Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (790)

Search Parameters:
Keywords = forest stand age

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5062 KiB  
Article
Forest Management Effects on Breeding Bird Communities in Apennine Beech Stands
by Guglielmo Londi, Francesco Parisi, Elia Vangi, Giovanni D’Amico and Davide Travaglini
Ecologies 2025, 6(3), 54; https://doi.org/10.3390/ecologies6030054 - 1 Aug 2025
Viewed by 239
Abstract
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate [...] Read more.
Beech forests in the Italian peninsula are actively managed and they also support a high level of biodiversity. Hence, biodiversity conservation can be synergistic with timber production and carbon sequestration, enhancing the overall economic benefits of forest management. This study aimed to evaluate the effect of forest management regimes on bird communities in the Italian Peninsula during 2022 through audio recordings. We studied the structure, composition, and specialization of the breeding bird community in four managed beech stands (three even-aged beech stands aged 20, 60, and 100 years old, managed by a uniform shelterwood system; one uneven-aged stand, managed by a single-tree selection system) and one uneven-aged, unmanaged beech stand in the northern Apennines (Tuscany region, Italy). Between April and June 2022, data were collected through four 1-hour audio recording sessions per site, analyzing 5 min sequences. The unmanaged stand hosted a richer (a higher number of species, p < 0.001) and more specialized (a higher number of cavity-nesting species, p < 0.001; higher Woodland Bird Community Index (WBCI) values, p < 0.001; and eight characteristic species, including at least four highly specialized ones) bird community, compared to all the managed forests; moreover, the latter were homogeneous (similar to each other). Our study suggests that the unmanaged beech forests should be a priority option for conservation, while in terms of the managed beech forests, greater attention should be paid to defining the thresholds for snags, deadwood, and large trees to be retained to enhance their biodiversity value. Studies in additional sites, conducted over more years and including multi-taxon communities, are recommended for a deeper understanding and generalizable results. Full article
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 424
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 311
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

21 pages, 3109 KiB  
Article
Effects of Forest Age and Invasive Shrubs on Mycophilous Coleoptera Communities in a Temperate Deciduous Woodland
by Jeffrey M. Brown and John O. Stireman
Insects 2025, 16(7), 735; https://doi.org/10.3390/insects16070735 - 18 Jul 2025
Viewed by 422
Abstract
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These [...] Read more.
Forests in the Eastern and Midwestern U.S. have been profoundly affected by human use over the last 150 years, with few old growth forests remaining. Such mature forests may harbor distinct communities and high biodiversity, particularly detritivores and their associated food webs. These communities, however, have been surveyed only rarely in comparisons of diversity and community composition between old and young forests. Here, we compare the mycophilous beetle communities of young and old deciduous forest stands in Southwestern Ohio (U.S.A.). We assess how the abundance and diversity of beetles associated with fungal sporocarps varies with forest age, downed woody debris, and invasive honeysuckle density. We surveyed fungus-associated beetles with baited traps at eight wooded parklands centered around Dayton, Ohio, conducting sampling three times over a growing season. In contrast to expectation, we found no clear effect of forest age on mycophilous beetle communities, but infestation by invasive honeysuckle (Lonicera maackii) negatively affected beetle abundance and diversity. Beetle abundance, richness, and community composition also strongly varied across seasonal sampling periods. Our surveys of mycophilous beetles in a Midwestern U.S. forest represent an initial step toward understanding how these communities are shaped by forest age and invasive species. Such information is crucial in managing forests to preserve biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 329
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 4448 KiB  
Article
Can Shape–Size–Increment Models Guide the Sustainable Management of Araucaria Forests? Insights from Selected Stands in Southern Brazil
by André Felipe Hess, Veraldo Liesenberg, Laryssa Demétrio, Laio Zimermann Oliveira, Marchante Olímpio Assura Ambrósio, Emanuel Arnoni Costa and Polyana da Conceição Bispo
Forests 2025, 16(7), 1105; https://doi.org/10.3390/f16071105 - 4 Jul 2025
Viewed by 281
Abstract
Sustainable Forest Management (SFM) requires the building of relationships among diameter increment, shape, and size (ISS), and increment–age variables to identify critical changes in forest structure and dynamics. This understanding is essential for maintaining forest productivity, structural and species diversity, stability, and sustainability. [...] Read more.
Sustainable Forest Management (SFM) requires the building of relationships among diameter increment, shape, and size (ISS), and increment–age variables to identify critical changes in forest structure and dynamics. This understanding is essential for maintaining forest productivity, structural and species diversity, stability, and sustainability. This study focused on measuring, reporting, and modeling these relationships for Araucaria angustifolia (Bertol.) Kuntze, across various diameters and three stands, located at different rural properties in southern Brazil. A random sample of 186 individual trees was acquired; the trees were measured for multiple dendrometric variables, and several morphometric indices were calculated. Additionally, two cores were extracted from each tree using an increment borer, enabling the measurement of growth rings and annual diameter increments. These were modeled using generalized linear models to assess the relationships among them and to quantify changes in forest structure and dynamics. The results revealed the dominance of A. angustifolia and a decline in the increment rate with increasing age, shape, and size in both old and young trees, indicating potential risks to the structure and dynamics of these unmanaged forests. Therefore, the models constructed in this study can guide conservation-by-use efforts and ensure the long-term continuity and productivity of forest remnants at selected rural properties, where A. angustifolia trees are predominant. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

