Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,311)

Search Parameters:
Keywords = foundation groups

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1150 KiB  
Article
Comparative Assessment of Health Systems Resilience: A Cross-Country Analysis Using Key Performance Indicators
by Yu-Hsiu Chuang and Jin-Li Hu
Systems 2025, 13(8), 663; https://doi.org/10.3390/systems13080663 - 5 Aug 2025
Abstract
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or [...] Read more.
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or broadly examines socio-economic factors, highlighting the need for a more comprehensive methodological approach. This study employed the Slacks-Based Measure (SBM) within Data Envelopment Analysis (DEA) to analyze efficiency by maximizing outputs. It systematically examined key HSR factors across countries, providing insights for improved policymaking and resource allocation. Taking a five-year (2016–2020) dataset that covered 55 to 56 countries and evaluating 17 indicators across governance, health systems, and economic aspects, the paper presents that all sixteen top-ranked countries with a perfect efficiency score of 1 belonged to the high-income group, with ten in Europe, highlighting regional HSR differences. This paper concludes that adequate economic resources form the foundation of HSR and ensure stability and sustained progress. A properly supported healthcare workforce is essential for significantly enhancing health systems and delivering quality care. Last, effective governance and the equitable allocation of resources are crucial for fostering sustainable development and strengthening HSR. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

19 pages, 1220 KiB  
Article
The Role of Square Dancing in Psychological Capital: Evidence from a Large Cross-Sequential Study
by Ruitong Li, Yujia Qu, Zhiyuan Liu and Yan Wang
Healthcare 2025, 13(15), 1913; https://doi.org/10.3390/healthcare13151913 - 5 Aug 2025
Abstract
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and [...] Read more.
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and psychological capital (PsyCap) in middle-aged and elderly individuals using cross-validation, subgroup analysis, and a cross-sequential design. (2) Methods: A cross-sectional study with 5714 participants employed a serial mediation model. Online questionnaires assessed square-dancing exercise, cognitive reappraisal, prosocial behavior tendencies, PsyCap, and interpersonal relationships. Statistical analyses were conducted using SPSS 27.0 and Mplus 8.3, incorporating correlation analysis, structural equation modeling, and subgroup comparisons. (3) Results: (a) Cognitive reappraisal and prosocial behavior mediated the link between square-dancing and PsyCap through three pathways; (b) model stability was confirmed across two random subsamples; (c) cross-group differences emerged in age and interpersonal relationships. Compared with secondary data, this study further validated PsyCap’s stability over six months post-pandemic. (4) Conclusions: The study, based on China’s largest square-dancing sample, establishes a robust serial mediation model. The findings strengthen theoretical foundations for PA-based interventions promoting psychological resilience in aging populations, highlighting structured exercise’s role in mental and social well-being. Full article
Show Figures

Figure 1

21 pages, 9017 KiB  
Review
Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach
by Yizheng Zhang, Jian Zhang, Qian Huang, Yangyi Sun, Jia Shao, Yu Gou, Kaiming Huang and Shaodong Zhang
Appl. Sci. 2025, 15(15), 8663; https://doi.org/10.3390/app15158663 (registering DOI) - 5 Aug 2025
Abstract
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods [...] Read more.
Mars has been a primary focus of planetary science, with significant advancements over the past two decades across disciplines including geological evolution, surface environment, and atmospheric and space science. However, the rapid growth of the related literature has rendered traditional manual review methods increasingly inadequate. This inadequacy is particularly evident in interdisciplinary research, which is often characterized by dispersed topics and complex semantics. To address this challenge, this study proposes an automated analysis framework based on natural language processing (NLP) to systematically review the Martian research in Earth and space science over the past two decades. The research database contains 151,196 Mars-related sentences extracted from 10,655 publications spanning 2001 to 2024. Using machine learning techniques, the framework clusters Mars-related sentences into semantically coherent groups and applies topic modeling to extract core research themes. It then analyzes their temporal evolution across the Martian solid, surface, atmosphere, and space environments. Finally, through sentiment analysis and semantic matching, it highlights unresolved scientific questions and potential directions for future research. This approach offers a novel perspective on the knowledge structure underlying Mars exploration and demonstrates the potential of NLP for large-scale literature analysis in planetary science. The findings potentially provide a structured foundation for building an interdisciplinary, peer-reviewed Mars knowledge base, which may inform future scientific research and mission planning. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

