Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach
Abstract
:1. Introduction
2. Computational Details
2.1. Model Preparations
2.2. Simulation Details
3. Results and Discussion
3.1. Densities
3.2. Thermal Properties
3.3. Mechanical Properties
4. Conclusions
- (1)
- As the conversion level increases from 0% to 90%, the epoxy network becomes denser, resulting in increased density, glass transition temperature (Tg), and Young’s modulus. Conversely, the coefficient of linear thermal expansion (CLTE) decreases with higher conversion.
- (2)
- Compared to the 4,4′-DDS system, the 3,3′-DDS system consistently exhibits higher density and Young’s modulus across all conversion levels. Meanwhile, the 4,4′-DDS system exhibits a higher Tg and a lower CLTE, highlighting the influence of crosslinking agents on the bulk properties.
- (3)
- Mean squared displacement (MSD) analysis revealed that the 3,3′-DDS system reaches the onset of molecular motion at a lower temperature compared to the 4,4′-DDS system, despite its higher density and packing efficiency. This dynamic behavior accounts for the lower Tg of the 3,3′-DDS system and further implies an influence on its thermal relaxation characteristics.
- (4)
- The higher Young’s modulus observed in the 3,3′-DDS system is attributed to its denser network structure and greater packing efficiency, which result in enhanced intermolecular cohesion. This is supported by higher CED values, indicating stronger non-bonded interactions that contribute to the increased stiffness of the network.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [Google Scholar] [CrossRef]
- Sanchez, L.; Li, J.-W.; Chiu, H.-T.; Cheng, C.-C.; Chiou, K.-C.; Lee, T.-M.; Chiu, C.-W. Highly thermally conductive epoxy composites with AlN/BN hybrid filler as underfill encapsulation material for electronic packaging. Polymers 2022, 14, 2950. [Google Scholar] [CrossRef] [PubMed]
- Manouchehri, S.; Bagheri, B.; Rad, S.H.; Nezhad, M.N.; Kim, Y.C.; Park, O.O.; Farokhi, M.; Jouyandeh, M.; Ganjali, M.R.; Yazdi, M.K. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019, 131, 389–396. [Google Scholar] [CrossRef]
- Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Metal-organic framework (MOF)/epoxy coatings: A review. Mater. 2020, 13, 2881. [Google Scholar] [CrossRef]
- Odegard, G.M.; Jensen, B.D.; Gowtham, S.; Wu, J.; He, J.; Zhang, Z. Predicting mechanical response of crosslinked epoxy using ReaxFF. Chem. Phys. Lett. 2014, 591, 175–178. [Google Scholar] [CrossRef]
- Kim, J.; Baillie, C.; Poh, J.; Mai, Y.-W. Fracture toughness of CFRP with modified epoxy resin matrices. Compos. Sci. Technol. 1992, 43, 283–297. [Google Scholar] [CrossRef]
- Papargyris, D.A.; Day, R.J.; Nesbitt, A.; Bakavos, D. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating. Compos. Sci. Technol. 2008, 68, 1854–1861. [Google Scholar] [CrossRef]
- Chen, F.; Liu, F.; Du, X. Molecular dynamics simulation of crosslinking process and mechanical properties of epoxy under the accelerator. J. Appl. Polym. Sci. 2023, 140, e53302. [Google Scholar] [CrossRef]
- Hall, S.A.; Howlin, B.J.; Hamerton, I.; Baidak, A.; Billaud, C.; Ward, S. Solving the problem of building models of crosslinked polymers: An example focussing on validation of the properties of crosslinked epoxy resins. PLoS ONE 2012, 7, e42928. [Google Scholar] [CrossRef]
