; Pinar, H.; Gürcan, K.; Turgunbaev, K.; Yıldız, E.; Ilgın, M.; Dolgikh, S. Genetic diversity and population structure of wild and cultivated apricots collected from Kyrgyzstan. Genet. Resour. Crop Evol. 2024, 71, 4131–4140. [Google Scholar] [CrossRef]
- Dzhangaliev, A.D.; Salova, T.N.; Turekhanova, P.M. The wild fruit and nut plants of Kazakhstan. In Horticultural Reviews: Wild Apple and Fruit Trees of Central Asia; Wiley: Hoboken, NJ, USA, 2003; Volume 29, pp. 305–372. [Google Scholar] [CrossRef]
- Sanchez-Navarro, J.A.; Aparicio, F.; Herranz, M.C.; Minafra, A.; Myrta, A.; Pallas, V. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Eur. J. Plant Pathol. 2005, 111, 77–84. [Google Scholar] [CrossRef]
- Ahmad, M.; Padder, B.A.; Shah, M.D. Major Viruses Infecting Temperate Fruit Crops and Their Impact on the Fruit Industry CHAPTER 16 2 Industrial Applications of Soil Microbes; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; Volume 4. [Google Scholar]
- Cambra, M.; Boscia, D.; Myrta, A.; Palkovics, L.; Navrátil, M.; Barba, M.; Gorris, M.T.; Capote, N. Detection and characterization of Plum pox virus: Serological methods. EPPO Bull. 2006, 36, 254–261. [Google Scholar] [CrossRef]
- García, J.A.; Glasa, M.; Cambra, M.; Candresse, T. Plum pox virus and sharka: A model potyvirus and a major disease. Mol. Plant Pathol. 2014, 15, 226–241. [Google Scholar] [CrossRef]
- Zagrai, L.A.; Zagrai, I. Temperate fruits-II Tree fruits (apricot, peach, plum). In Viral Diseases of Field and Horticultural Crops; Academic Press: Cambridge, MA, USA, 2024; pp. 701–712. [Google Scholar] [CrossRef]
- Barba, M.; Hosakawa, M.; Wang, Q.-C.; Taglienti, A.; Zhang, Z. Viroid Elimination by Thermotherapy, Cold Therapy, Tissue Culture, In Vitro Micrografting, or Cryotherapy. In Viroids and Satellites; Academic Press: Cambridge, MA, USA, 2017; pp. 425–435. [Google Scholar] [CrossRef]
- Smith, G.R.; Fletcher, J.D.; Marroni, V.; Kean, J.M.; Stringer, L.D.; Vereijssen, J. Plant pathogen eradication: Determinants of successful programs. Australas. Plant Pathol. 2017, 46, 277–284. [Google Scholar] [CrossRef]
- Şeker, M.G.; Süzerer, V.; Elibuyuk, I.O.; Çiftçi, Y.Ö. In vitro elimination of PPV from infected apricot shoot tips via chemotherapy and cryotherapy. Int. J. Agric. Biol. 2015, 17, 1066. Available online: https://www.fspublishers.org/TableOfContents (accessed on 31 May 2025).
- Köksal, B.; Süzerer, V.; Şeker, M.G.; Çiftçi, Y.Ö. C-2010: Cryotherapy and chemotherapy of PPV-infected apricot. Cryobiology 2014, 69, 518. [Google Scholar] [CrossRef]
- Zare Khafri, A.; Zarghami, R.; Naderpour, M.; Ahmadi, B.; Mirzaei, L. Assessment of virus eradication methods from infected in vitro-grown apricot cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 156, 52. [Google Scholar] [CrossRef]
- Agrios, G. Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, VT, USA, 2005; pp. 398–401. [Google Scholar]
- Rimbaud, L.; Dallot, S.; Gottwald, T.; Decroocq, V.; Jacquot, E.; Soubeyrand, S.; Thébaud, G. Sharka epidemiology and worldwide management strategies: Learning lessons to optimize disease control in perennial plants. Annu. Rev. Phytopathol. 2015, 53, 357–378. [Google Scholar] [CrossRef]
- Rubio, M.; Martínez-Gómez, P.; Marais, A.; Sánchez-Navarro, J.A.; Pallás, V.; Candresse, T. Recent advances and prospects in Prunus virology. Ann. Appl. Biol. 2017, 171, 125–138. [Google Scholar] [CrossRef]
