Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = foundations in permafrost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10406 KB  
Article
Evaluating the Effectiveness of High-Frequency Ground-Penetrating Radar in Identifying Active Layer Thickness in the Da Xing’anling Mountains
by Lei Yang, Yunhu Shang, Changlei Dai, Yang Liu, Guoyu Li, Kai Gao, Yi Wu and Yiru Wei
Remote Sens. 2025, 17(20), 3484; https://doi.org/10.3390/rs17203484 - 20 Oct 2025
Abstract
Ground-penetrating radar (GPR), due to its efficiency and non-invasive nature, has become an important tool for detecting the permafrost table, overcoming the limited spatial coverage and high costs associated with drilling and in situ temperature monitoring. Compared with the commonly used 50–100 MHz [...] Read more.
Ground-penetrating radar (GPR), due to its efficiency and non-invasive nature, has become an important tool for detecting the permafrost table, overcoming the limited spatial coverage and high costs associated with drilling and in situ temperature monitoring. Compared with the commonly used 50–100 MHz antennas, the potential of high-frequency antennas to improve detection accuracy and interface resolution has not been fully explored. To address this gap, this study introduces a multi-strategy interface identification method incorporating envelope analysis. Field experiments were conducted in the island-like permafrost zone of the Da Xing’anling Mountains, Heilongjiang Province, using shielded GPR systems operating at 250 MHz and 500 MHz to detect the permafrost table. Potential interfaces were extracted using centroid and edge-detection algorithms and validated against ground temperature observations. The results indicate that: (1) integrating GPR with multi-source data enables accurate estimation of active layer thickness, and the envelope-based multi-strategy approach is effective for interface identification; (2) the 250 MHz antenna is better suited for capturing broader subsurface structures, while the 500 MHz antenna provides higher resolution for shallow layers—combining the two enhances overall interpretive quality; and (3) snow cover significantly affects electromagnetic wave propagation, reducing the accuracy of radar detection. This study provides valuable guidance for engineering investigations, site selection, and foundation design in permafrost regions, contributing to improved precision and efficiency in GPR-based detection of the permafrost table. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Figure 1

27 pages, 3561 KB  
Review
Permafrost Degradation: Mechanisms, Effects, and (Im)Possible Remediation
by Doriane Baillarget and Gianvito Scaringi
Land 2025, 14(10), 1949; https://doi.org/10.3390/land14101949 - 26 Sep 2025
Viewed by 726
Abstract
Permafrost degradation, driven by the thawing of ground ice, results in the progressive thinning and eventual loss of the permafrost layer. This process alters hydrological and ecological systems by increasing surface and subsurface water flow, changing vegetation density, and destabilising the ground. The [...] Read more.
Permafrost degradation, driven by the thawing of ground ice, results in the progressive thinning and eventual loss of the permafrost layer. This process alters hydrological and ecological systems by increasing surface and subsurface water flow, changing vegetation density, and destabilising the ground. The thermal and hydraulic conductivity of permafrost are strongly temperature-dependent, both increasing as the soil warms, thereby accelerating thaw. In addition, thawing permafrost releases large quantities of greenhouse gases, establishing a feedback loop in which global warming both drives and is intensified by permafrost loss. This paper reviews the mechanisms and consequences of permafrost degradation, including reductions in strength and enhanced deformability, which induce landslides and threaten the structural integrity of foundations and critical infrastructure. Permafrost has been investigated and modelled extensively, and various approaches have been devised to address the consequences of thawing permafrost on communities and the built environment. Some techniques focus on keeping the ground frozen via insulation, while others propose local replacement of permafrost with more stable materials. However, given the scale and pace of current changes, systematic remediation appears unfeasible. This calls for increased efforts towards adaptation, informed by interdisciplinary research. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