- Odagiri, N.; Shirasu, K.; Kawagoe, Y.; Kikugawa, G.; Oya, Y.; Kishimoto, N.; Ohuchi, F.S.; Okabe, T. Amine/epoxy stoichiometric ratio dependence of crosslinked structure and ductility in amine-cured epoxy thermosetting resins. J. Appl. Polym. Sci. 2021, 138, 50542. [Google Scholar] [CrossRef]
- Becker, O.; Varley, R.; Simon, G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 2002, 43, 4365–4373. [Google Scholar] [CrossRef]
- Jeyranpour, F.; Alahyarizadeh, G.; Arab, B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J. Mol. Graphics Modell. 2015, 62, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Petrie, E.M. Epoxy Adhesive Formulations, 1st ed.; McGraw Hill LLC: New York, NY, USA, 2005. [Google Scholar]
- Pozuelo, J.; Baselga, J. Curing of polymer matrix composites: Fluorescence study of dansyl fluorophore labeled to glass fibers and DGEBA–ethylenediamine epoxy resin. J. Mater. Process. Technol. 2003, 143, 332–336. [Google Scholar] [CrossRef]
- Wu, C.; Xu, W. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer 2007, 48, 5802–5812. [Google Scholar] [CrossRef]
- Amariutei, O.A.; Ramsdale-Capper, R.; Álvarez, M.C.; Chan, L.K.; Foreman, J.P. Modelling the properties of a difunctional epoxy resin cured with aromatic diamine isomers. Polymer 2018, 156, 203–213. [Google Scholar] [CrossRef]
- Grillet, A.C.; Galy, J.; Gérard, J.-F.; Pascault, J.-P. Mechanical and viscoelastic properties of epoxy networks cured with aromatic diamines. Polymer 1991, 32, 1885–1891. [Google Scholar] [CrossRef]
- Kwon, W.; Han, M.; Kim, J.; Jeong, E. Comparative study on toughening effect of PTS and PTK in various epoxy resins. Polymers 2021, 13, 518. [Google Scholar] [CrossRef]
- Lee, M.; Kwon, W.; Kwon, D.; Lee, E.; Jeong, E. Fracture toughness of the novel in-situ polytriazolesulfone modified epoxy resin for carbon fiber/epoxy composites. J. Ind. Eng. Chem. 2019, 77, 461–469. [Google Scholar] [CrossRef]
- Ramsdale-Capper, R.; Foreman, J.P. Internal antiplasticisation in highly crosslinked amine cured multifunctional epoxy resins. Polymer 2018, 146, 321–330. [Google Scholar] [CrossRef]
- Czaderski, C.; Martinelli, E.; Michels, J.; Motavalli, M. Effect of curing conditions on strength development in an epoxy resin for structural strengthening. Compos. B Eng. 2012, 43, 398–410. [Google Scholar] [CrossRef]
- Müller-Pabel, M.; Rodríguez Agudo, J.A.; Gude, M. Measuring and understanding cure-dependent viscoelastic properties of epoxy resin: A review. Polym. Test. 2022, 114, 107701. [Google Scholar] [CrossRef]
- Ye, W.; Hao, J.; Gao, C.; Qiao, X.; Zhang, J.; Liao, R. Molecular Mechanism Analysis of Multi-Component Mixed Insulating Oil Improving Lightning Impulse Discharge Characteristics of Oil-Impregnated Paper. IEEE Trans. Dielectr. Electr. Insul. 2025, 32, 1615–1622. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, S.M.; Mim, J.J.; Khan, S.; Khan, F.; Patwary, M.A.I.; Hossain, N. Applications of molecular dynamics in nanomaterial design and characterization-A review. Chem. Eng. J. Adv. 2025, 22, 100731. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Xie, J.; Cheng, M.; Sun, L.; Zhang, S.; Xin, J.; Zhang, N. A review on application of molecular simulation technology in food molecules interaction. Curr. Res. Food Sci. 2022, 5, 1873–1881. [Google Scholar] [CrossRef]
- Tafrishi, H.; Sadeghzadeh, S.; Ahmadi, R. Molecular dynamics simulations of phase change materials for thermal energy storage: A review. RSC Adv. 2022, 12, 14776–14807. [Google Scholar] [CrossRef]
