Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (598)

Search Parameters:
Keywords = force plate measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4783 KiB  
Article
Empirical Investigation of the Structural Response of Super-Span Soil–Steel Arches During Backfilling
by Bartłomiej Kunecki
Materials 2025, 18(15), 3650; https://doi.org/10.3390/ma18153650 (registering DOI) - 3 Aug 2025
Abstract
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 [...] Read more.
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 expressway in northeastern Poland, was constructed using deep corrugated steel plates (500 mm× 237 mm) made from S315MC steel, without additional reinforcements such as stiffening ribs or geosynthetics. The study focused on monitoring the structural behavior during the critical backfilling phase. Displacements and strains were recorded using 34 electro-resistant strain gauges and a geodetic laser system at successive backfill levels, with particular attention to the loading stage at the crown. The measured results were compared with predictions based on the Swedish Design Method (SDM). The SDM equations did not accurately predict internal forces during backfilling. At the crown level, bending moments and axial forces were overestimated by approximately 69% and 152%, respectively. At the final backfill level, the SDM underestimated bending moments by 55% and overestimated axial forces by 90%. These findings highlight limitations of current design standards and emphasize the need for revised analytical models and long-term monitoring of large-span soil–steel structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 1695 KiB  
Article
A Pilot Study of the Effect of Locomotor and Mechanical Loads on Elite Rowers During Competition Days
by Ferenc Ihász, Johanna Takács, Zoltán Alföldi, Lili Kósa, Robert Podstawski, Antonio Ferraz, Bożena Hinca, István Barthalos and Zsolt Bálint Katona
Sports 2025, 13(8), 254; https://doi.org/10.3390/sports13080254 - 1 Aug 2025
Viewed by 124
Abstract
(1) Background: Fatigue impacts neuromuscular performance, especially in endurance sports like rowing. The aim is to explore how continuous workload affects explosiveness and fatigue progression. This study examines acute fatigue during repeated race events by assessing vertical jump height, force output, and subjective [...] Read more.
(1) Background: Fatigue impacts neuromuscular performance, especially in endurance sports like rowing. The aim is to explore how continuous workload affects explosiveness and fatigue progression. This study examines acute fatigue during repeated race events by assessing vertical jump height, force output, and subjective fatigue over three consecutive days at the 2024 Hungarian National Rowing Championships. (2) Methods: Nine rowers (five women, four men; mean age 20.17 ± 1.73 years) competed in multiple 2000 m races over three days. Lower limb explosiveness was measured via countermovement jump (CMJ) using a Kistler force plate, pre- and post-race. Heart rate data were recorded with Polar Team Pro®. Subjective fatigue was assessed using the ‘Daily Wellness Questionnaire’. (3) Results: We found a significant difference in the pattern of the medians of the force exerted by males during the jump between the results of the Thursday preliminaries (ThuQMe = 13.3) and the second final (ThuF2Me = −75.5). Women showed no notable changes. (4) Conclusion: Repeated high-intensity races induce neuromuscular fatigue in men, reflected in reduced explosiveness and increased subjective fatigue. Future research should incorporate biochemical markers to deepen the understanding of fatigue mechanisms. Full article
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 (registering DOI) - 1 Aug 2025
Viewed by 88
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