24 pages, 896 KiB  
Article
Potential Vulnerabilities of Cryptographic Primitives in Modern Blockchain Platforms
by Evgeniya Ishchukova, Sergei Petrenko, Alexey Petrenko, Konstantin Gnidko and Alexey Nekrasov
Sci 2025, 7(3), 112; https://doi.org/10.3390/sci7030112 - 5 Aug 2025
Abstract
Today, blockchain technologies are a separate, rapidly developing area. With rapid development, they open up a number of scientific problems. One of these problems is the problem of reliability, which is primarily associated with the use of cryptographic primitives. The threat of the [...] Read more.
Today, blockchain technologies are a separate, rapidly developing area. With rapid development, they open up a number of scientific problems. One of these problems is the problem of reliability, which is primarily associated with the use of cryptographic primitives. The threat of the emergence of quantum computers is now widely discussed, in connection with which the direction of post-quantum cryptography is actively developing. Nevertheless, the most popular blockchain platforms (such as Bitcoin and Ethereum) use asymmetric cryptography based on elliptic curves. Here, cryptographic primitives for blockchain systems are divided into four groups according to their functionality: keyless, single-key, dual-key, and hybrid. The main attention in the work is paid to the most significant cryptographic primitives for blockchain systems: keyless and single-key. This manuscript discusses possible scenarios in which, during practical implementation, the mathematical foundations embedded in the algorithms for generating a digital signature and encrypting data using algorithms based on elliptic curves are violated. In this case, vulnerabilities arise that can lead to the compromise of a private key or a substitution of a digital signature. We consider cases of vulnerabilities in a blockchain system due to incorrect use of a cryptographic primitive, describe the problem, formulate the problem statement, and assess its complexity for each case. For each case, strict calculations of the maximum computational costs are given when the conditions of the case under consideration are met. Among other things, we present a new version of the encryption algorithm for data stored in blockchain systems or transmitted between blockchain systems using elliptic curves. This algorithm is not the main blockchain algorithm and is not included in the core of modern blockchain systems. This algorithm allows the use of the same keys that system users have in order to store sensitive user data in an open blockchain database in encrypted form. At the same time, possible vulnerabilities that may arise from incorrect implementation of this algorithm are considered. The scenarios formulated in the article can be used to test the reliability of both newly created blockchain platforms and to study long-existing ones. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Influence of Dominant Structural Faces on Anti-Sliding Stability of Gravity Dams in Granite Intrusion Regions
by Menglong Dong, Xiaokai Li, Yuezu Huang, Huaqing Zhang and Xiaolong Zhang
Appl. Sci. 2025, 15(15), 8657; https://doi.org/10.3390/app15158657 (registering DOI) - 5 Aug 2025
Abstract
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of [...] Read more.
Granite formations provide suitable geological conditions for building gravity dams. However, the presence of intruding granite creates a fractured zone. The interaction of this fractured zone with structural planes and faults can create geological conditions that are unfavorable for the anti-sliding stability of gravity dams. This paper identifies the dominant structural planes that affect the anti-sliding stability of dams by studying the three-dimensional intersection relationships between groups of structural planes, faults, and fracture zones. The three-dimensional distribution and occurrence of the dominant structural planes directly impact the anti-sliding stability and sliding failure mode of gravity dams. Through comprehensive field investigations and systematic analysis of engineering geological data, the spatial distribution characteristics of structural planes and fracture zones were quantitatively characterized. Subsequently, the potential for deep-seated sliding failure of the gravity dam was rigorously evaluated and conclusively dismissed through application of the rigid body limit equilibrium method. It was established that the sliding mode of the foundation of the dam under this combination of structural planes is primarily shallow sliding. Additionally, based on the engineering geological data of the area around the dam, a three-dimensional finite element numerical model was developed to analyze stress–strain calculations under seepage stress coupling conditions and compared with calculations made without considering seepage stress coupling. The importance of seepage in the anti-sliding stability of the foundation of the dam was determined. The research findings provide engineering insights into enhancing the anti-sliding stability of gravity dams in granite distribution areas by (1) identifying critical structural planes and fracture zones that control sliding behavior, (2) demonstrating the necessity of seepage-stress coupling analysis in stability assessments, and (3) guiding targeted reinforcement measures to mitigate shallow sliding risks. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 (registering DOI) - 1 Aug 2025
Viewed by 187
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 - 1 Aug 2025
Viewed by 106
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

