Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach
Abstract
1. Introduction
2. Data and Method
2.1. Corpus
2.2. Unsupervised Clustering
2.3. Topic Modeling
2.4. Sentiment Analysis
2.5. Semantic Match
3. Results
3.1. Unsupervised Clustering
3.2. Topic Modeling
3.3. Sentiment Analysis
3.4. Semantic Match
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, R.D.; Manning, R.M.; Braun, R.D.; Manning, R.M. Mars Exploration Entry, Descent and Landing Challenges. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; IEEE: Big Sky, MT, USA, 2006; pp. 1–18. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. NASA’s Journey to Mars: Pioneering Next Steps in Space Exploration; National Aeronautics and Space Administration: Washington, DC, USA, 2015. Available online: https://www.nasa.gov/wp-content/uploads/2017/11/journey-to-mars-next-steps-20151008_508.pdf (accessed on 20 July 2025).
- Du, P.; Yuan, P.; Liu, J.; Ye, B. Clay Minerals on Mars: An up-to-Date Review with Future Perspectives. Earth-Sci. Rev. 2023, 243, 104491. [Google Scholar] [CrossRef]
- Rongier, G.; Pankratius, V. Computer-Aided Exploration of the Martian Geology. Earth Space Sci. 2018, 5, 393–407. [Google Scholar] [CrossRef] [PubMed]
- McCleese, D.; Greeley, R.; MacPherson, G. Science planning for exploring mars. JPL Publ. 2001, 1, 1–47. [Google Scholar]
- Chojnacki, M.; Banks, M.; Urso, A. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites. JGR Planets 2018, 123, 468–488. [Google Scholar] [CrossRef] [PubMed]
- Siljeström, S.; Czaja, A.D.; Corpolongo, A.; Berger, E.L.; Li, A.Y.; Cardarelli, E.; Abbey, W.; Asher, S.A.; Beegle, L.W.; Benison, K.C.; et al. Evidence of Sulfate-Rich Fluid Alteration in Jezero Crater Floor, Mars. JGR Planets 2024, 129, e2023JE007989. [Google Scholar] [CrossRef]
- Snyder, H. Literature Review as a Research Methodology: An Overview and Guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-Analysis and the Science of Research Synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhu, Y.; Bai, Y.; Wang, L.; Jia, Y.; Shen, W.; Fan, Y.; Liu, Y.; Wang, C.; Zhang, A.; et al. Scientific Objectives and Payloads of Tianwen-1, China’s First Mars Exploration Mission. Adv. Space Res. 2021, 67, 812–823. [Google Scholar] [CrossRef]
- Tan, X.; Liu, J.; Zhang, X.; Yan, W.; Chen, W.; Ren, X.; Zuo, W.; Li, C. Design and Validation of the Scientific Data Products for China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 69. [Google Scholar] [CrossRef]
- Tzanetos, T.; Aung, M.; Balaram, J.; Grip, H.F.; Karras, J.T.; Canham, T.K.; Kubiak, G.; Anderson, J.; Merewether, G.; Starch, M.; et al. Ingenuity Mars Helicopter: From Technology Demonstration to Extraterrestrial Scout. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Big Sky, MT, USA, 2022; pp. 01–19. [Google Scholar]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084. [Google Scholar]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Maaten, L.V.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Grootendorst, M. BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly Media: Sebastopol, CA, USA, 2009. [Google Scholar]
- Heimerl, F.; Lohmann, S.; Lange, S.; Ertl, T. Word Cloud Explorer: Text Analytics Based on Word Clouds. In Proceedings of the 2014 47th Hawaii International Conference on System Sciences, Waikoloa, HI, USA, 6–9 January 2014; pp. 1833–1842. [Google Scholar] [CrossRef]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Barbieri, F.; Camacho-Collados, J.; Neves, L.; Espinosa-Anke, L. TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification. arXiv 2020, arXiv:2010.12421. [Google Scholar]
- Bridle, J.S. Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition. In Neurocomputing; Soulié, F.F., Hérault, J., Eds.; Springer: Berlin, Heidelberg, 1990; pp. 227–236. ISBN 978-3-642-76155-3. [Google Scholar] [CrossRef]
- Li, X.; Li, J. AnglE-Optimized Text Embeddings. arXiv 2024, arXiv:2309.12871. [Google Scholar]