14 pages, 1173 KiB  
Article
Biomechanical Alterations in the Unweight Phase of the Single-Leg Countermovement Jump After ACL Reconstruction
by Roberto Ricupito, Marco Bravi, Fabio Santacaterina, Giandomenico Campardo, Riccardo Guarise, Rosalba Castellucci, Ismail Bouzekraoui Alaoui and Florian Forelli
J. Funct. Morphol. Kinesiol. 2025, 10(3), 296; https://doi.org/10.3390/jfmk10030296 - 30 Jul 2025
Viewed by 207
Abstract
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of [...] Read more.
Background: Anterior cruciate ligament reconstruction (ACLr) often leads to asymmetries between limbs, with variable return-to-performance rates in athletes. The single-leg countermovement jump (SLCMJ) is commonly used to assess postoperative knee function. However, limited research has explored deficits specifically during the unweighting phase of the jump. Methods: This study assessed 53 recreational athletes (11 females, 42 males) between 6 and 9 months post-ACLr using a dual force plate system (1000 Hz). Each participant performed three maximal-effort SLCMJs per limb. Outcome measures included jump height, negative peak velocity, minimum force, and center of mass (COM) displacement. Paired t-tests and Wilcoxon tests were used to compare the ACLr limb with the contralateral limb. Results: Compared to the healthy limb, the ACLr limb showed significantly lower negative peak velocity (−0.80 ± 0.40 m/s vs. −0.94 ± 0.40 m/s, p < 0.001), higher minimum force (36.75 ± 17.88 kg vs. 32.05 ± 17.25 kg, p < 0.001), and reduced COM displacement (−17.62 ± 6.25 cm vs. −19.73 ± 5.34 cm, p = 0.014). Eccentric phase duration did not differ significantly. Conclusions: Athletes post-ACLr demonstrate altered neuromuscular control during the early SLCMJ phase. These findings highlight the importance of rehabilitation strategies targeting eccentric strength and symmetry restoration. Full article
(This article belongs to the Special Issue Movement Analysis in Sports and Physical Therapy)
Show Figures

Figure 1

13 pages, 286 KiB  
Article
Lack of Neuromuscular Fatigue in Singles Pickleball Tournament: A Preliminary Study
by Eric A. Martin, Steven B. Kim, George K. Beckham and James J. Annesi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 267; https://doi.org/10.3390/jfmk10030267 - 16 Jul 2025
Viewed by 249
Abstract
Objectives: The objective of this study was to examine the neuromuscular fatigue response to playing in a singles pickleball tournament, as measured by performance on a countermovement jump test (CMJ). We hypothesized that players would exhibit neuromuscular fatigue after the tournament. Methods: Six [...] Read more.
Objectives: The objective of this study was to examine the neuromuscular fatigue response to playing in a singles pickleball tournament, as measured by performance on a countermovement jump test (CMJ). We hypothesized that players would exhibit neuromuscular fatigue after the tournament. Methods: Six adult pickleball players (five male and one female, M ± SD: 40.2 ± 10.1 years old, height = 178.7 ± 12.3 cm, body mass = 85.4 ± 16.7 kg) participated in a 15 game singles pickleball tournament. Prior to the tournament, everyone completed the CMJ to assess lower body strength and power on paired Hawkin Dynamics force plates. After the tournament, players repeated the CMJ. Mixed-effects regression modeling was used to examine changes in key outcomes measured from the CMJ. Results: All nine outcomes from the CMJ significantly changed from pre to post-tournament (e.g., means for net impulse increased from 2.32 ± 0.22 to 2.40 ± 0.18 N·s, p = 0.0006; RSImod increased from 0.28 ± 0.07 to 0.33 ± 0.05, p = 0.0001, and propulsive peak power increased from 41.79 ± 6.14 to 44.34 ± 4.70 W/kg, p < 0.0001). All the changes demonstrated improved performance in the CMJ test. Seven out of the nine outcomes demonstrated a large effect size by the partial-eta square statistic, with η2-partial of 0.153–0.487, and three key outcomes (RSImod, propulsive peak power, and propulsive mean power) also demonstrated large effect sizes by the F2 statistic (F2 of 0.4603–0.9495). Conclusions: Contrary to our hypothesis, participants did not demonstrate significant neuromuscular fatigue. In contrast, they showed significant improvements in CMJ performance. It is possible that adequate rest between games prevented neuromuscular fatigue; alternately, singles pickleball may not provide enough stimulus in the lower body musculature to induce neuromuscular fatigue. Full article
(This article belongs to the Special Issue Racket Sport Dynamics)
18 pages, 3160 KiB  
Article
Acute Effects of Different Types of Compression Legwear on Biomechanics of Countermovement Jump: A Statistical Parametric Mapping Analysis
by Rui-Feng Huang, Kit-Lun Yick, Qiu-Qiong Shi, Lin Liu and Chu-Hao Li
J. Funct. Morphol. Kinesiol. 2025, 10(3), 257; https://doi.org/10.3390/jfmk10030257 - 7 Jul 2025
Viewed by 280
Abstract
Background: Compression garments (CG) may influence countermovement jump (CMJ) performance by altering hip and knee biomechanics, but existing evidence remains controversial. This study aimed to compare the effects of compression tights (CTs), compression shorts (CSs), and control shorts (CCs) on CMJ performance [...] Read more.
Background: Compression garments (CG) may influence countermovement jump (CMJ) performance by altering hip and knee biomechanics, but existing evidence remains controversial. This study aimed to compare the effects of compression tights (CTs), compression shorts (CSs), and control shorts (CCs) on CMJ performance and lower-limb biomechanics. Methods: Nine physically active men from a university were recruited to perform CMJ while wearing CTs, CSs, and CCs in a randomized sequence for a within-subjects repeated-measures design. A Vicon 3D motion capture system and an AMTI 3D force plate were used to collect biomechanical data. Visual3D software was used to calculate the joint angle, moment, and force of the lower limbs. Results: Statistical parametric mapping analysis with repeated measures analysis of variance (ANOVA) revealed that during the propulsion phase of the CMJ, wearing CSs significantly reduced the hip flexion angle compared to wearing CCs (25–36%); meanwhile, wearing CTs significantly reduced the knee extension and flexion moment (34–35%) and decreased the hip extension moment during the propulsion phase (36–37%). In addition, CTs significantly reduced the hip abduction angle during the flight phase (37–39%), and CSs significantly reduced the hip anterior force during the landing phase (59–60%). Conclusions: Compression legwear significantly affected the hip and knee biomechanics in propulsion, but these differences were not sufficient to improve the CMJ height. Due to the improvement in hip biomechanics in the flight and landing phases, there may be potential benefits for movement transitions and landing performance in CMJ. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