- Kim, B.; Shin, H.; Choi, J.; Cho, M. Multiscale modeling of load transfer characteristics in crosslinked epoxy nanocomposites. Mech. Adv. Mater. Struct. 2022, 29, 4768–4778. [Google Scholar] [CrossRef]
- Li, C.; Coons, E.; Strachan, A. Material property prediction of thermoset polymers by molecular dynamics simulations. Acta Mech. 2014, 225, 1187–1196. [Google Scholar] [CrossRef]
- Odegard, G.M.; Patil, S.U.; Deshpande, P.P.; Kanhaiya, K.; Winetrout, J.J.; Heinz, H.; Shah, S.P.; Maiaru, M. Molecular dynamics modeling of epoxy resins using the reactive interface force field. Macromolecules 2021, 54, 9815–9824. [Google Scholar] [CrossRef]
- Park, H.; Kim, B.; Choi, J.; Cho, M. Influences of the molecular structures of curing agents on the inelastic-deformation mechanisms in highly-crosslinked epoxy polymers. Polymer 2018, 136, 128–142. [Google Scholar] [CrossRef]
- Okabe, T.; Oya, Y.; Tanabe, K.; Kikugawa, G.; Yoshioka, K. Molecular dynamics simulation of crosslinked epoxy resins: Curing and mechanical properties. Eur. Polym. J. 2016, 80, 78–88. [Google Scholar] [CrossRef]
- Fan, J.; Anastassiou, A.; Macosko, C.W.; Tadmor, E.B. Molecular dynamics predictions of thermomechanical properties of an epoxy thermosetting polymer. Polymer 2020, 196, 122477. [Google Scholar] [CrossRef]
- Li, C.; Medvedev, G.A.; Lee, E.-W.; Kim, J.; Caruthers, J.M.; Strachan, A. Molecular dynamics simulations and experimental studies of the thermomechanical response of an epoxy thermoset polymer. Polymer 2012, 53, 4222–4230. [Google Scholar] [CrossRef]
- Kwon, S.H.; Kang, H.; Kim, B.-J.; Lee, H.I.; Lee, J.M.; Kim, J.; Lee, S.G. Addressing diffusion behavior and impact in an epoxy–amine cure system using molecular dynamics simulations. Sci. Rep. 2023, 13, 138. [Google Scholar]
- Radue, M.S.; Jensen, B.D.; Gowtham, S.; Klimek-McDonald, D.R.; King, J.A.; Odegard, G.M. Comparing the mechanical response of di-, tri-, and tetra-functional resin epoxies with reactive molecular dynamics. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 255–264. [Google Scholar] [CrossRef]
- Systèmes, D. Biovia Materials Studio; Dassault Systèmes: San Diego, CA, USA, 2020. [Google Scholar]
- Sun, H.; Mumby, S.J.; Maple, J.R.; Hagler, A.T. An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987. [Google Scholar] [CrossRef]
- Xiong, Q.; Meguid, S. Atomistic investigation of the interfacial mechanical characteristics of carbon nanotube reinforced epoxy composite. Eur. Polym. J. 2015, 69, 1–15. [Google Scholar] [CrossRef]
- Yang, S.; Gao, F.; Qu, J. A molecular dynamics study of tensile strength between a highly-crosslinked epoxy molding compound and a copper substrate. Polymer 2013, 54, 5064–5074. [Google Scholar] [CrossRef]
- Fan, H.B.; Yuen, M.M. Material properties of the cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 2007, 48, 2174–2178. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [PubMed]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Xi, Y.; Fukuzawa, H.; Fukunaga, S.; Kikugawa, G.; Zhao, Y.; Kawagoe, Y.; Okabe, T.; Kishimoto, N. Development of cat-GRRM/MC/MD method for the simulation of cross-linked network structure formation with molecular autocatalysis. Mol. Catal. 2024, 552, 113680. [Google Scholar] [CrossRef]