10 pages, 1973 KiB  
Communication
Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence
by Seong-Won An and Young-Sam Kwon
Animals 2025, 15(15), 2260; https://doi.org/10.3390/ani15152260 - 1 Aug 2025
Viewed by 114
Abstract
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo [...] Read more.
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo experimentation. Human umbilical vein endothelial cells (HUVECs) were used to assess cell proliferation, migration, and tube formation after exposure to cPRP. In addition, a rabbit corneal micropocket assay was employed to evaluate in vivo angiogenic responses. Treatment with 20% cPRP significantly enhanced HUVEC proliferation and migration and induced robust tube formation. In the in vivo model, we observed dose-dependent neovascularization, with the earliest vascular sprouting seen on day 1 in the 40% group. Both models consistently demonstrated that cPRP stimulates vascular development in a concentration-dependent manner. This study provides novel evidence of cPRP’s capacity to induce neovascularization, supporting its therapeutic value for treating nonhealing wounds in dogs, especially in cases involving chronic inflammation, aging, or immune dysregulation. These findings offer a scientific foundation for the broader clinical application of cPRP in veterinary regenerative practice. Full article
Show Figures

Figure 1

21 pages, 4176 KiB  
Article
Anti-Overturning Performance of Prefabricated Foundations for Distribution Line Poles
by Liang Zhang, Chen Chen, Yan Yang, Kai Niu, Weihao Xu and Dehong Wang
Buildings 2025, 15(15), 2717; https://doi.org/10.3390/buildings15152717 - 1 Aug 2025
Viewed by 128
Abstract
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the [...] Read more.
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influence of different factors—such as pole embedment depth, foundation locations, soil type, and soil parameters—on the anti-overturning performance of pole prefabricated foundations. The results indicate that under ultimate load conditions, the reaction force distribution at the base of the foundation approximates a triangular pattern, and the lateral earth pressure on the pole follows an approximately quadratic parabolic distribution along the depth. When the foundation size increases from 0.8 m to 0.9 m, the bearing capacity of the prefabricated foundation improves by 8%. Furthermore, when the load direction changes from 0° to 45°, the foundation’s bearing capacity increases by 14%. When the foundation is buried at a depth of 1.0 m, compared with the ground position, the ultimate overturning moment of the prefabricated foundation increases by 10%. Based on field test results, finite element simulation results, and limit equilibrium theory, a calculation method for the anti-overturning bearing capacity of prefabricated pole foundations is developed, which can provide a practical reference for the engineering design of distribution line poles and their prefabricated foundations. Full article
Show Figures

Figure 1

21 pages, 1162 KiB  
Article
Positioning K-8 Classroom Teachers as Mathematics Instructional Leaders
by Melissa D. Boston, Juli K. Dixon, Sarah B. Bush, Lisa A. Brooks, Brian E. Moore, Treshonda Rutledge and Angel M. Maldonado
Educ. Sci. 2025, 15(8), 982; https://doi.org/10.3390/educsci15080982 (registering DOI) - 1 Aug 2025
Viewed by 151
Abstract
In this research report, we consider how to empower K-8 teachers as mathematics instructional leaders to initiate and sustain improvements within their schools, as a practical and sustainable model of enacting change in mathematics education more broadly by developing leadership from within. We [...] Read more.
In this research report, we consider how to empower K-8 teachers as mathematics instructional leaders to initiate and sustain improvements within their schools, as a practical and sustainable model of enacting change in mathematics education more broadly by developing leadership from within. We share the theoretical framework and findings from a 5-year National Science Foundation project. We utilized a longitudinal mixed methods approach, collecting data on teachers’ knowledge, instructional practices, leadership practices, and self-perception of growth throughout the project, triangulated with focus group data from teachers’ school administrators and project leaders and logs of leadership activities. Findings indicate positive changes in teachers’ knowledge and practices and in their role as instructional leaders in their schools, districts, and the mathematics education community. We conclude by sharing factors that appeared to support teachers’ growth as instructional leaders and implications for practice and research. Full article
Show Figures