10 pages, 449 KiB  
Article
Accuracy of Lower Extremity Alignment Correction Using Patient-Specific Cutting Guides and Anatomically Contoured Plates
by Julia Matthias, S Robert Rozbruch, Austin T. Fragomen, Anil S. Ranawat and Taylor J. Reif
J. Pers. Med. 2025, 15(7), 289; https://doi.org/10.3390/jpm15070289 - 4 Jul 2025
Viewed by 345
Abstract
Background/Objectives: Limb malalignment disrupts physiological joint forces and predisposes individuals to the development of osteoarthritis. Surgical interventions such as distal femur or high tibial osteotomy aim to restore mechanical balance on weight-bearing joints, thereby reducing long-term morbidity. Accurate alignment is crucial since [...] Read more.
Background/Objectives: Limb malalignment disrupts physiological joint forces and predisposes individuals to the development of osteoarthritis. Surgical interventions such as distal femur or high tibial osteotomy aim to restore mechanical balance on weight-bearing joints, thereby reducing long-term morbidity. Accurate alignment is crucial since it cannot be adjusted after stabilization with plates and screws. Recent advances in personalized medicine offer the opportunity to tailor surgical corrections to each patient’s unique anatomy and biomechanical profile. This study evaluates the benefits of 3D planning and patient-specific cutting guides over traditional 2D planning with standard implants for alignment correction procedures. Methods: We assessed limb alignment parameters pre- and postoperatively in patients with varus and valgus lower limb malalignment undergoing acute realignment surgery. The cohort included 23 opening-wedge high tibial osteotomies and 28 opening-wedge distal femur osteotomies. We compared the accuracy of postoperative alignment parameters between patients undergoing traditional 2D preoperative X-ray planning and those using 3D reconstructions of CT data. Outcome measures included mechanical axis deviation and tibiofemoral angles. Results: 3D reconstructions of computerized tomography data and patient-specific cutting guides significantly reduced the variation in postoperative limb alignment parameters relative to preoperative goals. In contrast, traditional 2D planning with standard non-custom implants resulted in higher deviations from the targeted alignment. Conclusions: Utilizing 3D CT reconstructions and patient-specific cutting guides enhances the accuracy of postoperative limb realignment compared to traditional 2D X-ray planning with standard non-custom implants. Patient-specific instrumentation and personalized approaches represent a key step toward precision orthopedic surgery, tailoring correction strategies to individual patient anatomy and potentially improving long-term joint health. This improvement may reduce the morbidity associated with lower limb malalignment and delay the onset of osteoarthritis. Level of Evidence: Therapeutic Level III. Full article
(This article belongs to the Special Issue Orthopedic Diseases: Advances in Limb Reconstruction)
Show Figures