- Rubio, M.; Salazar, J.A.; Dicenta, F.; Ruiz, D.; Martínez-Gómez, P.; Martínez-García, P.J. Identification of quantitative trait loci (QTLs) linked to Apple chlorotic leaf spot virus (ACLSV) resistance in apricot. Euphytica 2019, 215, 170. [Google Scholar] [CrossRef]
- EPPO. PM 3/76 (2) Trees of Malus, Pyrus, Cydonia and Prunus spp.: Inspection of places of production. EPPO Bull. 2021, 51, 354–386. [Google Scholar] [CrossRef]
- EPPO. Certification scheme for almond, apricot, peach and plum. EPPO Bull. 2001, 31, 463–478. [Google Scholar] [CrossRef]
- Mekuria, G.; Ramesh, S.A.; Alberts, E.; Bertozzi, T.; Wirthensohn, M.; Collins, G.; Sedgley, M. Comparison of ELISA and RT-PCR for the detection of Prunus necrotic ring spot virus and prune dwarf virus in almond (Prunus dulcis). J. Virol. Methods 2003, 114, 65–69. [Google Scholar] [CrossRef]
- Turdiyev, T.; Kovalchuk, I.; Mukhitdinova, Z.; Hunger, O.; Frolov, S.; Kabylbekova, B. Micropropagation of berry crops for creation of germplasm cryobanks. Braz. J. Biol. 2024, 84, e266975. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473. [Google Scholar] [CrossRef]
- Wang, M.R.; Chen, L.; Zhang, Z.; Blystad, D.R.; Wang, Q.C. Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species. In Plant Cell Culture Protocols. Methods in Molecular Biology; Loyola-Vargas, V., Ochoa-Alejo, N., Eds.; Humana Press: New York, NY, USA, 2018; pp. 257–268. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Yan, L.; Jin, Y.; Sun, L.; Yang, Y.; Wang, Y.; Zhao, Z. Different eradication effects of latent viruses by combining thermotherapy with shoot tip culture or cryotherapy in four apple cultivars. Sci. Hortic. 2021, 288, 110356. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Fazio, G.; Carvalho Costa, L.; Hurtado-Gonzales, O.P.; Rwahnih, M.A.; Nedrow, A.; Volk, G.M. Thermotherapy followed by shoot tip cryotherapy eradicates latent viruses and apple hammerhead viroid from in vitro apple rootstocks. Plants 2022, 11, 582. [Google Scholar] [CrossRef]
- Wang, M.R.; Cui, Z.H.; Li, J.W.; Hao, X.Y.; Zhao, L.; Wang, Q.C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef]
- Dziedzic, E. Elimination of Prunus necrotic ring spot virus (PNRSV) from plum ‘Earliblue’shoots through thermotherapy in vitro. J. Fruit Ornam Plant Res. 2008, 16, 101–109. [Google Scholar]
- Paunovic, S.; Ruzic, D.; Vujovic, T.; Milenkovic, S.; Jevremovic, D. In Vitro Production of Plum Pox Virus—Free Plums by Chemotherapy with Ribavirin. Biotechnol. Biotechnol. Equip. 2007, 21, 417–421. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Turdiev, T.; Mukhitdinova, Z.; Frolov, S.; Reed, B.M. Cryopreservation of native Kazakhstan apricot (Prunus armeniaca L.) seeds and embryonic axes. CryoLetters 2014, 35, 83–89. [Google Scholar] [PubMed]
- Reed, B.M.; Uchendu, E. Controlled rate cooling. In Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008; pp. 77–92. [Google Scholar] [CrossRef]
- Ravelonandro, M. Reliable Methodologies and Impactful Tools to Control Fruit Tree Viruses. Crops 2021, 1, 32–41. [Google Scholar] [CrossRef]
- Galymbek, K.; Madenova, A.; Bakirov, S. Phytosanitary diagnosis of apple fungal diseases in Almaty region. Res. Crops 2024, 25, 499–508. [Google Scholar] [CrossRef]
- Madenova, A.; Aitymbet, Z.; Bolat, M.; Kaldybayeva, D.; Galymbek, K.; Kuan, A.; Sapakhova, Z. Screening of apple cultivars for scab resistance in Kazakhstan. Horticulturae 2024, 10, 184. [Google Scholar] [CrossRef]
- Soltanbekov, S.; Dzhumanova Zh Dolgikh, S.; Omarov, E.; Seisenova, A.; Popov, A.; Isina Zh Kabylbekova, B. Threat status of in situ genetic resources of Malus sieversii in Kazakhstan. Acta Hortic. 2024, 1412, 49–56. [Google Scholar] [CrossRef]
- Tricon, D.; Faivre d’Arcier, J.; Eyquard, J.P.; Liu, S.; Decroocq, S.; Chague, A.; Liu, W.; Balakishiyeva, G.; Mammadov, A.; Turdiev, T.; et al. Allele mining of eukaryotic translation initiation factor genes in Prunus for the identification of new sources of resistance to sharka. Sci. Rep. 2023, 13, 15247. [Google Scholar] [CrossRef]
- Turdiyev, T.; Kovalchuk, I.; Madenova, A.; Kuan, A.; Mikhailenko, N.; Kabylbekova, B.; Baizhumanova, S.; Yemesheva, K.; Tuigunov, Z.; Rakhimbayev, I. Restoring populations of Populus pruinosa Schrenk through biotechnology. Vitr. Cell. Dev. Biol. Plant 2025, 61, 207–218. [Google Scholar] [CrossRef]
- Kabylbekova, B.; Kovalchuk, I.; Mukhitdinova, Z.; Turdiyev, T.; Kairova, G.; Madiyeva, G.; Reed, B.M. Reduced major minerals and increased minor nutrients improve micropropagation in three apple cultivars. Vitr. Cell. Dev. Biol. Plant 2020, 56, 335–349. [Google Scholar] [CrossRef]
- Kovalchuk, I.Y.; Mukhitdinova, Z.; Turdiyev, T.; Madiyeva, G.; Akin, M.; Eyduran, E.; Reed, B.M. Modeling some mineral nutrient requirements for micropropagated wild apricot shoot cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 129, 325–335. [Google Scholar] [CrossRef]
- Kabylbekova, B.; Kovalchuk, I.; Chukanova, N.; Turdiyev, T. Cold storage of in vitro apple germplasm in Kazakhstan. Acta Hortic. 2021, 1324, 77–82. [Google Scholar] [CrossRef]
- Howell, W.E.; Eastwell, K.C.; Li, T.S.C. Heat Treatment, Chemo-Therapy and Hydroponic Culture for Obtaining Virus-Free Trees of Sweet Cherry. Acta Hortic. 2001, 550, 455–458. [Google Scholar] [CrossRef]
- Koubouris, G.C.; Maliogka, V.I.; Efthimiou, K.; Katis, N.I.; Vasilakakis, M.D. Elimination of Plum pox virus through in vitro thermotherapy and shoot tip culture compared to conventional heat treatment in apricot cultivar Bebecou. J. Gen. Plant Pathol. 2007, 73, 370–373. [Google Scholar] [CrossRef]
- Zarghami, R.; Ahmadi, B. Production of Plum Pox Virus-free and Prunus Necrotic Ringspot Virus-free regenerants using thermotherapy and meristem-tip culture in Prunus persica L. Erwerbs-Obstbau 2023, 65, 719–727. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Economou, A.S.; Boubourakas, I.N.; Katis, N.I. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep. 2003, 22, 195–200. [Google Scholar] [CrossRef]
- Vivek, M.; Modgil, M. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. VirusDisease. 2018, 29, 75–82. [Google Scholar] [CrossRef]
- Tan, R.; Wang, L.; Hong, N.; Wang, G. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue Organ Cult. (PCTOC) 2010, 101, 229–235. [Google Scholar] [CrossRef]
- Kudělková, M.; Pavelková, R.; Ondrušiková, E. Virus elimination in peach using chemotherapy. In VI International Symposium on Production and Establishment of Micropropagated Plants 1155; ISHS: Antalya, Turkey, 2017; pp. 431–438. [Google Scholar] [CrossRef]
- Pavelkova, R.; Kudelkova, M.; Ondrusikova, E.; Eichmeier, A. Virus elimination in peach cv.’Red Haven’by chemotherapy. Agric. Commun. 2015, 3, 16–20. [Google Scholar]
- Hu, G.; Dong, Y.; Zhang, Z.; Fan, X.; Ren, F.; Zhou, J. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell Tissue Organ Cult. (PCTOC) 2015, 121, 435–443. [Google Scholar] [CrossRef]
- Szabó, L.K.; Desiderio, F.; Kirilla, Z.; Hegedűs, A.; Várallyay, É.; Preininger, É. Elimination of cherry virus A from Prunus domestica ‘Besztercei Bt. 2′using in vitro techniques. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 157, 45. [Google Scholar] [CrossRef]
- Brison, M.; de Boucaud, M.T.; Pierronnet, A.; Dosba, F. Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci. 1997, 123, 189–196. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Rajan, R.; Nataraja, K.H.; Das, S. Cryotherapy: An-innovative Tool for Eradication of Pathogens in Horticultural Crops. Indian J. Ecol. 2022, 49, 2174–2178. [Google Scholar] [CrossRef]
- Bi, W.L.; Hao, X.Y.; Cui, Z.H.; Pathirana, R.; Volk, G.M.; Wang, Q.C. Shoot tip cryotherapy for efficient eradication of grapevine leafroll-associated virus-3 from diseased grapevine in vitro plants. Ann. Appl. Biol. 2018, 173, 261–270. [Google Scholar] [CrossRef]
- Jevremović, D.; Vasilijević, B.; Anđelić, T.; Vujović, T. Effect of D and V cryo-plate methods for plum pox virus eradication from two plum cultivars. Plant Cell Tissue Organ Cult. (PCTOC) 2023, 152, 529–538. [Google Scholar] [CrossRef]
- Farhadi-Tooli, S.; Ghanbari, A.; Kermani, M.J.; Zeinalabedini, M.; Bettoni, J.C.; Naji, A.M.; Kazemi, N. Droplet-vitrification cryotherapy and thermotherapy as efficient tools for the eradication of apple chlorotic leaf spot virus and apple stem grooving virus from virus-infected quince in vitro cultures. Eur. J. Plant Pathol. 2022, 162, 31–43. [Google Scholar] [CrossRef]
- Wang, M.R.; Bi, W.L.; Bettoni, J.C.; Zhang, D.; Volk, G.M.; Wang, Q.C. Shoot tip cryotherapy for plant pathogen eradication. Plant Pathol. 2022, 71, 1241–1254. [Google Scholar] [CrossRef]
- Sedlák, J.; Semerák, M.; Rejlová, M. Sanitation of Apple Cultivars from AP Phytoplasma and ApMV and ACLSV Viruses Using In Vitro Culture and Cryo-Knife Therapy in Liquid Nitrogen. Appl. Sci. 2023, 13, 7527. [Google Scholar] [CrossRef]
- Sedlák, J.; Přibylová, J.; Koloňuk, I.; Špak, J.; Lenz, O.; Semerák, M. Elimination of Solanum nigrum İlarvirus 1 and Apple hammerhead viroid from apple cultivars using antivirals Ribavirin, Rimantadine, and Zidovudine. Viruses 2023, 15, 1684. [Google Scholar] [CrossRef]
- Naderpour, M.; Ahmadi, B.; Mirzaei, L. Electrotherapy, thermotherapy, chemotherapy, and cryotherapy to regenerate Prunus armeniaca L. free of ACLSV, ApMVV, and TRSV. Unpublish Preprint (Version 1) available at Research Square. 2022. Available online: https://www.researchsquare.com/article/rs-2300972/v1 (accessed on 31 May 2025).
- Jiroutová, P.; Sedlák, J. Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks. Appl. Sci. 2020, 10, 4677. [Google Scholar] [CrossRef]
No | Crops | Selected Samples for Research |
---|---|---|
Location: Almaty Region (South East Kazakhstan) | ||
1 | Plum | Ayana |
2 | Zhomart | |
3 | Stanley | |
4 | Renclod Talgarskiy | |
5 | Agyl | |
6 | Ansar | |
7 | Apricot | Nikitskiy krasnoshekiy |
8 | Burshtynoviy | |
9 | Kolkhozniy | |
10 | Alexander | |
11 | Balkhiya | |
12 | Manitoba | |
13 | Baikalov 9-9 | |
14 | Persikoviy | |
17 | P. armeniaca Wild Apricot form-3 | |
18 | Rootstocks | VSV-1 |
19 | VVA-1 | |
20 | St. Julien | |
21 | Fortuna | |
22 | Druzhba | |
23 | Kuban 86 | |
24 | Pumiselect | |
25 | Evrika-99 | |
Location: Saryagash Region (South Kazakhstan) | ||
26 | Plum | Stanley |
27 | Ispanskaya | |
28 | Apricot | Nikitskiy krasnoshekiy |
29 | Manitoba |
No | Name of Cultivar/Rootstock | Visual Manifestation of the Virus | Virus Detection by PCR | ||
---|---|---|---|---|---|
ACLSV | PPV | ACLSV | PPV | ||