- Pieterek, B.; Jones, T.J. The Evolution of Martian Fissure Eruptions and Their Plumbing Systems. Earth Planet. Sci. Lett. 2023, 621, 118382. [Google Scholar] [CrossRef]
- Yoshizaki, T.; McDonough, W.F. The Composition of Mars. Geochim. Cosmochim. Acta 2020, 273, 137–162. [Google Scholar] [CrossRef]
- Joshi, R.; Knapmeyer-Endrun, B.; Mosegaard, K.; Igel, H.; Christensen, U.R. Joint Inversion of Receiver Functions and Apparent Incidence Angles for Sparse Seismic Data. Earth Space Sci. 2021, 8, e2021EA001733. [Google Scholar] [CrossRef]
- Flynn, I.T.W.; Crown, D.A.; Ramsey, M.S. Determining Emplacement Conditions and Vent Locations for Channelized Lava Flows Southwest of Arsia Mons. JGR Planets 2022, 127, e2022JE007467. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Sossi, P.A.; Liebske, C.; Rivoldini, A.; Giardini, D. Geophysical and Cosmochemical Evidence for a Volatile-Rich Mars. Earth Planet. Sci. Lett. 2022, 578, 117330. [Google Scholar] [CrossRef]
- Kim, D.; Stähler, S.C.; Ceylan, S.; Lekic, V.; Maguire, R.; Zenhäusern, G.; Clinton, J.; Giardini, D.; Khan, A.; Panning, M.P.; et al. Structure Along the Martian Dichotomy Constrained by Rayleigh and Love Waves and Their Overtones. Geophys. Res. Lett. 2023, 50, e2022GL101666. [Google Scholar] [CrossRef]
- Shi, J.; Plasman, M.; Knapmeyer-Endrun, B.; Xu, Z.; Kawamura, T.; Lognonné, P.; McLennan, S.M.; Sainton, G.; Banerdt, W.B.; Panning, M.P.; et al. High-Frequency Receiver Functions With Event S1222a Reveal a Discontinuity in the Martian Shallow Crust. Geophys. Res. Lett. 2023, 50, e2022GL101627. [Google Scholar] [CrossRef]
- Kronyak, R.E.; Arndt, C.; Kah, L.C.; TerMaath, S.C. Predicting the Mechanical and Fracture Properties of Mars Analog Sedimentary Lithologies. Earth Space Sci. 2020, 7, e2019EA000926. [Google Scholar] [CrossRef]
- Berlanga, G.; Williams, Q.; Temiquel, N. Convolutional Neural Networks as a Tool for Raman Spectral Mineral Classification Under Low Signal, Dusty Mars Conditions. Earth Space Sci. 2022, 9, e2021EA002125. [Google Scholar] [CrossRef]
- Robbins, S.J. Mars Reconnaissance Orbiter ’s Mars Color Imager (MARCI): A New Workflow for Processing Its Image Data. Earth Space Sci. 2022, 9, e2021EA002138. [Google Scholar] [CrossRef]
- Wynne, J.J.; Titus, T.N.; Agha-Mohammadi, A.; Azua-Bustos, A.; Boston, P.J.; De León, P.; Demirel-Floyd, C.; De Waele, J.; Jones, H.; Malaska, M.J.; et al. Fundamental Science and Engineering Questions in Planetary Cave Exploration. JGR Planets 2022, 127, e2022JE007194. [Google Scholar] [CrossRef] [PubMed]
- Hazen, R.M.; Downs, R.T.; Morrison, S.M.; Tutolo, B.M.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; McSween, H.Y.; Ming, D.; Morris, R.V.; et al. On the Diversity and Formation Modes of Martian Minerals. JGR Planets 2023, 128, e2023JE007865. [Google Scholar] [CrossRef]
- Robbins, S.J.; Kirchoff, M.R.; Hoover, R.H. Empirical Brightness Control and Equalization of Mars Context Camera Images. Earth Space Sci. 2020, 7, e2019EA001053. [Google Scholar] [CrossRef]
- Hader, J.D.; Fairén, A.G.; MacLeod, M. Planetary Protection Requirements Should Address Pollution from Chemicals and Materials. Proc. Natl. Acad. Sci. USA 2023, 120, e2310792120. [Google Scholar] [CrossRef] [PubMed]
- Montlaur, A.; Arias, S.; Rojas, J.I. Thermally Driven Winds on Mars: A Review and a Slope Effect Numerical Study. JGR Planets 2024, 129, e2023JE007987. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Z.; Ma, C.; Zeng, L.; Zhang, W.; Peng, M.; Li, A. Extraction and Analysis of Three-Dimensional Morphological Features of Centimeter-Scale Rocks in Zhurong Landing Region. JGR Planets 2023, 128, e2022JE007656. [Google Scholar] [CrossRef]
- Kite, E.S.; Melwani Daswani, M. Geochemistry Constrains Global Hydrology on Early Mars. Earth Planet. Sci. Lett. 2019, 524, 115718. [Google Scholar] [CrossRef]