Figure 1

14 pages, 1611 KiB  
Article
Predicting Running Vertical Ground Reaction Forces Using Neural Network Models Based on an IMU Sensor
by Shangxiao Li, Jiahui Pan, Dongmei Wang, Shufang Yuan, Jin Yang and Weiya Hao
Sensors 2025, 25(13), 3870; https://doi.org/10.3390/s25133870 - 21 Jun 2025
Viewed by 654
Abstract
Vertical ground reaction force (vGRF) plays an important role in the study of running-related injuries (RRIs). This study explores the synchronization method between inertial measurement unit (IMU) and vGRF data of running and develops ANN models to accurately predict vGRF. Fifteen runners participated [...] Read more.
Vertical ground reaction force (vGRF) plays an important role in the study of running-related injuries (RRIs). This study explores the synchronization method between inertial measurement unit (IMU) and vGRF data of running and develops ANN models to accurately predict vGRF. Fifteen runners participated in this study. Acceleration data and vGRF values of eight rearfoot strikers and seven forefoot strikers running at 12, 14, and 16 km/h were collected by a single IMU and an instrumented treadmill. The sliding time window synchronization (STWS) algorithm was developed to sync IMU data with vGRF data. The wavelet neural network model (WNN) and feed-forward neural network model (FFNN) were adapted to predict vGRF using three-axis or sagittal-axis acceleration data in the stance phase, respectively. One rearfoot striker and one forefoot striker were randomly selected as a test set, while the other participants formed training sets. After synchronization, mean absolute errors for stride time of the IMU and vGRF data were less than 11.2 ms. The coefficient of multiple correlations for vGRF measured curves and predicted curves was more than 0.97. The normalized root mean square errors (NRMSEs) between two curves were 4.6~9.2%, and R2 was 0.93~0.99. For peak vGRF, the NRMSEs were 1.6~8.2%, except for rearfoot strike runners at 16 km/h using the FFNN model (10.7% and 11.1%). The Bland–Altman plots indicate that the errors for both the WNN and FFNN models are within acceptable limits. The STWS algorithm can effectively achieve the data synchronization between the IMU and the force plate during running. Both WNN and FFNN models demonstrated good accuracy and agreement in predicting vGRF. Using sagittal-axis acceleration data may be an ideal model with good prediction accuracy and less input data. This work provides direction for developing ANN models of personalized monitoring of lower limb load. Full article
Show Figures