15 pages, 2253 KiB  
Article
Plant Diversity and Microbial Community Drive Ecosystem Multifunctionality in Castanopsis hystrix Plantations
by Han Sheng, Babar Shahzad, Fengling Long, Fasih Ullah Haider, Xu Li, Lihua Xian, Cheng Huang, Yuhua Ma and Hui Li
Plants 2025, 14(13), 1973; https://doi.org/10.3390/plants14131973 - 27 Jun 2025
Viewed by 392
Abstract
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require [...] Read more.
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require further investigation. This study examines how stand development influences EMF in Castanopsis hystrix L. plantations, a dominant subtropical timber species in China, by assessing six ecosystem functions (carbon stocks, wood production, nutrient cycling, decomposition, symbiosis, and water regulation) of six forest ages (6, 10, 15, 25, 30, and 34 years). The results demonstrate substantial age-dependent functional enhancement, with carbon stocks and wood production increasing by 467% and 2016% in mature stand (34 year) relative to younger stand (6 year). Nutrient cycling and water regulation showed intermediate gains (6% and 23%). Structural equation modeling identified plant diversity and microbial community composition as direct primary drivers. Tree biomass profiles emerged as the strongest biological predictors of EMF (p < 0.01), exceeding abiotic factors. These findings highlight that C. hystrix plantations can achieve high multifunctionality through stand maturation facilitated by synergistic interactions between plants and microbes. Conservation of understory vegetation and soil biodiversity represents a critical strategy for sustaining EMF, providing a science-based framework for climate-resilient plantation management in subtropical regions. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