18 pages, 4035 KB  
Article
Application of a Multi-Frequency Electromagnetic Method for Boundary Detection of Isolated Permafrost
by Yi Wu, Changlei Dai, Yunhu Shang, Lei Yang, Kai Gao and Wenzhao Xu
Sensors 2025, 25(18), 5907; https://doi.org/10.3390/s25185907 - 21 Sep 2025
Viewed by 423
Abstract
Isolated permafrost is widely distributed in freeze–thaw transition zones, characterized by blurred boundaries and strong spatial variability. Traditional methods such as drilling and electrical resistivity surveys are often limited in achieving efficient and continuous boundary identification. This study focuses on a typical isolated [...] Read more.
Isolated permafrost is widely distributed in freeze–thaw transition zones, characterized by blurred boundaries and strong spatial variability. Traditional methods such as drilling and electrical resistivity surveys are often limited in achieving efficient and continuous boundary identification. This study focuses on a typical isolated permafrost region in Northeast China and proposes a boundary detection strategy based on multi-frequency electromagnetic (EM) measurements using the GEM-2 sensor. By designing multiple frequency combinations and applying joint inversion, a boundary identification framework was developed and validated against borehole data. Results show that the multi-frequency joint inversion method improves the spatial identification accuracy of permafrost boundaries compared to traditional point-based techniques. In areas lacking boreholes, the method still demonstrates coherent boundary imaging and strong adaptability to geomorphological conditions. The multi-frequency joint inversion strategy significantly enhances imaging continuity and effectively captures electrical variations in complex freeze–thaw transition zones. Overall, this study establishes a complete non-invasive technical workflow—“acquisition–inversion–validation–imaging”—providing an efficient and scalable tool for engineering site selection, foundation design, and permafrost degradation monitoring. It also offers a methodological paradigm for electromagnetic frequency optimization and subsurface electrical boundary modeling. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 3635 KB  
Article
Properties and Diffusion Plugging Mechanism of Modified Sodium Bentonite
by Sen Hu, Bo Tian, Kaimin Niu, Haowu Wang and Zhihao Li
Coatings 2025, 15(8), 941; https://doi.org/10.3390/coatings15080941 - 12 Aug 2025
Viewed by 462
Abstract
With rising global temperatures, roads in the permafrost regions of the Qinghai–Tibet Plateau are exhibiting issues such as subsidence, water accumulation alongside the roads and in their foundations, and ongoing permafrost degradation. Among these issues, water accumulation has emerged as a prominent challenge [...] Read more.
With rising global temperatures, roads in the permafrost regions of the Qinghai–Tibet Plateau are exhibiting issues such as subsidence, water accumulation alongside the roads and in their foundations, and ongoing permafrost degradation. Among these issues, water accumulation has emerged as a prominent challenge in road management. In this study, sodium-based-bentonite-modified cementitious waterproof grouting materials were prepared and utilized as functional barrier layers. The rheological properties, mechanical strength, flowability, and setting time of the materials were tested under different sodium bentonite dosages. The feasibility of the application of these materials was evaluated, accounting for the evolution of pressure, flow rate, and diffusion distance of permafrost subgrades over different time scales when the materials were applied as functional barrier layers. The results indicate that, when used as a functional barrier layer, the modified cement-based grouting material exhibits a fluidity that meets the upper limit of grouting requirements, with a controllable setting time. Both compressive strength and apparent viscosity rise with the addition of sodium-based bentonite (Na-bentonite). Notably, an appropriate viscosity range of 0.35–0.50 Pa·s was found to effectively resist groundwater erosion while satisfying the critical performance requirements for grouting applications, demonstrating excellent applicability. In the field grouting test, the effects of grouting pressure and flow rate over different time scales on soil cracking, spreading distance, and the crack-filling process were further analyzed. Based on these findings, a technical solution using a new type of subgrade treatment material (functional barrier layer) was proposed, providing a reference for related theoretical research and engineering practice. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

20 pages, 35728 KB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 485
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

15 pages, 4293 KB  
Article
A Study on the Vertical Bearing Characteristics of Screw Piles in Permafrost Regions
by Tao Liu, Jun Lv, Xuyan Deng, Chunxiang Guo, Weijia Zhang and Daijun Jiang
Appl. Sci. 2025, 15(13), 7416; https://doi.org/10.3390/app15137416 - 1 Jul 2025
Viewed by 543
Abstract
The screw piles used in permafrost regions represent a new type of pile, and their vertical bearing characteristics play a crucial role in ensuring the normal operation of engineering buildings. This study establishes a numerical calculation model to simulate the interaction between screw [...] Read more.
The screw piles used in permafrost regions represent a new type of pile, and their vertical bearing characteristics play a crucial role in ensuring the normal operation of engineering buildings. This study establishes a numerical calculation model to simulate the interaction between screw piles and soil in permafrost regions and verifies the numerical simulation results through model tests. The bearing mechanism of screw piles in permafrost areas is studied and compared with common, bored, cast-in-place piles widely used. Finally, a method for estimating the bearing capacity of screw piles in permafrost regions is proposed. The research indicates that approximately 90% of the bearing capacity of screw piles in permafrost regions is derived from the mechanical interaction between the concrete pile’s side and the permafrost soil. The shear strength of the permafrost is the primary determinant of the pile foundation’s bearing capacity, while the seasonally active layer has a minimal impact on its bearing capacity, resulting in a stable year-round performance. In permafrost regions, the equivalent friction resistance of screw piles is significantly greater than that of the conventional cast-in-place piles. When the pile reaches its ultimate bearing capacity, the plastic zone on the pile’s side becomes connected, and shear failure occurs in the surrounding soil. The design value of the bearing capacity of a single pile can be effectively estimated in engineering practice by improving the formula of the code for calculating the vertical bearing capacity. Full article
Show Figures