Figure 1

13 pages, 780 KiB  
Article
Important Role of Pregnancy Planning in Pregnancy Outcomes in Type 1 Diabetes
by Anna Juza, Lilianna Kołodziej-Spirodek and Mariusz Dąbrowski
Diabetology 2025, 6(8), 75; https://doi.org/10.3390/diabetology6080075 (registering DOI) - 1 Aug 2025
Viewed by 93
Abstract
Background/Objectives: Compared to in the general pregnant population, pregnancy in women with type 1 diabetes (T1D) is still associated with an increased number of perinatal complications affecting both the fetus and the mother. The Great Orchestra of Christmas Charity Foundation (GOCCF) program enables [...] Read more.
Background/Objectives: Compared to in the general pregnant population, pregnancy in women with type 1 diabetes (T1D) is still associated with an increased number of perinatal complications affecting both the fetus and the mother. The Great Orchestra of Christmas Charity Foundation (GOCCF) program enables the use of continuous subcutaneous insulin infusion (CSII) enhanced by a hypo-stop function and real-time continuous glucose monitoring (rtCGM) during the preconception or early pregnancy period in patients with T1D. This observational study aimed to analyze the association between pregnancy planning and pregnancy outcomes in patients who qualified for the GOCCF program. Methods: Ninety-eight women with T1D, aged 21–41 years, who began using the CSII + rtCGM system at the planning/early pregnancy stage or at a later stage in the case of an unplanned pregnancy, were eligible for this study. We analyzed glucose control, the insulin requirements, the pregestational BMI, the maternal weight gain, the occurrence of preterm births, congenital malformations and the birthweight of newborns. Results: Women who planned their pregnancies had significantly better glycemic control before and throughout the entire pregnancy, and a significantly higher proportion of them achieved a TIR (time in range) > 70% (58.7% vs. 28.9%, p = 0.014) and TAR (time above range) < 25% (65.2% vs. 24.4%, p < 0.001). Their glucose variability at the end of the pregnancy was significantly lower (29.4 ± 5.5 vs. 31.9 ± 5.1, p = 0.030). They also gave birth later, at a mean of 37.8 ± 0.9 weeks compared to 36.9 ± 1.8 weeks in the non-planned group (p = 0.039). Preterm birth occurred in five women (10.4%) who planned their pregnancies and in fifteen women (30%) who did not, with p = 0.031. Conclusions: Pregnancy planning in women with type 1 diabetes (T1D) is associated with better glucose control before conception and throughout the entire pregnancy, resulting in better pregnancy outcomes. Full article
Show Figures

Graphical abstract

21 pages, 1724 KiB  
Article
Climate Change Mitigation ODA Improved the Human Development Index but Had a Limited Impact on Greenhouse Gas Mitigation
by Hyunyoung Yang, Jeongyeon Chae and Eunho Choi
Forests 2025, 16(8), 1247; https://doi.org/10.3390/f16081247 - 31 Jul 2025
Viewed by 114
Abstract
Climate change mitigation Official Development Assistance (ODA) primarily aims to reduce greenhouse gas (GHG) emissions in developing countries while also seeking to enhance human welfare as a fundamental goal of development aid. This study investigates whether climate mitigation ODA contributes to achieving the [...] Read more.
Climate change mitigation Official Development Assistance (ODA) primarily aims to reduce greenhouse gas (GHG) emissions in developing countries while also seeking to enhance human welfare as a fundamental goal of development aid. This study investigates whether climate mitigation ODA contributes to achieving the principles of the doughnut framework—staying within the ecological ceiling (mitigating GHG emissions) while meeting the social foundation (enhancing human development index, HDI). We analyzed data from 77 developing countries between 2010 and 2020, including subgroup analyses by income level (high-, middle-, and low-income groups), using an instrumental variable–fixed effect approach. The results show that climate change mitigation ODA significantly improved the HDI but had no impact on reducing overall GHG emissions, including fossil fuel-based and land use change and forestry-based mitigations. When disaggregated by income level, ODA was found to improve the HDI and reduce fossil fuel-based GHG emission in low-income countries; however, these effects weakened as income levels increased. Across all income groups, there was no significant reduction in GHG emissions resulting from land use change or forestry. These findings suggest that climate change mitigation ODA can yield a greater impact when prioritized for low-income countries and that current ODA strategies for addressing GHG emissions related to land use change and forestry should be reconsidered. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