24 pages, 3630 KiB  
Article
Climate-Induced Shift in the Population Dynamics of Tortrix viridana L. in Ukraine
by Valentyna Meshkova, Serhij Stankevych, Yana Koshelyaeva, Volodymyr Korsovetskyi and Oleksandr Borysenko
Forests 2025, 16(6), 1005; https://doi.org/10.3390/f16061005 - 14 Jun 2025
Viewed by 1416
Abstract
Tortrix viridana (Linnaeus, 1758) (Lepidoptera: Tortricidae) (TV) is a serious pest of oaks in the West-Palearctic. In Ukraine in the 50–70s of the 20th century, the area of TV outbreaks reached 140–180 thousand hectares. Since the late 1980s, outbreaks have become rarer and [...] Read more.
Tortrix viridana (Linnaeus, 1758) (Lepidoptera: Tortricidae) (TV) is a serious pest of oaks in the West-Palearctic. In Ukraine in the 50–70s of the 20th century, the area of TV outbreaks reached 140–180 thousand hectares. Since the late 1980s, outbreaks have become rarer and have occurred in a smaller area. This research aimed to assess the main parameters of TV outbreaks in Ukraine, considering its prevalence in flush feeders’ complex, the suitability of forest structure for this insect, and the phenological mismatch between bud-flushing and TV hatching. Historical data on TV outbreaks in Ukraine since 1947, data for 1978–2025 by regions, field and climate data, and forest management databases as of 1996 and 2017 from the Kharkiv region were analyzed. Since 1985, the incidence, severity, and duration of TV outbreaks have decreased in all regions of Ukraine. It was explained by: (1) TV decrease in the flush feeding complex due to monophagy; (2) decrease in the suitable area due to a change in the forest age composition, proportion of pure oak stands, and stands with low relative stocking density; (3) the shift of oak bud-flushing and TV hatching to earlier dates with the tendency of earlier bud-flushing than egg-hatching. Full article
Show Figures

Figure 1

19 pages, 2474 KiB  
Article
Growth and Biomass Distribution Responses of Populus tomentosa to Long-Term Water–Nitrogen Coupling in the North China Plain
by Yafei Wang, Juntao Liu, Yuelin He, Wei Zhu, Liming Jia and Benye Xi
Plants 2025, 14(12), 1833; https://doi.org/10.3390/plants14121833 - 14 Jun 2025
Viewed by 438
Abstract
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. [...] Read more.
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. The experiment adopted a completely randomized block design, with one control (CK) and six water–nitrogen coupling treatments (IF, two irrigation levels × three nitrogen application levels). Data analysis was conducted using ANOVA, regression models, Spearman’s correlation analysis, and path analysis. The results showed that the effects of water and nitrogen treatments on the annual increment of diameter at breast height (ΔDBH), annual increment of tree height (ΔH), basal area of the stand (BAS), stand volume (VS), and annual forest productivity (AFP) in short-rotation forestry exhibited a significant stand age effect. The coupling of water and nitrogen significantly promoted the DBH growth of 2-year-old trees (p < 0.05), but after 3 years of age, the promoting effect of water and nitrogen coupling gradually diminished. In the 6th year, the above-ground biomass of Populus tomentosa was 5.16 to 6.62 times the under-ground biomass under different treatments. Compared to the I45 treatment (irrigation at soil water potential of −45 kPa), the irrigation water use efficiency of the I20 treatment (−20 kPa) decreased by 88.79%. PFP showed a downward trend with the increase in fertilization amount, dropping by 130.95% and 132.86% under the I20 and I45 irrigation levels. Path analysis indicated that irrigation had a significant effect on the BAS, VS, AFP, and TGB of 6-year-old Populus tomentosa (p < 0.05), with the universality of irrigation being higher than that of fertilization. It is recommended to implement phased water and fertilizer management for Populus tomentosa plantations in the North China Plain. During 1–3 years of tree age, adequate irrigation should be ensured and nitrogen fertilizer application increased. Between the ages of 4 and 6, irrigation and fertilization should be ceased to reduce resource wastage. This work provides scientific guidance for water and fertilizer management in short-rotation plantations. Full article
Show Figures