Figure 1

11 pages, 2201 KiB  
Article
From Injury to Full Recovery: Monitoring Patient Progress Through Advanced Sensor and Motion Capture Technology
by Annchristin Andres, Michael Roland, Marcel Orth and Stefan Diebels
Sensors 2025, 25(13), 3853; https://doi.org/10.3390/s25133853 - 20 Jun 2025
Viewed by 381
Abstract
Background: Advanced sensor insoles and motion capture technology can significantly enhance the monitoring of rehabilitation progress for patients with distal tibial fractures. This study leverages the potential of these innovative tools to provide a more comprehensive assessment of a patient’s gait and weight-bearing [...] Read more.
Background: Advanced sensor insoles and motion capture technology can significantly enhance the monitoring of rehabilitation progress for patients with distal tibial fractures. This study leverages the potential of these innovative tools to provide a more comprehensive assessment of a patient’s gait and weight-bearing capacity following surgical intervention, thereby offering the possibility of improved patient outcomes. Methods: A patient who underwent distal medial tibial plating surgery in August 2023 and subsequently required revision surgery due to implant failure, involving plate removal and the insertion of an intramedullary nail in December 2023, was meticulously monitored over a 12-week period. Initial assessments in November 2023 revealed pain upon full weight-bearing without crutches. Following the revision, precise weekly measurements were taken, starting two days after surgery, which instilled confidence in accurately tracking the patient’s progress from initial crutch-assisted walking to full recovery. The monitoring tools included insoles, hand pads for force absorption of the crutches, and a motion capture system. The patient was accompanied throughout all steps of his daily life. Objectives: The study aimed to evaluate the hypothesis that the approximation and formation of a healthy gait curve are decisive tools for monitoring healing. Specifically, it investigated whether cadence, imbalance factors, and ground reaction forces could be significant indicators of healing status and potential disorders. Results: The gait parameters, cadence, factor of imbalance ground reaction forces, and the temporal progression of kinematic parameters significantly correlate with the patient’s recovery trajectory. These metrics enable the early identification of deviations from expected healing patterns, facilitating timely interventions and underscoring the transformative potential of these technologies in patient care. Conclusions: Integrating sensor insoles and motion capture technology offers a promising approach for monitoring the recovery process in patients with distal tibial fractures. This method provides valuable insights into the patient’s healing status, potentially predicting and addressing healing disorders more effectively. Future studies are recommended to validate these findings in a larger cohort and explore the potential integration of these technologies into clinical practice. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 2503 KiB  
Review
Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis
by Caden Williams, Katherine Sullivan, Changki Kim, Lee J. Winchester and Michael V. Fedewa
J. Funct. Morphol. Kinesiol. 2025, 10(2), 230; https://doi.org/10.3390/jfmk10020230 - 18 Jun 2025
Viewed by 845
Abstract
Background: Force plates are commonly used as a non-fatiguing measure of recovery. However, the recovery time course captured via the force plate assessment of vertical jumps has yet to be established. Therefore, the objective of this systematic review and meta-analysis was to examine [...] Read more.
Background: Force plates are commonly used as a non-fatiguing measure of recovery. However, the recovery time course captured via the force plate assessment of vertical jumps has yet to be established. Therefore, the objective of this systematic review and meta-analysis was to examine the change in vertical jump performance and the time course of recovery following an acute bout of strenuous exercise using force plates. Methods: Peer-reviewed articles (n = 22) published prior to 8 November 2023, were identified by searching three electronic databases (PubMed, Scopus, Web of Science). Studies included in this review met the following criteria: (1) available in English; (2) involved adult participants >18 years of age; (3) measured the change in vertical jump performance over consecutive days using a force plate system. Individual effect sizes (ESs) were calculated by dividing the change in vertical jump at each timepoint (24 h, 48 h, etc.) by the pooled standard deviation (SD), and they were aggregated using a three-level random-effects model. Results: Vertical jump performance decreased following an acute strenuous exercise bout (ES = −0.2639; p < 0.0001) and returned to baseline after 3 days of recovery, with larger decreases observed when assessed using Peak Height rather than Peak Power (ES = −0.4687 vs. ES = −0.1399; p = 0.0393). Older participants showed a larger decrease in vertical jump (β = −0.0489; p < 0.0001). Conclusions: Force plates can be used to evaluate recovery post-exercise, with a decline in performance on Days 1 and 2, and full recovery by Day 3. The findings from this study support the use of force plates for the evaluation of recovery. Full article
(This article belongs to the Special Issue Advances in Physiology of Training—2nd Edition)
Show Figures

Figure 1

38 pages, 3461 KiB  
Article
A Parallel Plate Variable Capacitor-Based Wind Pressure Sensor: Closed-Form Solution and Numerical Design and Calibration
by Xiao-Ting He, Jun-Song Ran, Jing-Miao Yin, Jun-Yi Sun and Ying Guo
Sensors 2025, 25(12), 3760; https://doi.org/10.3390/s25123760 - 16 Jun 2025
Viewed by 358
Abstract
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by [...] Read more.
In this paper, a parallel plate variable capacitor-based wind pressure sensor is proposed, which uses a wind-driven peripherally fixed circular membrane as its pressure-sensitive element and a spring-reset parallel plate variable capacitor as its sensing element. The circular membrane is first driven by the wind, and then it pushes the spring-reset movable electrode plate of the parallel plate variable capacitor to move, resulting in a change in the capacitance of the capacitor. The wind pressure, i.e., the direct action force per unit area exerted by the wind on the circular membrane, is thus detected by measuring the capacitance change of the capacitor. The elastic contact problem between the circular membrane and the spring-reset movable electrode plate is analytically solved, and its closed-form solution is presented, where the usually adopted small rotation angle assumption of the membrane is given up. The analytical relationship between the input pressure and output capacitance of the capacitive wind pressure sensor proposed here is derived. The validity of the closed-form solution is proved, and how to use the closed-form solution and input/output analytical relationship for the numerical design and calibration of the capacitive wind pressure sensor proposed here is illustrated. Finally, the qualitative and quantitative effects of changing design parameters on the capacitance–pressure analytical relationship of the wind pressure measurement system are investigated comprehensively. Full article
Show Figures