- Wu, B.; Dong, J.; Wang, Y.; Li, Z.; Chen, Z.; Liu, W.C.; Zhu, J.; Chen, L.; Li, Y.; Rao, W. Characterization of the Candidate Landing Region for Tianwen-1—China’s First Mission to Mars. Earth Space Sci. 2021, 8, e2021EA001670. [Google Scholar] [CrossRef]
- Yu, W.; Zeng, X.; Li, X.; Tang, H.; Liu, J. Quantifying Shock Effects of Mars Sample via Micro-FTIR Spectra of Plagioclase. JGR Planets 2024, 129, e2024JE008487. [Google Scholar] [CrossRef]
- Creecy, E.; Li, L.; Jiang, X.; Smith, M.; Kass, D.; Kleinböhl, A.; Martínez, G. Mars’ Emitted Energy and Seasonal Energy Imbalance. Proc. Natl. Acad. Sci. USA 2022, 119, e2121084119. [Google Scholar] [CrossRef] [PubMed]
- Wernicke, L.J.; Jakosky, B.M. Martian Hydrated Minerals: A Significant Water Sink. JGR Planets 2021, 126, e2019JE006351. [Google Scholar] [CrossRef]
- Hoffman, J.A.; Hecht, M.H.; Rapp, D.; Hartvigsen, J.J.; SooHoo, J.G.; Aboobaker, A.M.; McClean, J.B.; Liu, A.M.; Hinterman, E.D.; Nasr, M.; et al. Mars Oxygen ISRU Experiment (MOXIE)—Preparing for Human Mars Exploration. Sci. Adv. 2022, 8, eabp8636. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.M.; Zorzano, M.; Martín-Torres, J. MARSWRF Prediction of Entry Descent Landing Profiles: Applications to Mars Exploration. Earth Space Sci. 2019, 6, 1440–1459. [Google Scholar] [CrossRef]
- Mooring, T.A.; Davis, G.E.; Greybush, S.J. Low-Level Jets and the Convergence of Mars Data Assimilation Algorithms. JGR Planets 2022, 127, e2021JE006968. [Google Scholar] [CrossRef]
- Viúdez-Moreiras, D.; Richardson, M.I.; Newman, C.E. Constraints on Emission Source Locations of Methane Detected by Mars Science Laboratory. JGR Planets 2021, 126, e2021JE006958. [Google Scholar] [CrossRef]
- Fedorova, A.; Trokhimovskiy, A.; Lefèvre, F.; Olsen, K.S.; Korablev, O.; Montmessin, F.; Ignatiev, N.; Lomakin, A.; Forget, F.; Belyaev, D.; et al. Climatology of the CO Vertical Distribution on Mars Based on ACS TGO Measurements. JGR Planets 2022, 127, e2022JE007195. [Google Scholar] [CrossRef]
- Posner, A.; Strauss, R.D. Warning Time Analysis From SEP Simulations of a Two-Tier REleASE System Applied to Mars Exploration. Space Weather 2020, 18, e2019SW002354. [Google Scholar] [CrossRef]
- Song, Y.; Lu, H.; Cao, J.; Li, S.; Yu, Y.; Wang, S.; Ge, Y.; Zhang, X.; Zhou, C.; Wang, J. Effects of Force in the Martian Plasma Environment With Solar Wind Dynamic Pressure Enhancement. JGR Space Phys. 2023, 128, e2022JA031083. [Google Scholar] [CrossRef]
- Nauth, M.; Fowler, C.M.; Andersson, L.; DiBraccio, G.A.; Xu, S.; Weber, T.; Mitchell, D. The Influence of Magnetic Field Topology and Orientation on the Distribution of Thermal Electrons in the Martian Magnetotail. JGR Space Phys. 2021, 126, e2020JA028130. [Google Scholar] [CrossRef]
- Agarwal, S.; Tosi, N.; Kessel, P.; Padovan, S.; Breuer, D.; Montavon, G. Toward Constraining Mars’ Thermal Evolution Using Machine Learning. Earth Space Sci. 2021, 8, e2020EA001484. [Google Scholar] [CrossRef]
- Emran, A.; Marzen, L.J.; King, D.T. Semiautomated Identification and Characterization of Dunes at Hargraves Crater, Mars. Earth Space Sci. 2020, 7, e2019EA000935. [Google Scholar] [CrossRef]
- Martin, P.E.; Ehlmann, B.L.; Thomas, N.H.; Wiens, R.C.; Hollis, J.J.R.; Beegle, L.W.; Bhartia, R.; Clegg, S.M.; Blaney, D.L. Studies of a Lacustrine-Volcanic Mars Analog Field Site With Mars-2020-Like Instruments. Earth Space Sci. 2020, 7, e2019EA000720. [Google Scholar] [CrossRef]
- Leask, E.K.; Ehlmann, B.L.; Greenberger, R.N.; Pinet, P.; Daydou, Y.; Ceuleneer, G.; Kelemen, P. Tracing Carbonate Formation, Serpentinization, and Biological Materials With Micro-/Meso-Scale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. Earth Space Sci. 2021, 8, e2021EA001637. [Google Scholar] [CrossRef] [PubMed]
- Dundas, C.M.; Mellon, M.T.; Conway, S.J.; Gastineau, R. Active Boulder Movement at High Martian Latitudes. Geophys. Res. Lett. 2019, 46, 5075–5082. [Google Scholar] [CrossRef] [PubMed]