Figure 1

17 pages, 2455 KiB  
Article
Tree Diversity and Identity Effects on Aboveground Biomass Are Stronger than Those of Abiotic Drivers in Coniferous and Broadleaved Forest Restoration Sites of South Korea
by Ji-Soo Kwak, Joonhyung Park, Yong-Ju Lee, Min-Ki Lee, Chae-Young Lim and Chang-Bae Lee
Forests 2025, 16(6), 979; https://doi.org/10.3390/f16060979 - 10 Jun 2025
Viewed by 495
Abstract
Forest restoration sites have a critical role in the maintenance and improvement of forest ecosystem health and resilience, as well as increasing carbon storage capacity. However, previous studies on forest restoration sites have primarily focused on monitoring vegetation changes and investigating changes in [...] Read more.
Forest restoration sites have a critical role in the maintenance and improvement of forest ecosystem health and resilience, as well as increasing carbon storage capacity. However, previous studies on forest restoration sites have primarily focused on monitoring vegetation changes and investigating changes in carbon storage (e.g., aboveground biomass). Research on identifying the controlling drivers of aboveground biomass (AGB) between/among forest types according to stand age within restoration sites remains limited. Our study analyzed data from a total of 149 plots in forest restoration sites in South Korea, comprising 57 coniferous forest plots (38.3%) and 92 broadleaved forest plots (61.7%). This study employed a piecewise structural equation model to determine the main biotic (i.e., stand structural diversity, species diversity, functional diversity, and tree identity) and abiotic drivers (i.e., topographic, climate factors driver, stand age, and soil properties) influencing AGB in each forest type. The results revealed that stand structural diversity was the most critical driver of AGB across all forest types, highlighting the importance of structural complexity in early stage restoration. Specifically, in coniferous forests, stand structural diversity (DBH STD) and tree identity (CWM WD) were more influential, whereas in broadleaved forests, SR and climatic conditions played a greater role. Therefore, our findings provide empirical evidence for understanding AGB dynamics in early stage forest restoration sites and may help inform the development of management strategies for each forest type and early restoration planning in similar ecosystems. Full article
(This article belongs to the Special Issue Forest Ecosystem Services and Sustainable Management)
Show Figures

