Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Participants
2.3. Procedures
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMJ | Counter Movement Jump |
CMR-J | Counter Movement Rebound Jump |
IMTP | Isometric Mid-Thigh Pull |
RSI | Reactive Strength Index |
mRSI | Modified Reactive Strength index |
References
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit benchmark performance? J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Alejo, L.B.; Gil-Cabrera, J.; Montalvo-Pérez, A.; Talavera, E.; Lucia, A.; Moral-González, S.; Barranco-Gil, D. Physiological Predictors of Competition Performance in CrossFit Athletes. Int. J. Environ. Res. Public Health 2020, 17, 3699. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, R.; Valenzuela, P.L.; Barranco-Gil, D.; Moral-González, S.; García-González, A.; Lucia, A. Full-Squat as a Determinant of Performance in CrossFit. Int. J. Sports Med. 2019, 40, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Tibana, R.A.; de Sousa Neto, I.V.; Sousa, N.M.F.; Romeiro, C.; Hanai, A.; Brandão, H.; Dominski, F.H.; Voltarelli, F.A. Local Muscle Endurance and Strength Had Strong Relationship with CrossFit® Open 2020 in Amateur Athletes. Sports 2020, 9, 98. [Google Scholar] [CrossRef]
- Mangine, G.T.; Tankersley, J.E.; McDougle, J.M.; Velazquez, N.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Predictors of CrossFit Open Performance. Sports 2020, 8, 102. [Google Scholar] [CrossRef]
- Carreker, J.D.; Grosicki, G.J. Physiological Predictors of Performance on the CrossFit “Murph” Challenge. Sports 2020, 8, 92. [Google Scholar] [CrossRef]
- Mangine, G.T.; Grundlingh, N.; Feito, Y. Normative Scores for CrossFit® Open Workouts: 2011–2022. Sports 2023, 11, 24. [Google Scholar] [CrossRef]
- Glassman, G. CrossFit: Level 1 Training Guide; CrossFit, Inc.: Washington, DC, USA, 2020. [Google Scholar]
- Stone, M.; Moir, G.; Glaister, M.; Sanders, R. How much strength is necessary? Phys. Ther. Sport 2002, 3, 88–96. [Google Scholar] [CrossRef]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Comfort, P.; Haff, G.G.; Suchomel, T.; Soriano, M.A.; Pierce, K.; Hornsby, W.G.; Haff, E.E.; Sommerfield, L.M.; Chavda, S.; Morris, S.J.; et al. National Strength and Conditioning Association Position Statement on Weightlifting for Sports Performance. J. Strength Cond. Res. 2023, 37, 1163–1190. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Bullock, N.; Pearson, S.J. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J. Strength Cond. Res. 2012, 26, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Haigh, A.; Matthews, M.J. Are changes in maximal squat strength during preseason training reflected in changes in sprint performance in rugby league players? J. Strength Cond. Res. 2012, 26, 772–776. [Google Scholar] [CrossRef]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- McBride, J.M.; Blow, D.; Kirby, T.J.; Haines, T.L.; Dayne, A.M.; Triplett, N.T. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J. Strength Cond. Res. 2009, 23, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Cronin, J.B.; Gabbett, T.J.; McGuigan, M.R.; Etxebarria, N.; Newton, R.U. Relative importance of strength, power, and anthropometric measures to jump performance of elite volleyball players. J. Strength Cond. Res. 2008, 22, 758–765. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; McCoy, L.; Coglianese, R.; Lehmkuhl, M.; Schilling, B. Power and maximum strength relationships during performance of dynamic and static weighted jumps. J. Strength Cond. Res. 2003, 17, 140–147. [Google Scholar] [PubMed]
- Thomas, C.; Jones, P.A.; Rothwell, J.; Chiang, C.Y.; Comfort, P. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance. J. Strength Cond. Res. 2015, 29, 2176–2185. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Mechanical Determinants of Faster Change of Direction Speed Performance in Male Athletes. J. Strength Cond. Res. 2017, 31, 696–705. [Google Scholar] [CrossRef]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Relationship between strength, power, speed, and change of direction performance of female softball players. J. Strength Cond. Res. 2010, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Thomas, C.; Comfort, P.; Chiang, C.Y.; Jones, P.A. Relationship between isometric mid-thigh pull variables and sprint and change of direction performance in collegiate athletes. J. Trainol. 2015, 4, 6–10. [Google Scholar] [CrossRef]
- D’Hulst, G.; Hodžić, D.; Leuenberger, R.; Arnet, J.; Westerhuis, E.; Roth, R.; Schmidt-Trucksäss, A.; Knaier, R.; Wagner, J. Physiological Profiles of Male and Female CrossFit® Athletes. Int. J. Sports Physiol. Perform. 2024, 19, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Comparison of upper-body strength and power between professional and college-aged rugby league players. J. Strength Cond. Res. 2001, 15, 30–35. [Google Scholar]
- Gabbett, T.J. Physiological characteristics of junior and senior rugby league players. Br. J. Sports Med. 2002, 36, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J.; Jenkins, D.G.; Abernethy, B. Correlates of tackling ability in high-performance rugby league players. J. Strength Cond. Res. 2011, 25, 72–79. [Google Scholar] [CrossRef]
- McLellan, C.; Lovell, D. