Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (185)

Search Parameters:
Keywords = free electrons density and temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 (registering DOI) - 3 Aug 2025
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Viewed by 176
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 (registering DOI) - 31 Jul 2025
Viewed by 135
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

11 pages, 2972 KiB  
Article
ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
by Mingguang Ouyang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu and Lei Miao
Energies 2025, 18(14), 3871; https://doi.org/10.3390/en18143871 - 21 Jul 2025
Viewed by 309
Abstract
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, [...] Read more.
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, optimized electronic configurations, and robust structural stability. Addressing these requirements, this study strategically engineered Cu-doped ZIF-8 architectures via in situ growth on nickel foam (NF) substrates through a facile room-temperature hydrothermal synthesis approach. Systematic optimization of the Cu/Zn molar ratio revealed that Cu0.7Zn0.3-ZIF/NF achieved optimal performance, exhibiting a distinctive nanoflower-like architecture that substantially increased accessible active sites. The hybrid catalyst demonstrated superior electrocatalytic performance with a current density of 124 mA cm−2 at 1.6 V vs. RHE and a notably low Tafel slope of 30.94 mV dec−1, outperforming both Zn-ZIF/NF (39.45 mV dec−1) and Cu-ZIF/NF (31.39 mV dec−1). Combined XPS and EDS analyses unveiled a synergistic electronic structure modulation between Zn and Cu, which facilitated charge transfer and enhanced catalytic efficiency. A gas chromatography product analysis identified H2 and N2 as the primary gaseous products, confirming the predominant occurrence of the ammonia oxidation reaction (AOR). This study not only presents a noble metal-free electrocatalyst with exceptional efficiency and durability for ammonia decomposition but also demonstrates the significant potential of MOF-derived materials in sustainable hydrogen production technologies. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

13 pages, 3594 KiB  
Article
The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics
by Yordanka Trifonova, Ani Stoilova, Deyan Dimov, Georgi Mateev, Dimana Nazarova, Lian Nedelchev, Vladislava Ivanova and Vanya Lilova
Materials 2025, 18(14), 3387; https://doi.org/10.3390/ma18143387 - 18 Jul 2025
Viewed by 283
Abstract
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). [...] Read more.
New bulk chalcogenides from the system (GeTe6)1−xCux, where x = 5, 10, 15 and 20 mol%, have been synthesized. The structure and composition of the materials were studied using X-ray powder diffraction (XRD) and energy-dispersive spectroscopy (EDS). Scanning electron microscopy (SEM) was applied to analyze the surface morphology of the samples. Some thermal characteristics such as the glass transition, crystallization and melting temperature and some physico-chemical properties such as the density, compactness and molar and free volumes were also determined. The XRD patterns show sharp diffraction peaks, indicating that the synthesized new bulk materials are crystalline. The following four crystal phases were determined: Te, Cu, CuTe and Cu2GeTe3. The results from the EDS confirmed the presence of Ge, Te and Cu in the bulk samples in concentrations in good correspondence with those theoretically determined. A layered thin-film material based on Ge14Te81Cu5, which exhibits lower network compactness compared to the other synthesized new chalcogenides, and the azo polymer PAZO was fabricated, and the kinetics of the photoinduced birefringence at 444 nm was measured. The results indicated an increase in the maximal induced birefringence for the layered structure in comparison to the non-doped azo polymer film. Full article
Show Figures

Figure 1

14 pages, 9327 KiB  
Article
DFT Prediction of Structural and Physical Properties of Cr3AlC2 Under Pressure
by Jianhui Yang, Shenghai Fan, Haijun Hou and Qiang Fan
Nanomaterials 2025, 15(14), 1082; https://doi.org/10.3390/nano15141082 - 11 Jul 2025
Viewed by 239
Abstract
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and [...] Read more.
This work explores the physical properties of the MAX-phase material Cr3AlC2 through the application of density functional theory (DFT). The refined lattice parameters were determined through the minimization of the total energy. In order to explore the electronic properties and bonding features, we carried out computations on the band structure and charge density distribution. The calculated elastic constants (Cij) validated the mechanical stability of Cr3AlC2. To assess the material’s ductility or brittleness, we calculated Pugh’s ratio, Poisson’s ratio, and Cauchy pressure. The hardness was determined. This study examined the anisotropic behavior of Cr3AlC2 using directional analyses of its elastic properties and by computing relevant anisotropy indicators. We examined several key properties of Cr3AlC2, including the Grüneisen parameter, acoustic characteristics, Debye temperature, thermal conductivity, melting point, heat capacity, Helmholtz free energy, entropy, and internal energy. Phonon dispersion spectra were analyzed to assess the dynamic stability of Cr3AlC2. Full article
Show Figures

Figure 1

18 pages, 7946 KiB  
Article
Numerical Simulation of Streaming Discharge Characteristics of Free Metal Particles in SF6/CF4 Gas Mixtures Under Highly Heterogeneous Electric Field
by Bing Qi, Hui Wang, Chang Liu, Fuyou Teng, Daoxin Yu, Yuxuan Liang and Feihu Wang
Sensors 2025, 25(13), 3847; https://doi.org/10.3390/s25133847 - 20 Jun 2025
Viewed by 334
Abstract
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs [...] Read more.
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs a two-dimensional plasma fluid model to investigate the partial discharge phenomena induced by free metallic particles in SF6/CF4 gas mixtures, analyzing the spatiotemporal evolution characteristics of key parameters, such as the charged particle density and axial electric field, under different mixing ratios. The simulation results show that there are two kinds of positive stream discharge phenomena, “continuous and decaying”, when the gas mixture ratio is 90%CF4-10%SF6 and 40%CF4-60%SF6. The proportion of CF4 in the gas mixture will affect the spatial distribution of charged particles and the production and disappearance of electrons. When the proportion of CF4 is 90%, the content of positive ions in the discharge channel is the highest, and the electric field formed by the positive space charge of CF4+ in the stream head promotes the continuous propagation of the stream. As the concentration of CF4 decreases, the main ionization reaction at the stream head shifts from CF4 to SF6, and a negative space charge region dominated by SF6 particles is also formed near the stream head, changing the electric field distribution near the flow head. The adhesion reaction rate is greater than the ionization reaction rate, resulting in the disappearance of electrons greater than the production, and the stream phenomenon tends to decay. These simulation results are helpful to understand the dynamic process of positive stream discharge induced by free metal particles in SF6/CF4 gas mixtures, and they provide a theoretical basis for better solutions to equipment damage caused by partial discharge. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 397
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

14 pages, 2459 KiB  
Article
Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach
by Hei Je Jeong, Sung Hyun Kwon, Jihoon Lim, Woong Kwon, Gun Hwan Park, Eunhye Lee, Jong Sung Won, Man Young Lee, Euigyung Jeong and Seung Geol Lee
Polymers 2025, 17(12), 1694; https://doi.org/10.3390/polym17121694 - 18 Jun 2025
Viewed by 539
Abstract
Epoxy-based composite materials, widely used in various industries such as coatings, adhesives, aerospace, electronics, and biomedical engineering, remain a topic of global interest due to their varying characteristics based on the base resin and curing agents used. This paper employs molecular dynamics simulation [...] Read more.
Epoxy-based composite materials, widely used in various industries such as coatings, adhesives, aerospace, electronics, and biomedical engineering, remain a topic of global interest due to their varying characteristics based on the base resin and curing agents used. This paper employs molecular dynamics simulation to examine the thermal and mechanical properties, as well as molecular behaviors, of epoxy systems cured with diglycidyl ether of bisphenol F as the base resin and aromatic amine curing agents, specifically the meta structure of 3,3′-diaminodiphenyl sulfone (3,3′-DDS) and the para structure of 4,4′-diaminodiphenyl sulfone (4,4′-DDS). The 3,3′-DDS system demonstrated a greater density and Young’s modulus than the 4,4′-DDS system. This tendency was analyzed based on differences in molecular fractional free volume and cohesive energy density (CED). The 4,4′-DDS system exhibits a higher glass transition temperature (Tg) compared to the 3,3′-DDS system, with values of 406.36 K and 431.22 K, respectively. To understand this behavior, we examined atomic-scale displacements at Tg through mean squared displacement analysis, which revealed that the onset of molecular motion occurs at a lower temperature in the 3,3′-DDS system. Molecular-level study reveals how the structural features of each curing agent appear in thermal and mechanical properties, offering important insights for epoxy system development. Full article
(This article belongs to the Special Issue Structure and Dynamics of Polymers)
Show Figures

Figure 1

12 pages, 1058 KiB  
Article
The Influence of External Radiation on the Emission Properties of H- and He-like Argon Ions in High Temperature Plasma
by Roman K. Kulikov, Igor Yu. Skobelev and Evgeny D. Filippov
Atoms 2025, 13(6), 51; https://doi.org/10.3390/atoms13060051 - 11 Jun 2025
Viewed by 475
Abstract
In the present work, the influence of external X-ray radiation on the kinetics of multicharged ions in high-temperature plasma is investigated. A generalized diagnostic approach is proposed for the electron density and temperature measurements of photo-pumped plasma based on the relative intensity of [...] Read more.
In the present work, the influence of external X-ray radiation on the kinetics of multicharged ions in high-temperature plasma is investigated. A generalized diagnostic approach is proposed for the electron density and temperature measurements of photo-pumped plasma based on the relative intensity of the H-like ion resonance line and its dielectronic satellites. Based on detailed kinetic calculations performed for argon plasma, the conditions under which these techniques can be applied without modification to the photo-pumped plasma are determined, and the relative intensities of these lines are calculated for cases where the external influence significantly alters the kinetics of their excitation. The development of such diagnostic methods is of particular importance for the experiments with powerful X-ray free-electron lasers and thermonuclear laser plasma. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

26 pages, 5266 KiB  
Article
Development and Characterization of Pyrolyzed Sodium Alginate–Montmorillonite Composite for Efficient Adsorption of Emerging Pharmaceuticals: Experimental and Theoretical Insights
by Ibrahim Allaoui, Rachid Et-Tanteny, Imane Barhdadi, Mohammad Elmourabit, Brahim Arfoy, Youssef Draoui, Mohamed Hadri and Khalid Draoui
Ceramics 2025, 8(2), 60; https://doi.org/10.3390/ceramics8020060 - 21 May 2025
Viewed by 1133
Abstract
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of [...] Read more.
The present study aims to prepare a composite via pyrolysis, based on sodium alginate (SA) and a natural clay collected from the eastern region of Morocco, specifically the OUJDA area (C.O.R), for use in the disposal process of emerging pharmaceuticals. The strategy of rapid microwave heating followed by nitrogen calcination at 500 °C was successfully applied to produce the pyrolyzed carbonaceous materials. The removal of paracetamol (PCT) by adsorption on the carbonaceous clay (ca-C.O.R) composite was investigated to determine the effect of operating parameters (initial contaminant concentration, contact time, pH, and temperature) on the efficiency of PCT removal. The nanocomposite was analyzed using various techniques, including the nitrogen gas adsorption–desorption isothermal curve, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Three models were used to describe the kinetic adsorption, and it was found that the experimental kinetic data fit well with a pseudo-second-order kinetic model with a coefficient of determination R2 close to one, a nonlinear chi-square value close to zero, and a reduced root mean square error RMSE (R2 → 1, X2 → 0 and lower RMSE). The adsorption was best described by the Sips isotherm. The ca-C.O.R composite achieved a PCT removal efficiency of 91% and a maximum adsorption capacity of 122 mg·g−1 improving on the performance of previous work. Furthermore, the variation in enthalpy (∆H°), Gibbs free energy (∆G°), and entropy (∆S°) indicated that the adsorption is exothermic in nature. The composite has shown promising efficiency for the adsorption of PCT as a model of emergent pollutant from aqueous solutions, making it a viable option for industrial wastewater treatment. Using Density Functional Theory (DFT) along with the 6-31G (d) basis set, the geometric structure of the molecule was determined, and the properties were estimated by analyzing its boundary molecular orbitals. The adsorption energy of PCT on MMT and ca-C.O.R studied using the Monte Carlo (MC) simulation method was −120.3 and −292.5 (kcal·mol−1), respectively, which shows the potential of the two adsorbents for the emerging product. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Graphical abstract

20 pages, 2249 KiB  
Article
Mechanical Properties, Thermal Stability, and Formaldehyde Emission Analysis of Nanocellulose-Reinforced Urea–Formaldehyde Resin and Its Mechanism
by Xue Deng, Zhu Liu, Zhongwei Wang, Zhigang Wu, Dan Li, Shoulu Yang, Shiqiang He and Ning Ji
Polymers 2025, 17(10), 1402; https://doi.org/10.3390/polym17101402 - 20 May 2025
Viewed by 625
Abstract
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric [...] Read more.
In this research, a urea–formaldehyde (UF) resin was modified with nanocrystalline cellulose (NCC) and nanofibrillated cellulose (CNF), and the properties of the modified resin were comprehensively evaluated by combining the techniques of infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The results showed that (1) the introduction of NCC and CNF significantly changed the hydrogen bonding network of the UF resin, in which CNF enhanced the internal hydrogen bonding of the resin through its long-chain structure and elevated the cross-linking density. NCC increased the crystallinity of the resin, while CNF enhanced the overall performance of the resin by improving its dispersion. (2) The composite curing agent system significantly reduced the curing temperature of the resin, resulting in a more homogeneous and efficient curing reaction, and the CNF-modified UF exhibited better thermal stability. (3) The addition of NCC and CNF significantly improved the dry and water-resistant bonding strengths of the resins. In addition, the use of complex curing agent further enhanced the bonding strength, especially in the CNF-modified system; the addition of complex curing agent increased the dry bonding strength to 1.60 MPa, and the water-resistant bonding strength reached 1.13 MPa, which showed a stronger cross-linking network and structural stability. (4) The addition of NCC and CNF led to a significant reduction in the free formaldehyde content of UF resins, resulting in respective levels of 0.17% and 0.14%. For plywood bonded with the CNF-modified UF resin, formaldehyde emissions were measured at 0.35 mg/L, which were markedly lower than the 0.54 mg/L of the unmodified sample. This further highlights CNF’s effectiveness in minimizing formaldehyde release. (5) Overall, CNF is superior to NCC in improving the thermal stability, bonding strength, water resistance, formaldehyde release, and overall performance of the resin. The use of complex curing agents not only optimizes the curing process of the resin but also further enhances the modification effect, especially for CNF-modified resins, which show more significant performance advantages. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

17 pages, 4896 KiB  
Article
Urea–Formaldehyde Strengthened by Polyvinyl Alcohol: Impact on Mulch Film Properties and Cucumber Cultivation
by Tingting Shen, Yongjie Ma and Xueyan Zhang
Polymers 2025, 17(9), 1277; https://doi.org/10.3390/polym17091277 - 7 May 2025
Viewed by 848
Abstract
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a [...] Read more.
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea–formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea–formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8–96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application. Full article
Show Figures

Graphical abstract

15 pages, 5164 KiB  
Article
Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials
by Lu Wang, Enwang Du, Zhi Liu and Zhiqiang Liu
Materials 2025, 18(9), 2043; https://doi.org/10.3390/ma18092043 - 29 Apr 2025
Viewed by 436
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess [...] Read more.
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet–visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l’Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

21 pages, 3744 KiB  
Article
Modeling and Analysis of KSnI3 Perovskite Solar Cells Yielding Power Conversion Efficiency of 30.21%
by Bonginkosi Vincent Kheswa, Siyabonga Ntokozo Thandoluhle Majola, Hmoud Al-Dmour, Nolufefe Muriel Ndzane and Lucky Makhathini
Nanomaterials 2025, 15(8), 580; https://doi.org/10.3390/nano15080580 - 11 Apr 2025
Cited by 2 | Viewed by 659
Abstract
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, [...] Read more.
KSnI3-based perovskite solar cells have attracted a lot of research interest due their unique electronic, optical, and thermal properties. In this study, we optimized the performance of various lead-free perovskite solar cell structures—specifically, FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se, using the SCAPS-1D simulation tool. The optimization focused on the thicknesses and dopant densities of the rGO, KSnI3, Al–ZnO, LiTiO2, ZnO, and SnO2 layers, the thickness of the FTO electrode, as well as the defect density of KSnI3. This yielded PCE values of 27.60%, 24.94%, 27.62%, and 30.21% for the FTO/Al–ZnO/KSnI3/rGO/Se, FTO/LiTiO2/KSnI3/rGO/Se, FTO/ZnO/KSnI3/rGO/Se, and FTO/SnO2/KSnI3/rGO/Se perovskite solar cell configurations, respectively. The FTO/SnO2/KSnI3/rGO/Se device is 7.43% more efficient than the FTO/SnO2/3C-SiC/KSnI3/NiO/C device, which is currently the highest performing KSnI3-based perovskite solar cell in the literature. Thus, our FTO/SnO2/KSnI3/rGO/Se perovskite solar cell structure is now, by far, the most efficient PSC design. Its best performance is achieved under ideal conditions of a series resistance of 0.5 Ω cm2, a shunt resistance of 107 Ω cm2, and a temperature of 371 K. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

Back to TopTop