Figure 1

12 pages, 3932 KB  
Article
Experimental Study on Shear Mechanical Properties of Pile–Soil Interface Under Freezing Conditions
by Tuo Chen, Qianqian Song, Jianzhou Wang and Zhijian Wu
Appl. Sci. 2025, 15(10), 5457; https://doi.org/10.3390/app15105457 - 13 May 2025
Viewed by 525
Abstract
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing [...] Read more.
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing a pile-pressing method under a cryogenic environment. Experimental results demonstrate that the maximum vertical pressure on the pile top increased significantly with the decrease in temperature under the same moisture content. The shear stress–shear displacement curves, at the bottom part of the interface, presented strain-softening characteristics, while the strain-hardening phenomenon was observed at the upper part of the interface. The strength parameters of the interface decreased with the increase in the pile depth. Moreover, the influence of temperature on the shear strength of the interface was more significant compared with that of the moisture content. The research results can provide references for the construction of pile foundations, structural design optimization, and for frozen damage prevention and treatment in permafrost regions. Full article
Show Figures

Figure 1

14 pages, 3118 KB  
Article
Experimental Investigation on the Mechanical Properties of the Frozen Rocks at the Yamal Peninsula, Russian Arctic
by Vladimir Leonidovich Trushko, Elena Konstantinovna Baeva and Alexander Alexandrovich Blinov
Eng 2025, 6(4), 76; https://doi.org/10.3390/eng6040076 - 14 Apr 2025
Cited by 3 | Viewed by 655
Abstract
This paper presents laboratory results on the physical–mechanical properties of frozen rocks from Russia’s Yamal Peninsula, aiming to improve foundation design in permafrost. Samples from various geological profiles underwent compression and shear tests along the freezing surface at −3 °C, following standard protocols. [...] Read more.
This paper presents laboratory results on the physical–mechanical properties of frozen rocks from Russia’s Yamal Peninsula, aiming to improve foundation design in permafrost. Samples from various geological profiles underwent compression and shear tests along the freezing surface at −3 °C, following standard protocols. Strength and deformation characteristics were established for prevalent frozen rock types (sands, sandy loams, clay loams, clays), revealing links between physical properties and mechanical behavior. The study specifically investigated how salinity and the degree of pore filling with ice/unfrozen water influence the deformation modulus, crucial for foundation reliability in permafrost. Results demonstrated significant property variability related to granulometry, plasticity, porosity, and salinity. Deformation modulus generally decreased with increasing dispersion, ranging from approximately 44 MPa for saline sands down to 6–14 MPa for clays. Shear resistance varied from 0.05 to 0.20 MPa (clays) to 0.20–0.30 MPa (sands). The influence of pore filling on deformation modulus depended complexly on rock type, porosity, and salinity. These findings provide valuable data for geomechanical modeling and bearing capacity assessments of pile foundations in Arctic regions, particularly the Yamal Peninsula. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

16 pages, 3833 KB  
Article
Cooling Efficiency of Two-Phase Closed Thermosyphon Installed in Cast-in-Place Pile Foundation for Overhead Transmission Lines in High-Latitude Permafrost Regions
by Lei Zhao, Yao Xiao, Yunhu Shang, Yan Lu and Xuyang Wu
Processes 2025, 13(4), 1080; https://doi.org/10.3390/pr13041080 - 3 Apr 2025
Viewed by 615
Abstract
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these [...] Read more.
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these pile foundations. However, research on the prevention and control of pile foundation diseases caused by permafrost degradation is relatively limited, and engineering practices are insufficient. To address this, this study proposes embedding a two-phase closed thermosyphon (TPCT) inside a concrete pile foundation to create a composite structural system with both load-bearing and cooling functions. A mathematical model is developed to focus on the cooling performance and temperature control efficiency of the composite structure. The results indicate that: (1) The TPCT can alleviate, to some extent, the downward shift of the permafrost table around the transmission tower foundation due to climate warming. The cooling effect of the TPCT slows the rate of permafrost degradation, but its control effect on the permafrost table is limited. (2) The performance of the cast-in-place piles with an embedded TPCT is closely related to temperature, with an effective operational period from early October to late March each year. (3) This device effectively mitigates the impact of permafrost degradation due to climate change, significantly lowering the risk of foundation-related issues in transmission towers. The findings of this study are crucial for maintaining ground temperature stability in cast-in-place pile foundations for transmission projects in high-latitude permafrost areas, as well as enhancing the theoretical framework for pile foundation design. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

