Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,917)

Search Parameters:
Keywords = forest plantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 (registering DOI) - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 (registering DOI) - 6 Aug 2025
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

15 pages, 807 KiB  
Article
Role of Plant Growth Regulators in Adventitious Populus Tremula Root Development In Vitro
by Miglė Vaičiukynė, Jonas Žiauka, Valentinas Černiauskas and Iveta Varnagirytė-Kabašinskienė
Plants 2025, 14(15), 2427; https://doi.org/10.3390/plants14152427 - 5 Aug 2025
Abstract
Eurasian aspen (Populus tremula L.) is a tree species with recognised ecological and economic importance for both natural and plantation forests. For the fast cloning of selected aspen genotypes, the method of plant propagation through in vitro culture (micropropagation) is often recommended. [...] Read more.
Eurasian aspen (Populus tremula L.) is a tree species with recognised ecological and economic importance for both natural and plantation forests. For the fast cloning of selected aspen genotypes, the method of plant propagation through in vitro culture (micropropagation) is often recommended. The efficiency of this method is related to the use of shoot-inducing chemical growth regulators, among which cytokinins, a type of plant hormone, dominate. Although cytokinins can inhibit rooting, this effect is avoided by using cytokinin-free media. This study sought to identify concentrations and combinations of growth regulators that would stimulate one type of P. tremula organogenesis (either shoot or root formation) without inhibiting the other. The investigated growth regulators included cytokinin 6-benzylaminopurine (BAP), auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), gibberellin biosynthesis inhibitor paclobutrazol (PBZ), and a gibberellin mixture (GA4/7). Both BAP and TIBA increased shoot number per P. tremula explant and decreased the number of adventitious roots, but TIBA, in contrast to BAP, did not inhibit lateral root formation. However, for the maintenance of both adventitious shoot and root formation above the control level, the combination of PBZ and GA4/7 was shown to be especially promising. Full article
Show Figures

Figure 1

17 pages, 826 KiB  
Review
Mechanisms and Impact of Acacia mearnsii Invasion
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(8), 553; https://doi.org/10.3390/d17080553 - 4 Aug 2025
Abstract
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due [...] Read more.
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due to its negative ecological impact, A. mearnsii has been listed among the world’s 100 worst invasive alien species. This species exhibits rapid stem growth in its sapling stage and reaches reproductive maturity early. It produces a large quantity of long-lived seeds, establishing a substantial seed bank. A. mearnsii can grow in different environmental conditions and tolerates various adverse conditions, such as low temperatures and drought. Its invasive populations are unlikely to be seriously damaged by herbivores and pathogens. Additionally, A. mearnsii exhibits allelopathic activity, though its ecological significance remains unclear. These characteristics of A. mearnsii may contribute to its expansion in introduced ranges. The presence of A. mearnsii affects abiotic processes in ecosystems by reducing water availability, increasing the risk of soil erosion and flooding, altering soil chemical composition, and obstructing solar light irradiation. The invasion negatively affects biotic processes as well, reducing the diversity and abundance of native plants and arthropods, including protective species. Eradicating invasive populations of A. mearnsii requires an integrated, long-term management approach based on an understanding of its invasive mechanisms. Early detection of invasive populations and the promotion of public awareness about their impact are also important. More attention must be given to its invasive traits because it easily escapes from cultivation. Full article
(This article belongs to the Special Issue Plant Adaptation and Survival Under Global Environmental Change)
Show Figures

Graphical abstract

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 439
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 154
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 - 1 Aug 2025
Viewed by 176
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

32 pages, 5440 KiB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 - 1 Aug 2025
Viewed by 149
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

12 pages, 1886 KiB  
Article
Methodology-Dependent Reversals in Root Decomposition: Divergent Regulation by Forest Gap and Root Order in Pinus massoniana
by Haifeng Yin, Jie Zeng, Size Liu, Yu Su, Anwei Yu and Xianwei Li
Plants 2025, 14(15), 2365; https://doi.org/10.3390/plants14152365 - 1 Aug 2025
Viewed by 192
Abstract
Understanding root decomposition dynamics is essential to address declining carbon sequestration and nutrient imbalances in monoculture plantations. This study elucidates how forest gaps regulate Pinus massoniana root decomposition through comparative methodological analysis, providing theoretical foundations for near-natural forest management and carbon–nitrogen cycle optimization [...] Read more.
Understanding root decomposition dynamics is essential to address declining carbon sequestration and nutrient imbalances in monoculture plantations. This study elucidates how forest gaps regulate Pinus massoniana root decomposition through comparative methodological analysis, providing theoretical foundations for near-natural forest management and carbon–nitrogen cycle optimization in plantations. The results showed the following: (1) Root decomposition was significantly accelerated by the in situ soil litterbag method (ISLM) versus the traditional litterbag method (LM) (decomposition rate (k) = 0.459 vs. 0.188), reducing the 95% decomposition time (T0.95) by nearly nine years (6.53 years vs. 15.95 years). ISLM concurrently elevated the root potassium concentration and reconfigured the relationships between root decomposition and soil nutrients. (2) Lower-order roots (orders 1–3) decomposed significantly faster than higher-order roots (orders 4–5) (k = 0.455 vs. 0.193). This disparity was amplified under ISLM (lower-/higher-order root k ratio = 4.1) but diminished or reversed under LM (lower-/higher-order root k ratio = 0.8). (3) Forest gaps regulated decomposition through temporal phase interactions, accelerating decomposition initially (0–360 days) while inhibiting it later (360–720 days), particularly for higher-order roots. Notably, forest gap effects fundamentally reversed between methodologies (slight promotion under LM vs. significant inhibition under ISLM). Our study reveals that conventional LM may obscure genuine ecological interactions during root decomposition, confirms lower-order roots as rapid nutrient-cycling pathways, provides crucial methodological corrections for plantation nutrient models, and advances theoretical foundations for precision management of P. massoniana plantations. Full article
Show Figures