- Leone, G. The Absence of an Ocean and the Fate of Water All Over the Martian History. Earth Space Sci. 2020, 7, e2019EA001031. [Google Scholar] [CrossRef]
- Stähler, S.C.; Widmer-Schnidrig, R.; Scholz, J.-R.; Van Driel, M.; Mittelholz, A.; Hurst, K.; Johnson, C.L.; Lemmon, M.T.; Lognonné, P.; Lorenz, R.D.; et al. Geophysical Observations of Phobos Transits by InSight. Geophys. Res. Lett. 2020, 47, e2020GL089099. [Google Scholar] [CrossRef]
- Pan, L.; Deng, Z.; Bizzarro, M. Impact Induced Oxidation and Its Implications for Early Mars Climate. Geophys. Res. Lett. 2023, 50, e2023GL102724. [Google Scholar] [CrossRef]
- Lorenz, R.D. Martian Ripples Making a Splash. JGR Planets 2020, 125, e2020JE006658. [Google Scholar] [CrossRef]
- Montgomery, W. New Paths for Survivability of Organic Material in the Martian Subsurface. JGR Planets 2020, 125, e2019JE006370. [Google Scholar] [CrossRef]
- Campbell, J.D.; Schmitt, B.; Brissaud, O.; Muller, J. The Detectability Limit of Organic Molecules Within Mars South Polar Laboratory Analogs. JGR Planets 2021, 126, e2020JE006595. [Google Scholar] [CrossRef]
- Ke, T.; Zhong, Y.; Song, M.; Wang, X.; Zhang, L. Mineral Detection Based on Hyperspectral Remote Sensing Imagery on Mars: From Detection Methods to Fine Mapping. ISPRS J. Photogramm. Remote Sens. 2024, 218, 761–780. [Google Scholar] [CrossRef]
- Lin, B.; Liu, Z. Martian Atmospheric CO2 and Pressure Profiling With Differential Absorption Lidar: System Consideration and Simulation Results. Earth Space Sci. 2021, 8, e2020EA001600. [Google Scholar] [CrossRef]
- Guzewich, S.D.; Fedorova, A.A.; Kahre, M.A.; Toigo, A.D. Studies of the 2018/Mars Year 34 Planet-Encircling Dust Storm. JGR Planets 2020, 125, e2020JE006700. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.; Russell, C.T.; Luhmann, J.; Nagy, A.; Brain, D. 5-Species MHD Study of Martian Proton Loss and Source. JGR Space Phys. 2023, 128, e2023JA031301. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Heavens, N.G.; Newman, C.E.; Richardson, M.I.; Yang, C.; Li, J.; Cui, J. Earth-like Thermal and Dynamical Coupling Processes in the Martian Climate System. Earth-Sci. Rev. 2022, 229, 104023. [Google Scholar] [CrossRef]
- Holmberg, M.K.G.; André, N.; Garnier, P.; Modolo, R.; Andersson, L.; Halekas, J.; Mazelle, C.; Steckiewicz, M.; Génot, V.; Fedorov, A.; et al. MAVEN and MEX Multi-instrument Study of the Dayside of the Martian Induced Magnetospheric Structure Revealed by Pressure Analyses. JGR Space Phys. 2019, 124, 8564–8589. [Google Scholar] [CrossRef]
- Shuvalov, S.D.; Grigorenko, E.E. Observation of SLAMS-Like Structures Close to Martian Aphelion by MAVEN. JGR Space Phys. 2023, 128, e2022JA031018. [Google Scholar] [CrossRef]
- Banerdt, W.B.; Smrekar, S.E.; Banfield, D.; Giardini, D.; Golombek, M.; Johnson, C.L.; Lognonné, P.; Spiga, A.; Spohn, T.; Perrin, C.; et al. Initial Results from the InSight Mission on Mars. Nat. Geosci. 2020, 13, 183–189. [Google Scholar] [CrossRef]
- Vago, J.; Witasse, O.; Svedhem, H.; Baglioni, P.; Haldemann, A.; Gianfiglio, G.; Blancquaert, T.; McCoy, D.; De Groot, R. ESA ExoMars Program: The next Step in Exploring Mars. Sol. Syst. Res. 2015, 49, 518–528. [Google Scholar] [CrossRef]
- Korablev, O.; Vandaele, A.C.; Montmessin, F.; Fedorova, A.A.; Trokhimovskiy, A.; Forget, F.; Lefèvre, F.; Daerden, F.; Thomas, I.R.; Trompet, L.; et al. No Detection of Methane on Mars from Early ExoMars Trace Gas Orbiter Observations. Nature 2019, 568, 517–520. [Google Scholar] [CrossRef] [PubMed]
No. | Sample Size | Topic | Summary |
---|---|---|---|
11 | 643 | Martian Meteorites as Proxies for Mars’ Geochemistry | Martian meteorites reveal Mars’ mantle composition, volatile content, and past aqueous processes, providing insights into its magmatic evolution. |
12 | 638 | Geochemical Diversity in Shergottites | Shergottites display geochemical diversity, indicating Mars’ mantle heterogeneity and complex magmatic history. |