15 pages, 5821 KB  
Article
Investigation of Seepage Behavior and Settlement Deformation Mechanisms in Loess Embankment Foundation Systems in Eastern Gansu Province
by Wei Wang, Wei Li, Pengxiang Zhang and Lulu Liu
Appl. Sci. 2025, 15(7), 3789; https://doi.org/10.3390/app15073789 - 30 Mar 2025
Viewed by 559
Abstract
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to [...] Read more.
The northwestern region of China is characterized by loess soil and seasonal permafrost. Due to the combined effects of its unique climate and precipitation patterns, local roads frequently suffer from issues such as foundation settlement, erosion, and collapse, which pose significant risks to both road construction and safe operation. This study examines a typical high subgrade in Northwest China, where a scaled laboratory model experiment was conducted. The research investigates the impact of water infiltration at the slope foot, under the dual influences of extreme cold and precipitation, on changes in the internal moisture field and settlement deformation characteristics of both the foundation and subgrade. The results indicate that the variation in moisture content across the section follows an arc-shaped diffusion pattern. Settlement is influenced by both the amount of infiltrated water and cold air, with a noticeable lag effect. A settlement of 0.1 cm is considered the threshold for significant impact, with the minimum observed lag period approaching 4 days. The settlement is concentrated in the slope region, exhibiting a bending failure pattern. Numerical simulations reveal that the cross-sectional settlement distribution forms an inverted “S” shape, and the cumulative moisture content at each monitoring point exhibits a quadratic relationship with the cumulative settlement. The findings of this study provide scientific guidance and technical references for road construction and safe operation in the seasonal permafrost regions of Northwest China. Full article
Show Figures

Figure 1

16 pages, 2787 KB  
Article
Experimental and Microscopic Analysis for Impact of Compaction Coefficient on Plastic Strain Characteristic of Soft Clay in Seasonally Frozen Soil Regions
by Miaomiao Sun, Zhanggong Huang, Zouying Liu, Ganggui Liu, Chengbao Hu and Jiaying Liu
Fractal Fract. 2025, 9(4), 214; https://doi.org/10.3390/fractalfract9040214 - 28 Mar 2025
Cited by 1 | Viewed by 431
Abstract
Freeze–thaw cycles and the soil compaction coefficient (λc) have significant influence on the plastic strain for the foundation of underground structures in seasonal permafrost regions. Understanding the microstructural evolution of freeze–thawed soil is pivotal for assessing the long-term settlement of [...] Read more.
Freeze–thaw cycles and the soil compaction coefficient (λc) have significant influence on the plastic strain for the foundation of underground structures in seasonal permafrost regions. Understanding the microstructural evolution of freeze–thawed soil is pivotal for assessing the long-term settlement of infrastructure foundation under repeated train loading. This study investigates the impacts of freeze–thaw cycles and λc on the plastic strain and pore size distribution (PSD), as well as fractal characteristics, of soft clay via a set of cyclic triaxial tests and nuclear magnetic resonance (NMR) analyses. Fractal theory was adopted to analyze the heterogeneity of soil specimens. The results showed that an increase in λc could efficiently alleviate the cumulative plastic strain. It also decreased the proportion of large pores and facilitated the generation of small and medium-sized pores. The analysis of the NMR test demonstrated that the freeze–thaw cycle led to the disruption of the soil’s microporous structure. Moreover, a higher value of λc encouraged the formation of a more intricate and uniform pore structure. This, in turn, increased the fractal dimension, enhanced the structural heterogeneity, and thereby improved the soil’s structural complexity and its resistance to deformation. These findings underscore the significance of achieving optimal compaction levels to bolster soil stability under freeze–thaw conditions, provide valuable guidance for infrastructure design in permafrost regions, and help to ensure the durability and stability of transportation networks, such as railways and roads, over time. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