Figure 1

28 pages, 33384 KiB  
Article
Spatial Analysis of Soil Acidity and Available Phosphorus in Coffee-Growing Areas of Pichanaqui: Implications for Liming and Site-Specific Fertilization
by Kenyi Quispe, Nilton Hermoza, Sharon Mejia, Lorena Estefani Romero-Chavez, Elvis Ottos, Andrés Arce and Richard Solórzano Acosta
Agriculture 2025, 15(15), 1632; https://doi.org/10.3390/agriculture15151632 - 28 Jul 2025
Viewed by 375
Abstract
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for [...] Read more.
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for estimating liming doses, and three geospatial variables from 552 soil samples in the Pichanaqui district of Peru. Multivariate statistics, nonparametric comparison, and geostatistical analysis with Ordinary Kriging interpolation were used for data analysis. The results showed low coffee yields (0.70 ± 0.16 t ha−1) due to soil acidification. The interquartile ranges (IQR) were found to be 3.80–5.10 for pH, 0.21–0.87 cmol Kg−1 for Al+3, and 2.55–6.53 mg Kg−1 for available P, which are limiting soil conditions for coffee plantations. Moreover, pH, Al+3, Ca+2, and organic matter (OM) were the variables with the highest accuracy and quality in the spatial prediction of soil acidity (R2 between 0.77 and 0.85). The estimation method of liming requirements, MPM (integration of pH and organic material method), obtained the highest correlation with soil acidity-modulating variables and had a high spatial predictability (R2 = 0.79), estimating doses between 1.50 and 3.01 t ha−1 in soils with organic matter (OM) > 4.00%. The MAC (potential acidity method) method (R2 = 0.59) estimated liming doses between 0.51 and 0.88 t ha−1 in soils with OM < 4.00% and potential acidity greater than 0.71 cmol Kg−1. Regarding phosphorus fertilization (DAP), the results showed high requirements (median = 137.21 kg ha−1, IQR = 8.28 kg ha−1), with high spatial predictability (R2 = 0.74). However, coffee plantations on Ferralsols, with Paleogene parental material, mainly in dry forests, had the lowest predicted fertilization requirements (between 6.92 and 77.55 kg ha−1 of DAP). This research shows a moderate spatial variation of acidity, the need to optimize phosphorus fertilization, and an optimal prediction of liming requirements using the MPM and MAC methods, which indicate high requirements in the southwest of the Pichanaqui district. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 1193 KiB  
Article
The Importance of Native Trees and Forests: Smallholder Farmers’ Views in South-Western Rwanda
by Franklin Bulonvu, Gérard Imani, Myriam Mujawamariya, Beth A. Kaplin, Patrick Mutabazi and Aida Cuni-Sanchez
Forests 2025, 16(8), 1234; https://doi.org/10.3390/f16081234 - 26 Jul 2025
Viewed by 527
Abstract
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We [...] Read more.
Despite increasing interest in including indigenous and local people in forest restoration initiatives, their views on which species are most useful, or reasons behind not planting native tree species are often ignored. Focused on south-western Rwanda, this study addressed these knowledge gaps. We carried out 12 focus group discussions with village elders to determine the following: main benefits provided by native forests, the native species they prefer for different uses, and the main barriers to species’ cultivation. Then, considering other key information from the literature, we performed a ranking exercise to determine which native species had the greatest potential for large-scale tree planting initiatives. Our results show that native forests provide 17 benefits to local communities, some of which cannot be replaced by plantations with exotic species. Among the 26 tree species identified as most useful for timber, firewood, medicine and fodder, ten were ranked as with the greatest potential for restoration initiatives. Of these, two had not been included in recent experimental plantations using native species in Rwanda, and none were considered among the priority species for domestication in Africa. Overall, our study highlights the need to better connect the ecological and social dimension of forest reforestation initiatives in multiple contexts. Full article
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 525
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