25 pages, 16276 KiB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Viewed by 171
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Tree Selection of Vernicia montana in a Representative Orchard Cluster Within Southern Hunan Province, China: A Comprehensive Evaluation Approach
by Juntao Liu, Zhexiu Yu, Xihui Li, Ling Zhou, Ruihui Wang and Weihua Zhang
Plants 2025, 14(15), 2351; https://doi.org/10.3390/plants14152351 - 30 Jul 2025
Viewed by 307
Abstract
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from [...] Read more.
With the objective of identifying superior Vernicia montana trees grounded in phenotypic and agronomic traits, this study sought to develop and implement a comprehensive evaluation method which would provide a practical foundation for future clonal breeding initiatives. Using the Vernicia montana propagated from seedling forests grown in the Suxian District of Chenzhou City in southern Hunan Province, we conducted pre-selection, primary selection, and re-selection of Vernicia montana forest stands and took the nine trait indices of single-plant fruiting quantity, single-plant fruit yield, disease and pest resistance, fruit ripening consistency, fruit aggregation, fresh fruit single-fruit weight, fresh fruit seed rate, dry seed kernel rate, and seed kernel oil content rate as the optimal evaluation indexes and carried out cluster analysis and a comprehensive evaluation in order to establish a comprehensive evaluation system for superior Vernicia montana trees. The results demonstrated that a three-stage selection process—consisting of pre-selection, primary selection, and re-selection—was conducted using a comprehensive analytical approach. The pre-selection phase relied primarily on sensory evaluation criteria, including fruit count per plant, tree size, tree morphology, and fruit clustering characteristics. Through this rigorous screening process, 60 elite plants were selected. The primary selection was based on phenotypic traits, including single-plant fruit yield, pest and disease resistance, and uniformity of fruit ripening. From this stage, 36 plants were selected. Twenty plants were then selected for re-selection based on key performance indicators, such as fresh fruit weight, fresh fruit seed yield, dry seed kernel yield, and oil content of the seed kernel. Then the re-selected optimal trees were clustered and analyzed into three classes, with 10 plants in class I, 7 plants in class II, and 3 plants in class III. In class I, the top three superior plants exhibited outstanding performance across key traits: their fresh fruit weight per fruit, fresh fruit seed yield, dry seed yield, and seed kernel oil content reached 41.61 g, 42.80%, 62.42%, and 57.72%, respectively. Compared with other groups, these figures showed significant advantages: 1.17, 1.09, 1.12, and 1.02 times the average values of the 20 reselected superior trees; 1.22, 1.19, 1.20, and 1.08 times those of the 36 primary-selected superior trees; and 1.24, 1.25, 1.26, and 1.19 times those of the 60 pre-selected trees. Fruits counts per plant and the number of fruits produced per plant of the best three plants in class I were 885 and 23.38 kg, respectively, which were 1.13 and 1.18 times higher than the average of 20 re-selected superior trees, 1.25 and 1.30 times higher than the average of 36 first-selected superior trees, and 1.51 and 1.58 times higher than the average of 60 pre-selected superior trees. Class I superior trees, especially the top three genotypes, are suitable for use as mother trees for scion collection in grafting. The findings of this study provide a crucial foundation for developing superior clonal varieties of Vernicia montana through selective breeding. Full article
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Short-Term Morphological Response of Polypropylene Membranes to Hypersaline Lithium Fluoride Solutions: A Multiscale Modeling Approach
by Giuseppe Prenesti, Pierfrancesco Perri, Alessia Anoja, Agostino Lauria, Carmen Rizzuto, Alfredo Cassano, Elena Tocci and Alessio Caravella
Int. J. Mol. Sci. 2025, 26(15), 7380; https://doi.org/10.3390/ijms26157380 - 30 Jul 2025
Viewed by 181
Abstract
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact [...] Read more.
Understanding the early-stage physical interactions between polymeric membranes and supersaturated salt solutions is crucial for advancing membrane-assisted crystallization (MCr) processes. In this study, we employed molecular dynamics (MD) simulations to investigate the short-term morphological response of an isotactic polypropylene (PP) membrane in contact with LiF solutions at different concentrations (5.8 M and 8.9 M) and temperatures (300–353 K), across multiple time points (0, 150, and 300 ns). These data were used as input for computational fluid dynamics (CFD) analysis to evaluate structural descriptors of the membrane, including tortuosity, connectivity, void fraction, anisotropy, and deviatoric anisotropy, under varying thermodynamic conditions. The results show subtle but consistent rearrangements of polymer chains upon exposure to the hypersaline environment, with a marked reduction in anisotropy and connectivity, indicating a more compact and isotropic local structure. Surface charge density analyses further suggest a temperature- and concentration-dependent modulation of chain mobility and terminal group orientation at the membrane–solution interface. Despite localized rearrangements, the membrane consistently maintains a net negative surface charge. This electrostatic feature may influence ion–membrane interactions during the crystallization process. While these non-reactive, short-timescale simulations do not capture long-term degradation or fouling mechanisms, they provide mechanistic insight into the initial physical response of PP membranes under MCr-relevant conditions. This study lays a computational foundation for future investigations bridging atomistic modeling and membrane performance in real-world applications. Full article
Show Figures

Figure 1

Back to TopTop