13 | 612 | Martian Crustal Magnetic Fields and Solar Wind Interaction | Mars’ crustal magnetic fields affect solar wind interaction, influencing ion escape, atmospheric erosion, and ionospheric structure. |
14 | 587 | Stability of Liquid Water on Mars | Mars’ low pressure limits liquid water, but brines and transient water exist, affecting its habitability and climate evolution. |
15 | 548 | Martian Crust Composition | Mars’ crust is primarily basaltic with diverse igneous compositions, shaped by magmatic and sedimentary processes. |
16 | 511 | Mapping Mars’ Topography with Mars Orbiter Laser Altimeter (MOLA) | MOLA provides precise topographic data, improving understanding of Mars’ surface features, sedimentary structures, and crater formations. |
17 | 505 | Sulfate Minerals and Martian Water History | Sulfates on Mars suggest past water activity, formed by volcanic, acidic, or groundwater processes, influencing habitability. |
18 | 466 | Martian Dust and Climate Evolution | Dust controls Mars’ climate, affecting temperature, circulation, and solar radiation interactions, influencing global weather. |
19 | 463 | Solar Wind and Martian Atmosphere | Without a global magnetic field, Mars’ atmosphere interacts directly with solar wind, affecting ion loss and atmospheric evolution. |
20 | 453 | Impact Craters as Martian Sediment Traps | Impact craters preserve Mars’ environmental history, trapping sediments that reveal past climate and hydrological activity. |
21 | 440 | Water Ice Distribution on Mars | Mars hosts widespread water ice, influenced by climate, obliquity shifts, and atmospheric processes, key for future exploration. |
22 | 367 | Fluvial Landforms and Hydrological History of Mars | Mars’ valley networks and fluvial ridges indicate past surface water, suggesting episodic precipitation and runoff. Hydrological models support intermittent water flow. |
23 | 362 | Martian Crustal Structure and Subsurface Properties | Mars’ crust varies in thickness and composition. Gravity and seismic data show heterogeneous layering, affecting heat flow and evolution. |
24 | 361 | Climate History of Early Mars | Early Mars may have been warm and wet or cold and icy. Geological evidence suggests episodic warming from volcanism or impacts. |
25 | 360 | The Martian Water Cycle and Atmospheric Loss | Mars’ water cycle involves surface-atmosphere exchanges. Hydrogen and oxygen escape contribute to long-term water loss. |
26 | 349 | Evolution and Loss of Mars’ Atmosphere | Mars’ atmosphere was once thicker, allowing liquid water. Solar wind stripping led to its current thin state. |
27 | 340 | Martian Crustal Evolution and Composition | Mars’ crust formed through magma ocean processes. It is primarily basaltic with regional variations from volcanic and impact events. |
28 | 311 | Subsurface and Ionospheric Sounding with MARSIS | Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) detects Mars’ subsurface structures and ionosphere, revealing buried ice, geological features, and dielectric properties. |
29 | 306 | Perchlorates in Martian Soil and Their Implications | Perchlorates, found globally on Mars, form via atmospheric oxidation. They impact brine stability, habitability, and organic preservation. |
30 | 305 | Aeolian Dunes on Mars: Morphology and Activity | Martian dunes are widespread, with varying activity. Orbital and rover data show migration, sediment transport, and climate influence. |
31 | 304 | Mars–Solar Wind Interaction and Atmospheric Dynamics | Simulations show Mars’ interaction with the solar wind affects atmospheric escape and space weather, influenced by density changes and crustal fields. |
(a) Challenges and Limitations in Martian Solid Studies | ||
---|---|---|
Reference | Theme | Limitation/Challenge |
[24] | Martian Magma Differentiation Studies | Limited Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data preclude robust detection of variations related to magma differentiation. |