17 pages, 1582 KiB  
Article
Rare Earth Elements in Tropical Agricultural Soils: Assessing the Influence of Land Use, Parent Material, and Soil Properties
by Gabriel Ribeiro Castellano, Juliana Silveira dos Santos, Melina Borges Teixeira Zanatta, Rafael Souza Cruz Alves, Zigomar Menezes de Souza, Milton Cesar Ribeiro and Amauri Antonio Menegário
Agronomy 2025, 15(7), 1741; https://doi.org/10.3390/agronomy15071741 - 19 Jul 2025
Viewed by 378
Abstract
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, [...] Read more.
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, and pasture), parent material, and soil physicochemical properties (predictor variables) on REE content in the Brazilian Atlantic Forest and measure pseudo-total REE content using inductively coupled plasma mass spectrometry (ICP-MS). Differences in REE content across land cover types, parent materials, and soil properties were assessed using similarity and variance analyses (ANOSIM, ANOVA, and Kruskal–Wallis) followed by post hoc tests (Tukey HSD and Dunn’s). We used model selection based on the Akaike criterion (ΔAICc < 2) to determine the influence of predictor variables on REE content. Our results showed that parent materials (igneous and metamorphic rocks) were the best predictors, yielding plausible models (Adj R2 ≥ 0.3) for Y, δEu, and LaN/SaN. In contrast, Ca:Mg alone provided a plausible model (Adj R2 = 0.15) for δCe anomalies, while clay content (Adj R2 = 0.11) influenced the SaN/YbN ratio, though soil properties had weaker effects than parent materials. However, we found no evidence that Eucalyptus plantations or pastures under non-intensive management increase REE content in Brazilian Atlantic Forest soils. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
What Can Ground-Dwelling Ants Tell Us About Different Land-Use Systems in the Brazilian Amazon?
by Elisangela Silva, Cristina Machado Borges, Emília Zoppas Albuquerque, Daniela Faria Florencio, Izaias Fernandes, Mariana Tolentino, Vanesca Korasaki, Júlio Louzada and Ronald Zanetti
Forests 2025, 16(7), 1190; https://doi.org/10.3390/f16071190 - 19 Jul 2025
Viewed by 361
Abstract
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants [...] Read more.
Tropical rainforests are rapidly disappearing due to human activities, particularly land-use changes, resulting in a heterogeneous mosaic of landscapes that substantially contribute to global terrestrial biodiversity loss. We investigated how changes in land-use affect species richness, composition, and functional guilds of ground-dwelling ants within various land-use systems at a local scale in the Amazonian rainforest. Our focus was to respond to the following: (i) How do local species richness and community composition reflect differences among land-use systems? (ii) Are ground-dwelling ants, especially specialists, negatively impacted by intensified land-use changes? We surveyed 55 sites representing five land-use systems: primary forest, secondary forest, forest corridor, selective logging, and Eucalyptus plantation. We registered 150 ant species, and species richness ranged from 43 to 94. Richness varies according to the land-use systems, likely influenced by differences in habitat structural complexity both vertically and horizontally. Ant species composition and guilds distribution also varied among land-use systems studied. Environments characterized by reduced structural complexity or higher disturbed levels, such as Eucalyptus plantations, tend to support lower resource availability, which may lead to decreased species richness. However, the surrounding matrix appears to play a key role in maintaining regional biodiversity, as evidenced by the absence of differences in ground-dwelling ants diversity across all land-use systems studied. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

21 pages, 10725 KiB  
Article
A Partitioned Cloth Simulation Filtering Method for Extracting Tree Height of Plantation Forests Using UAV-LiDAR Data in Subtropical Regions of China
by Kaisen Ma, Jing Yi, Hua Sun, Song Chen, Chaokui Li and Ming Gong
Forests 2025, 16(7), 1179; https://doi.org/10.3390/f16071179 - 17 Jul 2025
Viewed by 343
Abstract
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary [...] Read more.
Tree height is a critical indicator for estimating forest stock and can be effectively acquired by UAV-LiDAR. Ground filtering works to classify ground points and non-ground points and can impact the tree height extraction results, while the points classification quality obtained by ordinary filtering methods is limited in complex forest conditions. A partitioned cloth simulation filtering (PCSF) method based on different vegetation cover was proposed in this study to improve the classification accuracy, and tree heights were extracted to demonstrate the effectiveness of the proposed method. UAV-LiDAR data and field measurements collected from the Lutou experimental forest farm in the southern subtropical forest region of China were used for validation, and the slope-based filtering, progressive triangulated irregular network densification filtering (PTD), moving surface fitting filtering (MSFF), and CSF were adopted for comparisons. The results showed that the proposed method yielded the best ground filtering effect, reducing the filtering total error by 2.12%–4.22% compared with other methods, and the relative root mean squared error (rRMSE) of extracted tree heights was reduced by 1.24%–3.84%, respectively. The proposed method can achieve a satisfactory filtering effect and tree height extraction result, which provides a methodological basis to precisely extract tree heights in large-scale forests. Full article
Show Figures

Figure 1

Back to TopTop