Figure 1

19 pages, 3072 KiB  
Article
Ground Clearance Effects on the Aerodynamic Loading of Tilted Flat Plates in Tandem
by Dimitrios Mathioulakis, Nikolaos Vasilikos, Panagiotis Kapiris and Christina Georgantopoulou
Fluids 2025, 10(6), 155; https://doi.org/10.3390/fluids10060155 - 12 Jun 2025
Viewed by 458
Abstract
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable [...] Read more.
The aerodynamic loading of four as well as of six tilted flat plates-panels arranged in tandem and in close proximity to the ground is examined through force and pressure measurements. In the four-plate set up, conducted in an open-circuit wind tunnel, a movable floor is used to vary the ground clearance, and a one-component force balance is employed to measure the drag coefficient Cd of each plate for tilt angles 10° to 90° and for two head-on wind directions, 0° and 180°. An increase in the ground clearance from 20% to 60% of the plates’ chord length, results in a Cd increase of over 40% in the downstream plates, and up to 20% in the leading one. For tilt angles below 40°, the drag on the first plate is up to 25% higher under the 180° wind direction compared to the opposite direction. Pressure distributions are also presented on a series of six much larger plates, examined in a closed-circuit wind tunnel at tilt angles ±30°. While the windward surfaces exhibit relatively uniform pressure distributions, regions of low pressure develop on their suction side, near the plates’ tips leading edge, tending to become uniform streamwise. Full article
Show Figures

Figure 1

18 pages, 1726 KiB  
Article
Experiences of People with Multiple Sclerosis in Sensor-Based Jump Assessment
by Anne Geßner, Anikó Vágó, Heidi Stölzer-Hutsch, Dirk Schriefer, Maximilian Hartmann, Katrin Trentzsch and Tjalf Ziemssen
Bioengineering 2025, 12(6), 610; https://doi.org/10.3390/bioengineering12060610 - 3 Jun 2025
Viewed by 522
Abstract
(1) Background: When implementing new biomechanical and technology-based assessments, such as the jump assessment in Multiple Sclerosis (MS), into clinical routine, it is important to ensure that they are based on the real needs of patients and to identify and adapt to potential [...] Read more.
(1) Background: When implementing new biomechanical and technology-based assessments, such as the jump assessment in Multiple Sclerosis (MS), into clinical routine, it is important to ensure that they are based on the real needs of patients and to identify and adapt to potential barriers early on. (2) Methods: In the present cross-sectional study, 157 pwMS performed a sensor-based jump assessment on a force plate consisting of three jump tests: 10 s jump test (10SHT), countermovement jumps (CMJ), and single-leg countermovement jumps (SLCMJ). After the jump assessment, the patient experience measures (PREM) were recorded using a paper-based questionnaire on an 11-point scale from 0 (positive) to 10 (negative). (3) Results: PwMS showed an overall positive experience with the sensor-based jump assessment. “Staff support performance”, “acceptance required time”, “usefulness” of the results, and “integration of results in therapy” were the best rated items with a median of 0 (positive). The CMJ was perceived as the easy (p < 0.05) and less exhausting (p < 0.05). PwMS who experienced CMJ as easy, not exhausting, and safe were associated with higher CMJ performance, especially in peak power, flight time, and jump height (r > −0.4). Significant associations were found between PREMs and age, sex, BMI, physical activity, and disability degree. (4) Conclusions: The study findings support the feasibility of jump assessment in clinical practice and highlight the need for patient-centered integration of innovative technologies to optimize precision neuromuscular function evaluation in MS. Full article
(This article belongs to the Special Issue Technological Advances for Gait and Balance Assessment)
Show Figures