20 pages, 6877 KB  
Article
Analyses of Variation Trends of Winter Cold Snaps in Subarctic and Arctic Alaska
by Xiaofeng Chang, Zhaohui Yang, Yimeng Zhu, Kaiwen Zhang and Changlei Dai
Sustainability 2025, 17(6), 2438; https://doi.org/10.3390/su17062438 - 11 Mar 2025
Viewed by 876
Abstract
Arctic Alaska is warming at twice the rate of the rest of the nation, severely impacting infrastructure built on permafrost. As winters warm, the effectiveness of thermosyphons used to stabilize foundations diminishes, increasing the risk of infrastructure failure. Because thermosyphons operate with the [...] Read more.
Arctic Alaska is warming at twice the rate of the rest of the nation, severely impacting infrastructure built on permafrost. As winters warm, the effectiveness of thermosyphons used to stabilize foundations diminishes, increasing the risk of infrastructure failure. Because thermosyphons operate with the highest efficiency during winter cold snaps, studying the variation trends and patterns of winter cold snaps in Alaska is particularly important. To address this issue, this study analyzes the historical temperature data of four selected locations in Subarctic and Arctic Alaska, including Bethel, Fairbanks, Nome, and Utqiagvik. The winter cold snap is defined as a period when the average daily temperature drops below a specific site’s mean winter air temperature. The frequency, duration, and intensity of the winter cold snaps are computed to reveal their trends. The results indicate that the mean annual air temperature (MAAT) shows a warming trend, accompanied by sudden warming after 1975 for all study sites. The long-term average monthly air temperature also indicates that the most significant warming occurs in the winter months from December to March. While the frequencies of winter cold snaps remain relatively unchanged, the mean intensity and duration of cold snaps show a declining trend. Most importantly, the most intense cold snap during which the thermosyphons are the most effective is becoming much milder over time for all study sites. This study focuses specifically on the impact of changes in winter cold spells on thermosyphon effectiveness while acknowledging the complexity of other influencing factors, such as temperature differences, design features, coolant properties, and additional climatic parameters (e.g., wind speed, precipitation, and humidity). The data for this study were obtained from the NOAA NCEI website. The findings of this study can serve as a valuable reference for the retrofit or design of foundations and for decision making in selecting appropriate foundation stabilizing measures to ensure the long-term stability and resilience of infrastructure in permafrost regions. Moreover, the insights gained from this research on freeze–thaw dynamics, which are also relevant to black soils, align with the journal’s focus on sustainable soil utilization and infrastructure resilience. Full article
Show Figures

Figure 1

15 pages, 2347 KB  
Article
Study on the Optimal Construction Time of Adjacent Pile Foundation Considering the Thermal Stability of the Existing Pile Foundation
by Xiangyang Shi, Yunxing Wang, Ziqiang Zhou and Long Huang
Buildings 2025, 15(5), 684; https://doi.org/10.3390/buildings15050684 - 21 Feb 2025
Viewed by 766
Abstract
To control settlement deformation in permafrost regions, new piles are constructed for remediation. However, the construction of new piles inevitably causes thermal disturbance to the existing pile foundations. A three-dimensional quarter-model of a rectangularly arranged pile group was established to analyze temperature field [...] Read more.
To control settlement deformation in permafrost regions, new piles are constructed for remediation. However, the construction of new piles inevitably causes thermal disturbance to the existing pile foundations. A three-dimensional quarter-model of a rectangularly arranged pile group was established to analyze temperature field changes under construction time in odd-numbered months. In addition, a refreezing rate formula based on the effective freezing temperature was developed to examine the annual changes. The results indicate that the thermal disturbance from the new pile foundation construction gradually weakens over time but does not subside within a year, which significantly affects 75% of the existing pile length, and that the refreezing rate continues to increase after construction in November, i.e., the initial month of the cold season, and is maximized in approximately 60 days. This result suggests that November is the optimal time for such construction activities. The findings of this study provide valuable insights for pile engineering practices to mitigate issues caused by permafrost degradation. Full article
(This article belongs to the Special Issue Structural Mechanics Analysis of Soil-Structure Interaction)
Show Figures