[25] | Martian Compositional Modeling | Existing models are based on sparse and potentially unrepresentative chemical data from Martian rocks. |
[26] | Seismic Studies on Mars | Mars’ lack of plate tectonics leads to low seismic activity, limiting terrestrial seismic analysis techniques. |
[27] | Martian Lava Flow Studies | Proximal lava flow regions are buried and vents are unidentifiable. |
[28] | Martian Mantle Chemistry Analysis | Shergottite–Nakhlite–Chassignite (SNC) meteorites lack direct mantle samples, hindering precise chemical characterization. |
[29] | Martian Crustal Structure Studies | Limited frequency content and absence of Love waves restrict constraints below 30 km depth. |
[30] | Shallow Crustal Structure Analysis on Mars | High-frequency noise limits receiver function analysis of shallow structures (1–5 km). |
(b) Challenges and Limitations in Martian Surface Exploration | ||
Reference | Theme | Limitation/Challenge |
[31] | Martian Rock Properties Analysis | Limited compositional data, restricted sample access, and scarce mechanical measurements constrain knowledge of Martian rock properties. |
[32] | Earth–Mars Communication Efficiency | Communication delays and data bottlenecks between Earth and Mars impede timely scientific data acquisition and rover decision-making. |
[33] | Photometric Corrections on Mars | The movement of various surface materials over time makes photometric corrections difficult. |
[34] | Cave Life Detection on Mars | Cave life detection missions exceed NASA’s New Frontiers budget limits, requiring Flagship-level funding. |
[35] | Martian Mineral Diversity Analysis | Limited landing site coverage and instrument detection thresholds constrain mineralogical analysis. |
[3] | Pre-Noachian Strata Analysis | Few and small pre-Noachian outcrops, combined with dataset and technique limitations, impede analysis of early alteration states. |
[36] | Illumination Variability on Mars | Mars’ ~25° obliquity causes annual shadow shifts of up to 50°, resulting in inconsistent image illumination. |
[37] | Environmental Contamination by Human Activities | Human activity on Mars will introduce anthropogenic materials and degradation products of diverse types. |
[38] | Dust Accumulation on Solar Panels | Dust accumulation on InSight’s solar panels led to power loss and early mission termination. |
[39] | Limitations of Orbital Imaging Resolution | Orbital imagery lacks the resolution to detect sub-meter rocks, despite their abundance on Mars. |
[40] | Limitations of Orbital Spectroscopy for Rock Composition Analysis | Visible and Near-Infrared (VNIR) spectroscopy cannot quantify bulk Fe, while gamma-ray spectroscopy lacks resolution for Hesperian sulfate-rich outcrops. |
[41] | Limited High-Resolution Imaging Coverage | High-resolution ground images are limited to select landing sites, and the High Resolution Imaging Science Experiment (HiRISE) covers only a small surface fraction. |
[42] | Shock Environment Analysis on Mars | Laboratory constraints on shock environments are imprecise, as most Martian meteorites are impact-altered. |
[43] | Mars’ Bond Albedo Measurements | Comprehensive spatial, spectral, and angular data for accurate Bond albedo measurements are currently lacking. |
[44] | Limitations of VNIR Spectroscopy on Mars | VNIR spectroscopy penetrates only shallow depths, making data susceptible to dust obscuration. |
[45] | Propellant Requirements for Mars Ascent Vehicle (MAV) | Delivering MAV propellant from Earth demands 12–13 tons in LEO per ton landed on Mars. |
[3] | Clay Mineral Characterization on Mars | Crystal–chemical substitution, mixed layering, variable crystallinity, and hydration states complicate clay mineral characterization. |
(c) Challenges and Limitations in Martian Atmospheric Research | ||
Reference | Theme | Limitation/Challenge |