Figure 1

10 pages, 1273 KiB  
Article
Effects of Bioturbation by Earthworms on Litter Flammability in Young and Mature Afforested Stands
by Aneta Martinovská, Ondřej Mudrák and Jan Frouz
Fire 2025, 8(6), 225; https://doi.org/10.3390/fire8060225 - 6 Jun 2025
Viewed by 500
Abstract
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal [...] Read more.
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal of litter by soil fauna, i.e., bioturbation, depends on both the dominant tree species and the successional stage of the forest stand. This research involved laboratory mesocosm experiments aiming to determine the effects of litter quality and earthworm activity on the flammability of the forest floor material at different successional ages. The mesocosms simulated the planting of four tree species (the broadleaf species Alnus glutinosa (L.) Gaertn. (Black alder) and Quercus robur L. (English oak) and the conifers Picea omorika (Pančić) Purk. (Serbian spruce) and Pinus nigra J.F. Arnold (Austrian pine)) at a reclamation site near Sokolov (NW Czechia). The mesocosms contained litter from these different tree species, placed directly on overburden soil (immature soil) or on well-developed Oe and A layers (mature soil), inoculated or not inoculated with earthworms, and incubated for 4 months. The surface material in the mesocosms was then subjected to simulated burn events, and the fire path and soil temperature changes were recorded. Burn testing showed that litter type (tree species) and soil maturity significantly influenced flammability. Pine had longer burning times and burning paths and higher post-burn temperatures than those of the other tree species. The immature soil with earthworms had significantly shorter burning times, whereas in the mature soil, earthworms had no effect. We conclude that earthworms have a significant, immediate effect on the litter flammability of immature soils. Full article
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Restoration of Understory Plant Species and Functional Diversity in Temperate Plantations Along Successional Stages
by Weiwei Zhao, Yanting Chen, Muhammad Fahad Sardar and Xiang Li
Forests 2025, 16(6), 956; https://doi.org/10.3390/f16060956 - 5 Jun 2025
Viewed by 383
Abstract
Context: Planting forests is an important strategy to combat biodiversity loss and ecosystem service degradation, but its effects on biodiversity and ecosystem services remain uncertain. Objectives: This study aimed to investigate the restoration of plants along successional and environmental gradients in [...] Read more.
Context: Planting forests is an important strategy to combat biodiversity loss and ecosystem service degradation, but its effects on biodiversity and ecosystem services remain uncertain. Objectives: This study aimed to investigate the restoration of plants along successional and environmental gradients in planted forests by examining how understory plant diversity (species richness, composition, functional diversity), functional diversity—the range of species’ traits influencing ecosystem functions and services and their environmental drivers—evolve in temperate plantations over time. Methods: We examined a total of 36 plots with different stand ages in Chongli District, China, and compared the differences in species richness, biodiversity, composition, and functional diversity across different successional stages and over time. We also analyzed the response mechanisms of species richness and functional diversity to environmental factors at both the local and landscape scales. Results and Discussion: Our results showed species diversity, species richness, and functional diversity tended to increase with time in most plots and stabilized after 45 years. Although species richness was lower in mature plots (>100 years), functional diversity was higher, and species composition was significantly differentiated. This trade-off reflects environmental filtering selecting for competitively dominant species with distinct functional traits, while continuous species turnover prevents compositional convergence. The increase in functional diversity was not directly related to the rise in species richness, but it depended on the relative dominance of several species with different functional characteristics in the ecosystem. Simulation analysis confirmed this pattern aligns with a Simpson’s index-driven trait complementarity mechanism. At the local scale, stand age was the most significant positive factor influencing species richness and functional diversity. Soil total nitrogen and organic matter only negatively affected species richness in interactions. At the landscape scale, landscape heterogeneity plays an important role in restoring functional diversity. Historical afforestation since the 1950s restricted comparisons to secondary forests, lacking primary forest baselines. Conclusions: The results suggest that the effects of the successional stage and multiscale environmental factors should be comprehensively considered in the restoration strategy of restored forests. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 6859 KiB  
Article
Assessment and Prediction of Carbon Sink Resource Potential in Arbor Forests: A Case Study of Mentougou District, Beijing, China
by Yongcheng Geng, Xiaoxian Liu and Shuhong Wu
Forests 2025, 16(6), 926; https://doi.org/10.3390/f16060926 - 31 May 2025
Viewed by 424
Abstract
As the largest terrestrial carbon pool, forest ecosystems play a pivotal role in climate change mitigation through greenhouse gas regulation. This study estimated the carbon sequestration potential of arbor forests at the county-level scale in Mentougou District, Beijing, based on subcompartment vector data [...] Read more.
As the largest terrestrial carbon pool, forest ecosystems play a pivotal role in climate change mitigation through greenhouse gas regulation. This study estimated the carbon sequestration potential of arbor forests at the county-level scale in Mentougou District, Beijing, based on subcompartment vector data from forest surveys and employed the Intergovernmental Panel on Climate Change (IPCC) carbon stock–biomass difference methodology. Additionally, using 2020 as the baseline year, the research projected carbon sink potential and carbon sequestration–oxygen release values for 2030 and 2060 by applying the carbon stock change methodology and the carbon sequestration–oxygen release value methodology. The results showed that there is a total carbon stock of 2.198 million tonnes (Mt) C in Mentougou, with an average storage density of 33.4 t C/ha. Natural broadleaf forests constituted the dominant carbon pool (79.2%), followed by planted coniferous stands (11.9%), collectively accounting for 91.1% of the regional arboreal carbon storage. In the future, the district’s arboreal carbon stock is projected to reach 3.17 Mt C in 2030 and 4.82 Mt C in 2060, with cumulative sequestration reaching 0.97 Mt C and 2.63 Mt C, respectively. It is evident that the carbon storage dynamics in Mentougou were governed by three principal determinants: (1) natural broadleaf forests dominate carbon storage (1.559 Mt C) in Mentougou, exceeding planted coniferous stands by 6.7-fold; (2) carbon storage decreases progressively with younger age classes, while carbon density increases steadily with stand maturity; (3) mid-elevation slopes (600–1200 m) concentrate 48% of regional stocks, with shaded slopes being optimal carbon sinks, and slope position gradients reveal topography-driven carbon accumulation patterns, confirming scale-dependent material transport effects. The value of carbon fixation and oxygen release of existing arbor forests in Mentougou District was CNY 6.12 billion, and this is predicted to reach CNY 8.84 billion by 2030, with a further anticipated increase to CNY 13.45 billion by 2060. Our analysis provides empirical evidence and quantitative support for forestry carbon sink initiatives at the regional scale and thus promotes the achievement of dual-carbon goals proposed by the Chinese government. Full article
(This article belongs to the Special Issue Forest Monitoring and Modeling Under Climate Change)
Show Figures