Figure 1

18 pages, 4929 KiB  
Article
Design and Analysis of Smart Reconstruction Plate for Wireless Monitoring of Bone Regeneration and Fracture Healing in Maxillofacial Reconstruction Applications
by Shahrokh Hatefi, Farouk Smith, Kayla Auld and Stefan Van Aardt
Metrology 2025, 5(2), 32; https://doi.org/10.3390/metrology5020032 - 3 Jun 2025
Viewed by 2800
Abstract
In Maxillofacial Reconstruction Applications (MRA), nonunion is one of the critical complications after the reconstruction process and fracture treatment, including bone grafts and vascularized flap. Nonunion describes the failure of a fractured bone to heal and mend after an extended period. Different systems [...] Read more.
In Maxillofacial Reconstruction Applications (MRA), nonunion is one of the critical complications after the reconstruction process and fracture treatment, including bone grafts and vascularized flap. Nonunion describes the failure of a fractured bone to heal and mend after an extended period. Different systems and methods have been developed to monitor bone regeneration and fracture healing during and after the treatment. However, the developed systems have limitations and are yet to be used in MRA. The proposed smart reconstruction plate is a microdevice that could be used in MRA for wireless monitoring of fracture healing by measuring the forces applied to the reconstruction plate. The device is wireless and can transmit the acquired data to a human–machine interface or an application. The designed system is small and suitable for use in MRA. The results of finite element analysis, as well as experimental verification, showed the functionality of the proposed system in measuring small changes on the surface strain of the reconstruction plate and determining the corresponding load. By using the proposed system, continuous monitoring of bone regeneration and fracture healing in oral and maxillofacial areas is possible. Full article
Show Figures

Figure 1

16 pages, 1638 KiB  
Article
Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes
by James R. Jowsey, G. Gregory Haff, Paul Comfort and Nicholas Joel Ripley
Biomechanics 2025, 5(2), 35; https://doi.org/10.3390/biomechanics5020035 - 1 Jun 2025
Viewed by 788
Abstract
Background: CrossFit® aims to be equitable between both males and female athletes, supporting equal representation and equal prize money at international events. However, to date, limited information is known on CrossFit® athletes’ performance in the countermovement jump (CMJ), countermovement rebound jump [...] Read more.
Background: CrossFit® aims to be equitable between both males and female athletes, supporting equal representation and equal prize money at international events. However, to date, limited information is known on CrossFit® athletes’ performance in the countermovement jump (CMJ), countermovement rebound jump (CMR-J), and isometric mid-thigh pull (IMTP) when assessed using force plates, and if there are any differences between sexes. Therefore, the purpose of the present study was to observe whether any sex-based differences and relationships exist between performance within these assessments. Methods: A total of CrossFit athletes (43 male = 32.8 ± 9.0 years; height 1.78 ± 0.06 m; mass = 92.4 ± 10.6 kg; and 31 female = 31.0 ± 7.6 years, height = 1.64 ± 0.05 m; mass = 68.8 ± 6.0 kg) completed three trials of CMJ, CMR-J and IMTP using portable dual-system force-plate sampling at 1000 Hz. Results: Moderate–large relationships were observed between CMJ, CMR-J and IMTP outcome measures (r = 0.396–0.809, p < 0.001). Males demonstrated small to moderately greater performance outcomes than females for CMJ height (males = 0.35 ± 0.08 m; females 0.30 ± 0.06 m, d = 0.73), CMR-J height (males = 0.32 ± 0.08 m; females = 0.30 ± 0.06 m, d = 0.39) and IMTP peak net force (males = 30.62 ± 10.01 N·kg−1; females = 27.49 ± 6.44 N·kg−1, d = 0.29). Conclusions: Maximal relative strength in CrossFit® athletes should be seen as imperative in both male and female athletes due to the meaningful relationship in ballistic and plyometric ability. Moreover, previous relationships with CrossFit® performance and the injury risk reduction benefits of improving strength provide further support. The descriptive data presented could be used by CrossFit® coaches to assess and compare the current performance of their own athletes in a battery of tests examining CMJ, CMR-J and IMTP, while also facilitating decisions upon prescription within training and competition. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

Back to TopTop