[46] | Challenges in Mars Entry, Descent, and Landing (EDL) Systems | Uncertainties in atmospheric density and wind profiles hinder development of a standardized EDL system. |
[47] | Challenges in Martian Data Assimilation | Martian data assimilation depends on fewer and distinct observations, heavily relying on infrared temperature retrievals. |
[48] | Methane Detection on Mars | TGO detection limits and methane’s atmospheric lifetime constrain explanations for Mars Science Laboratory (MSL) methane observations. |
[49] | Limitations of the Occultation Method for Atmospheric Profiling | Aerosol opacity prevents occultation techniques from retrieving gas profiles near the Martian surface. |
[48] | Unresolved Methane Source and Sink Problem | The mismatch between suspected methane sources and proposed rapid destruction mechanisms remains unresolved. |
[48] | Uncertainty in In Situ Methane Measurements | MSL is the sole surface platform for methane detection, but Tunable Laser Spectrometer–Sample Analysis at Mars (TLS-SAM) data may be affected by instrument contamination. |
(d) Challenges and Limitations in Martian Space Environment Studies | ||
Reference | Theme | Limitation/Challenge |
[50] | Lack of High-Quality Energetic Particle Observations | High-quality 1-AU equivalent observations of ~1 MeV electrons and ~40 MeV protons are lacking at Mars’ orbit. |
[51] | Limitations of In Situ Plasma Observations on Mars | Satellite orbits and limited temporal coverage constrain in situ observations of the Martian plasma environment. |
[52] | Challenges in Studying Martian Magnetotail Plasma | Electrostatic analyzer constraints hinder detection of thermal (<few eV) plasma in the Martian magnetotail. |
(a) Scientific and Exploration Frontiers in Martian Solid | ||
---|---|---|
Reference | Theme | Evidence/Approach |
[31] | Mineralized Fractures and Subsurface Fluid Flow | Mineralized fractures preserve direct evidence of postdepositional fluid flow in the Martian subsurface. |
[53] | Martian Paleomagnetism | Paleomagnetic samples would provide the first direct measurements of Mars’ paleo-field direction. |
[53] | Martian Interior Temperature Structure | Full one-dimensional temperature profiles are unrealistic, but seismic data can provide temperature-pressure points at discontinuities. |
[36] | Martian Magnetic Field Mapping | Future studies will use a higher maximum spherical harmonic (SH) degree model with careful regularization. |
(b) Scientific and Exploration Frontiers in Martian Surface | ||
Reference | Theme | Evidence/Approach |
[54] | Dune Field Analysis on Mars | The Object-Based Image Analysis (OBIA) method enables improved estimates of sediment flux, dune migration, and erosion rates. |
[55] | Remote Detection of Hydrated Minerals | SuperCam infrared (IR) passive spectroscopy is uniquely capable of identifying hydrated and hydroxylated mineral outcrops at a distance. |
[55] | Mars-2020 Rover Sampling Capabilities | The Mars-2020 rover can abrade targets to create a flat surface, remove dust, and extract core samples (~1 cm wide, 5 cm long). |
[56] | Mineral Identification by Mars-2020 Rover | The rover is equipped with a shortwave infrared point spectrometer and a green Raman spectrometer to detect carbonates and/or serpentine from a distance at cm to mm scale. |
[57] | Modern Surface Processes on Mars | These results contribute to growing evidence that current processes shape Martian geomorphology. |
[36] | Global Imaging for Mars Temporal Changes | Investigating whether near-global, contemporaneous imaging (e.g., Mars Color Imager) could produce more consistent data products. |
[58] | Robotic Water Resource Exploration | Robotic missions will assess and optimize the use of Mars’ initial limited water resources, potentially from the poles or nearby asteroids. |
[59] | Subsurface Layer Modeling on Mars | Further research is needed to develop detailed layered models of the Martian subsurface, which are currently unavailable. |