Figure 1

20 pages, 3208 KB  
Article
Numerical Model of Temperature-Filtration Regime of Earth Dam in Harsh Climatic Conditions
by Nikolay Aniskin, Andrey Stupivtsev, Stanislav Sergeev and Ilia Bokov
Water 2024, 16(24), 3652; https://doi.org/10.3390/w16243652 - 18 Dec 2024
Viewed by 890
Abstract
The article addresses the issue of numerical modeling of the process of forming the temperature regime of earth dams, along with their foundations, built and operated in permafrost conditions. A large number of such structures have been constructed in the permafrost regions of [...] Read more.
The article addresses the issue of numerical modeling of the process of forming the temperature regime of earth dams, along with their foundations, built and operated in permafrost conditions. A large number of such structures have been constructed in the permafrost regions of the Earth to meet the needs of industry and population. The paper outlines the key principles of designing and constructing such structures. These principles were developed based on years of experience in hydrotechnical construction. Failure to follow these principles leads to structural failures, as confirmed by the presented statistics on accidents. It is essential to ensure the appropriate thermal condition of the structure and its foundation, either frozen or thawed. An unplanned transition of soils from one state to another may lead to an emergency situation. Temperature changes can cause phase transitions of water from liquid to solid (ice), which also affects the formation of the structure’s regime. Numerical methods of calculation allow for the most comprehensive consideration of the influencing factors and processes. The article presents the results of numerical modeling of the filtration-temperature regime of an earth dam with a foundation in permafrost conditions, using two computational programs. The first is based on a locally variational approach (Termic, authored by the researchers), while the second uses a classical linear equation system solution (PLAXIS 2D 2022 software). A comparison of the results obtained from both programs showed good qualitative and quantitative consistency. Under the influence of seepage flow, the zone of frozen ground degradation is spreading in the lower part of the earth dam and its foundation. By September of the 27th year of operation, the thawed ground zone reaches approximately the middle of the structure at the base. The temperature values along the screen axis at the base of the structure are +1.2 °C (according to the Termic program—ver. 1.1) and +1.06 °C (according to PLAXIS 2D PC). Recommendations and future research directions on this topic are also formulated. Full article
Show Figures

Figure 1

23 pages, 13386 KB  
Article
Climate and Permafrost Shifts in Yakutia’s Arctic and Subarctic from 1965 to 2023
by Alexander N. Fedorov, Pavel Y. Konstantinov, Nikolay F. Vasilyev, Stepan P. Varlamov, Yuri B. Skachkov, Alexey N. Gorokhov, Svetlana V. Kalinicheva, Rosaliya N. Ivanova, Alexandra N. Petrova, Varvara V. Andreeva, Varvara A. Novopriezzhaya, Maxim A. Sivtsev and Mikhail N. Zheleznyak
Land 2024, 13(12), 2150; https://doi.org/10.3390/land13122150 - 10 Dec 2024
Cited by 1 | Viewed by 2154
Abstract
By analyzing the last 50–60 years of climate changes in Arctic and Subarctic Yakutia, we have identified three distinct periods of climate development. The cold (1965–1987), pre-warming (1988–2004), and modern warming (2005–2023) periods are clearly identifiable. Yakutia’s Arctic and Subarctic regions have experienced [...] Read more.
By analyzing the last 50–60 years of climate changes in Arctic and Subarctic Yakutia, we have identified three distinct periods of climate development. The cold (1965–1987), pre-warming (1988–2004), and modern warming (2005–2023) periods are clearly identifiable. Yakutia’s Arctic and Subarctic regions have experienced mean annual air temperature increases of 2.5 °C and 2.2 °C, respectively, compared to the cold period. The thawing index rose by an average of 171–214 °C-days, while the freezing index dropped by an average of 564–702 °C-days. During the pre-warming period, all three characteristics show a minor increase in warmth. Global warming intensified between 2005 and 2023, resulting in elevated permafrost temperatures and a deeper active layer. Monitoring data from the Tiksi site show that warming has been increasing at different depths since the mid-2000s. As a result, the permafrost temperature increased by 1.7 °C at a depth of 10 m and by 1.1 °C at a depth of 30 m. Soil temperature measurements at meteorological stations and observations at CALM sites both confirm the warming of the permafrost. A permafrost–climatic zoning study was conducted in Arctic and Subarctic Yakutia. Analysis identified seven regions characterized by similar responses to modern global warming. These study results form the foundation for future research on global warming’s effects on permafrost and on how northern Yakutia’s environment and economy adapt to the changing climate. Full article
(This article belongs to the Special Issue Impact of Climate Change on Land and Water Systems)
Show Figures

Figure 1

Back to TopTop