- Zhao, Y.; Kikugawa, G.; Shirasu, K.; Kawagoe, Y.; Okabe, T. Constructing and characterizing various multi-component crosslinked epoxy resins based on molecular dynamics simulations with a curing reaction model. Polymer 2024, 297, 126817. [Google Scholar] [CrossRef]
- Provenzano, M.; Bellussi, F.M.; Fasano, M.; Chávez Thielemann, H. Atomistic Modeling of Cross-Linking in Epoxy-Amine Resins: An Open-Source Protocol. ACS Appl. Polym. Mater. 2025, 7, 4876–4884. [Google Scholar] [CrossRef]
- Masoumi, S.; Arab, B.; Valipour, H. A study of thermo-mechanical properties of the cross-linked epoxy: An atomistic simulation. Polymer 2015, 70, 351–360. [Google Scholar] [CrossRef]
- Odegard, G.M.; Patil, S.U.; Gaikwad, P.S.; Deshpande, P.; Krieg, A.S.; Shah, S.P.; Reyes, A.; Dickens, T.; King, J.A.; Maiaru, M. Accurate predictions of thermoset resin glass transition temperatures from all-atom molecular dynamics simulation. Soft Matter 2022, 18, 7550–7558. [Google Scholar] [CrossRef]
- Ge, T.; Wang, J.; Robbins, M.O. Effects of coarse-graining on molecular simulations of mechanical properties of glassy polymers. Macromolecules 2021, 54, 2277–2287. [Google Scholar] [CrossRef]
- Zhao, D.-Y.; Zeng, Y.; Lin, H.; Lei, J.; Zhong, G.-J.; Li, Z.-M. Molecular dynamics simulation of stretching-induced ductility for polystyrene. Polymer 2024, 305, 127182. [Google Scholar] [CrossRef]
- Macatangay, J.; Hamilton, B.W.; Strachan, A. Deviatoric stress driven transient melting below the glass transition temperature in shocked polymers. J. Appl. Phys. 2022, 132, 035901. [Google Scholar] [CrossRef]
- Wei, M.; Xu, P.; Yuan, Y.; Tian, X.; Sun, J.; Lin, J. Molecular dynamics simulation on the mechanical properties of natural-rubber-graft-rigid-polymer/rigid-polymer systems. Phys. Chem. Chem. Phys. 2018, 20, 8228–8240. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, C.; Du, C.; Jiang, Z.; Du, Z.; Gao, G. Semi-crystalline polymers applied to taylor impact test: Constitutive, experimental and fem analysis. Polymers 2020, 12, 1615. [Google Scholar] [CrossRef] [PubMed]
- Kardani, A.; Montazeri, A.; Urbassek, H.M. Strain-rate-dependent plasticity of Ta-Cu nanocomposites for therapeutic implants. Sci. Rep. 2023, 13, 15788. [Google Scholar] [CrossRef] [PubMed]
- Dewapriya, M.; Chowdhury, S.; Deitzel, J.; Gillespie, J., Jr. Strain rate effects on the axial tensile behavior of crystalline polyethylene: Insights from molecular dynamics simulations. Polymer 2024, 295, 126779. [Google Scholar] [CrossRef]
- Choi, J.; Kang, H.; Lee, J.H.; Kwon, S.H.; Lee, S.G. Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials 2022, 12, 2353. [Google Scholar] [CrossRef]
- Patil, S.U.; Shah, S.P.; Olaya, M.; Deshpande, P.P.; Maiaru, M.; Odegard, G.M. Reactive molecular dynamics simulation of epoxy for the full cross-linking process. ACS Appl. Polym. Mater. 2021, 3, 5788–5797. [Google Scholar] [CrossRef]
- Vashisth, A.; Bakis, C. Characterization of nanosilica filled bis f epoxide with diamino diphenyl sulfone curing agents. In Proceedings of the 31st Technical Conference of the American Society for Composites, Williamsbrug, VA, USA, 19–21 September 2016; Destech Publications: Williamsburg, VA, USA, 2016; p. 15. [Google Scholar]
- Kim, D.; Lim, J.; Jung, D.; Oh, W.; Kyeong, J.; Kwon, S.H.; Lee, S.G. Thermal and mechanical properties of polymeric materials for automotive applications using molecular dynamics simulation. Mater. Today Commun. 2023, 36, 106529. [Google Scholar] [CrossRef]