[60] | Melt Oxidation in Martian Samples | As more samples are returned from Mars, the extent and intensity of melt oxidation will be studied in greater detail. |
[61] | Investigation of Martian Ripple Systems | With Tianwen-1 and Perseverance en route to Mars, and Rosalind Franklin rover under development, future missions will allow close-up examination of ripple systems. |
[62] | Effect of Excess H2O2 on Organics | A logical next step is to investigate how excess H2O2 affects organics over Martian geologic timescales or its impact on thermal decomposition analysis methods used by Mars rovers. |
[63] | Spectral Analysis and Modeling of Mars | Ongoing efforts will combine laboratory-derived spectra with CRISM observations, supplemented by Polycyclic Aromatic Hydrocarbon (PAH) spectra relevant to non-polar environments. |
[34] | Selection Criteria for Mars Robotics | Future robotic mission planning will emphasize life-detection potential, water ice presence, site accessibility, and established selection criteria. |
[35] | In Situ Mineralogical Analysis on Mars | Future research should prioritize in situ mineralogical investigations to provide direct evidence for interpreting Mars’ geological history. |
[3] | Pre-Noachian History of Mars | Detailed analysis of fine-scale rock units, through in situ rover measurements or advanced laboratory studies of returned samples, is essential for probing pre-Noachian Mars. |
[64] | Martian Mineral Spectral Library | Future research should focus on developing a more comprehensive spectral library covering a wider range of surface mineral spectra. |
(c) Scientific and Exploration Frontiers in Martian Atmosphere | ||
Reference | Theme | Evidence/Approach |
[65] | Atmospheric CO2 Measurements and Instrumentation | Future efforts will focus on advancing instrumentation and improving atmospheric CO2 measurements on Mars. |
[65] | Enhanced Atmospheric Pressure Sensing | This study proposes adding active sensors to the existing pressure-sensing system for Martian atmospheric studies. |
[66] | Oxygen Density Decline on Mars | Future research is required to assess the robustness of the observed decline in oxygen density. |
[67] | Proton Origins in Mars’ Atmospheric Escape | Results indicate that explicitly modeling proton origins improves understanding of atmospheric escape processes. |
[68] | Martian Data Assimilation for Weather Studies | Advances in Martian data assimilation techniques are improving. |
(d) Scientific and Exploration Frontiers in Martian Space | ||
Reference | Theme | Evidence/Approach |
[69] | Induced Magnetosphere of Mars | Investigating the piled-up magnetic field, its strength, and its dependence on varying solar wind. |
[70] | Solar Wind Interaction with Martian Plasma | Long-term studies, increasingly informed by orbital observations, have focused on solar wind interactions with the Martian plasma environment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, J.; Huang, Q.; Sun, Y.; Shao, J.; Gou, Y.; Huang, K.; Zhang, S. Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach. Appl. Sci. 2025, 15, 8663. https://doi.org/10.3390/app15158663
Zhang Y, Zhang J, Huang Q, Sun Y, Shao J, Gou Y, Huang K, Zhang S. Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach. Applied Sciences. 2025; 15(15):8663. https://doi.org/10.3390/app15158663
Chicago/Turabian StyleZhang, Yizheng, Jian Zhang, Qian Huang, Yangyi Sun, Jia Shao, Yu Gou, Kaiming Huang, and Shaodong Zhang. 2025. "Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach" Applied Sciences 15, no. 15: 8663. https://doi.org/10.3390/app15158663
APA StyleZhang, Y., Zhang, J., Huang, Q., Sun, Y., Shao, J., Gou, Y., Huang, K., & Zhang, S. (2025). Sentence-Level Insights from the Martian Literature: A Natural Language Processing Approach. Applied Sciences, 15(15), 8663. https://doi.org/10.3390/app15158663