Figure 1

23 pages, 9305 KiB  
Article
Structure and Regeneration Differentiation of Coniferous Stand Groups in Representative Altay Montane Forests: Demographic Evidence from Dominant Boreal Conifers
by Haiyan Zhang, Yang Yu, Lingxiao Sun, Chunlan Li, Jing He, Ireneusz Malik, Malgorzata Wistuba and Ruide Yu
Forests 2025, 16(6), 885; https://doi.org/10.3390/f16060885 - 23 May 2025
Viewed by 457
Abstract
With the intensification of global climate change and human activities, coniferous species as the main components of natural forests in the Altay Mountains are facing the challenges of aging and regeneration. This study systematically analyzed structural heterogeneity and regeneration of three coniferous stand [...] Read more.
With the intensification of global climate change and human activities, coniferous species as the main components of natural forests in the Altay Mountains are facing the challenges of aging and regeneration. This study systematically analyzed structural heterogeneity and regeneration of three coniferous stand groups, Larix sibirica Ledeb. stand group, Abies sibirica Ledeb.-Picea obovata Ledeb.-Larix sibirica mixed stand group, and Picea obovata stand group, respectively, across western, central, and eastern forest areas of the Altay Mountains in Northwest China based on field surveys in 2023. Methodologically, we integrated Kruskal–Wallis/Dunn’s post hoc tests, nonlinear power-law modeling (diameter at breast height (DBH)–age relationships, validated via R2, root mean square error (RMSE), and F-tests), static life tables (age class mortality and survival curves), and dynamic indices. Key findings revealed structural divergence: the L. sibirica stand group exhibited dominance of large-diameter trees (>30 cm DBH) with sparse seedlings/saplings and limited regeneration; the mixed stand group was dominated by small DBH individuals (<10 cm), showing young age structures and vigorous regeneration; while the P. obovata stand group displayed uniform DBH/height distributions and slow regeneration capacity. Radial growth rates differed significantly—highest in the mixed stand group (average of 0.315 cm/a), intermediate in the P. obovata stand group (0.216 cm/a), and lowest in the L. sibirica stand group (0.180 cm/a). Age–density trends varied among stand groups: unimodal in the L. sibirica and P. obovata stand groups while declining in the mixed stand group. All stand groups followed a Deevey-II survival curve (constant mortality across ages). The mixed stand group showed the highest growth potential but maximum disturbance risk, the L. sibirica stand group exhibited complex variation with lowest risk probability, while the P. obovata stand group had weaker adaptive capacity. These results underscore the need for differentiated management: promoting L. sibirica regeneration via gap-based interventions, enhancing disturbance resistance in the mixed stand group through structural diversification, and prioritizing P. obovata conservation to maintain ecosystem stability. This multi-method framework bridges stand-scale heterogeneity with demographic mechanisms, offering actionable insights for climate-resilient forestry. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

2 pages, 523 KiB  
Correction
Correction: Katrevičs et al. Forest Soil Fungal Diversity in Stands of Norway Spruce (Picea abies (L.) Karst.) of Different Ages. Forests 2025, 16, 500
by Juris Katrevičs, Krišs Bitenieks, Āris Jansons, Baiba Jansone and Dainis Edgars Ruņģis
Forests 2025, 16(6), 874; https://doi.org/10.3390/f16060874 - 22 May 2025
Viewed by 226
Abstract
In the original publication [...] Full article
(This article belongs to the Section Forest Soil)
Back to TopTop