Almaty Region (South-East Kazakhstan) | |||||
Plum | |||||
1 | Ayana | - | - | + | + |
2 | Zhomart | - | on the leaves | - | - |
3 | Stanley | - | on the leaves and fruits | - | + |
4 | Renclod Talgarskiy | - | - | - | - |
5 | Agyl | - | - | - | - |
6 | Ansar | - | - | - | + |
Apricot | |||||
7 | Nikitskiy krasnoshekiy | - | on the leaves | - | - |
8 | Burshtynoviy | - | - | - | - |
9 | Kolkhozniy | - | - | - | - |
10 | Alexander | - | - | - | - |
11 | Balkhiya | - | - | - | - |
12 | Manitoba | - | on the fruits and seeds | - | + |
13 | Baikalov 9-9 | - | - | - | - |
14 | Persikoviy | - | - | - | - |
17 | P. armeniaca Wild Apricot form-3 | - | on the leaves | - | + |
Rootstocks | |||||
18 | VSV-1 | - | - | - | - |
19 | VVA-1 | - | - | - | - |
20 | St. Julien | - | on the leaves | - | - |
21 | Fortuna | - | on the leaves | - | - |
22 | Druzhba | - | - | - | - |
23 | Kuban 86 | - | - | - | - |
24 | Pumiselect | - | - | - | - |
25 | Evrika-99 | - | - | - | - |
Saryagash Region (South Kazakhstan) | |||||
Plum | |||||
26 | Stanley | - | - | - | - |
27 | Ispanskaya | on the leaves | - | + | - |
Apricot | |||||
28 | Nikitskiy krasnoshekiy | - | - | - | - |
29 | Manitoba | - | - | - | - |
Treatment | Name of Cultivar/Rootstock | Phytosanitary Status Before Therapy (PCR) | *** Number of Viable Plants After Treatment/% | Phytosanitary Status After Therapy (PCR) | ** Plant Multiplication Coefficient |
---|---|---|---|---|---|
Thermotherapy + Shoot apical meristem (SAM) | Stanley | PPV * | 3/20 | Virus-free | 5.6 |
Ansar | PPV | 3/20 | Virus-free | 3.0 | |
P. armeniaca | PPV | 0/died | unknown | 0 | |
Ayana | PPV, ACLSV | 6/40 | PPV, ACLSV | 3.5 | |
Chemotherapy + SAM Ribavirin, 25 mg/L | Stanley | PPV | 5/33.3 | Virus-free | 1.9 |
Ansar | PPV | 0/died | unknown | 0 | |
P. armeniaca | PPV | 0/died | unknown | 0 | |
Ayana | PPV, ACLSV | 9/60 | ACLSV | 0.6 | |
Cryotherapy + SAM | Stanley | PPV | 7/38.8 | Virus-free | 1.3 |
Ansar | PPV | 0/died | unknown | 0 | |
P. armeniaca | PPV | 6/28.5 | PPV | 2.2 | |
Ayana | PPV, ACLSV | 4/21.0 | ACLSV | 1.9 | |
Chemotherapy + Thermotherapy + Cryotherapy + SAM | Stanley | PPV | 0/died | unknown | 0 |
Ansar | PPV | 0/died | unknown | 0 | |
P. armeniaca | PPV | 8/38 | Virus-free | 2.4 | |
Ayana | PPV, ACLSV | 4/19.0 | Virus-free | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabylbekova, B.; Nurseitova, T.; Yussupova, Z.; Turdiyev, T.; Kovalchuk, I.; Dolgikh, S.; Soltanbekov, S.; Seisenova, A.; Madenova, A. Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits. Horticulturae 2025, 11, 633. https://doi.org/10.3390/horticulturae11060633
Kabylbekova B, Nurseitova T, Yussupova Z, Turdiyev T, Kovalchuk I, Dolgikh S, Soltanbekov S, Seisenova A, Madenova A. Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits. Horticulturae. 2025; 11(6):633. https://doi.org/10.3390/horticulturae11060633
Chicago/Turabian StyleKabylbekova, Balnur, Toigul Nurseitova, Zarina Yussupova, Timur Turdiyev, Irina Kovalchuk, Svetlana Dolgikh, Sagi Soltanbekov, Aigerim Seisenova, and Aigul Madenova. 2025. "Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits" Horticulturae 11, no. 6: 633. https://doi.org/10.3390/horticulturae11060633
APA StyleKabylbekova, B., Nurseitova, T., Yussupova, Z., Turdiyev, T., Kovalchuk, I., Dolgikh, S., Soltanbekov, S., Seisenova, A., & Madenova, A. (2025). Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits. Horticulturae, 11(6), 633. https://doi.org/10.3390/horticulturae11060633