- Yang, Q.; Li, X.; Shi, L.; Yang, X.; Sui, G. The thermal characteristics of epoxy resin: Design and predict by using molecular simulation method. Polymer 2013, 54, 6447–6454. [Google Scholar] [CrossRef]
- Tu, J.; Tucker, S.J.; Christensen, S.; Sayed, A.R.; Jarrett, W.L.; Wiggins, J.S. Phenylene ring motions in isomeric glassy epoxy networks and their contributions to thermal and mechanical properties. Macromolecules 2015, 48, 1748–1758. [Google Scholar] [CrossRef]
- Frank, K.; Wiggins, J. Effect of stoichiometry and cure prescription on fluid ingress in epoxy networks. J. Appl. Polym. Sci. 2013, 130, 264–276. [Google Scholar] [CrossRef]
- Ingram, S.E.; Liggat, J.J.; Pethrick, R.A. Properties of epoxy nanoclay system based on diaminodiphenyl sulfone and diglycidyl ether of bisphenol F: Influence of post cure and structure of amine and epoxy. Polym. Int. 2007, 56, 1029–1034. [Google Scholar] [CrossRef]
- Jackson, M.; Kaushik, M.; Nazarenko, S.; Ward, S.; Maskell, R.; Wiggins, J. Effect of free volume hole-size on fluid ingress of glassy epoxy networks. Polymer 2011, 52, 4528–4535. [Google Scholar] [CrossRef]
- Lee, K.Y.; Lee, K.W.; Choi, Y.S.; Park, D.H. Thermal and electrical properties of brittleness improved epoxy for high voltage. In Proceedings of the IEEE PES Power Systems Conference and Exposition, New York, NY, USA, 10–13 October 2004; pp. 689–692. [Google Scholar]
- Zhao, Y.; Kikugawa, G.; Kawagoe, Y.; Shirasu, K.; Kishimoto, N.; Xi, Y.; Okabe, T. Uncovering the mechanism of size effect on the thermomechanical properties of highly cross-linked epoxy resins. J. Phys. Chem. B. 2022, 126, 2593–2607. [Google Scholar] [CrossRef] [PubMed]
- Morel, E.; Bellenger, V.; Bocquet, M.; Verdu, J. Structure-properties relationships for densely cross-linked epoxide-amine systems based on epoxide or amine mixtures: Part 3 Elastic properties. J. Mater. Sci. 1989, 24, 69–75. [Google Scholar] [CrossRef]
- Li, C.; Strachan, A. Cohesive energy density and solubility parameter evolution during the curing of thermoset. Polymer 2018, 135, 162–170. [Google Scholar] [CrossRef]
- Hata, N.; Kumanotani, J. Viscoelastic properties of epoxy resin. I. Effect of prepolymer structure on viscoelastic properties. J. Appl. Polym. Sci. 1971, 15, 2371–2380. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.J.; Kwon, S.H.; Lim, J.; Kwon, W.; Park, G.H.; Lee, E.; Won, J.S.; Lee, M.Y.; Jeong, E.; Lee, S.G. Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach. Polymers 2025, 17, 1694. https://doi.org/10.3390/polym17121694
Jeong HJ, Kwon SH, Lim J, Kwon W, Park GH, Lee E, Won JS, Lee MY, Jeong E, Lee SG. Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach. Polymers. 2025; 17(12):1694. https://doi.org/10.3390/polym17121694
Chicago/Turabian StyleJeong, Hei Je, Sung Hyun Kwon, Jihoon Lim, Woong Kwon, Gun Hwan Park, Eunhye Lee, Jong Sung Won, Man Young Lee, Euigyung Jeong, and Seung Geol Lee. 2025. "Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach" Polymers 17, no. 12: 1694. https://doi.org/10.3390/polym17121694
APA StyleJeong, H. J., Kwon, S. H., Lim, J., Kwon, W., Park, G. H., Lee, E., Won, J. S., Lee, M. Y., Jeong, E., & Lee, S. G. (2025). Molecular Level Understanding of Amine Structural Variations on Diaminodiphenyl Sulfone to Thermomechanical Characteristics in Bifunctional Epoxy Resin: Molecular Dynamics Simulation Approach. Polymers, 17(12), 1694. https://doi.org/10.3390/polym17121694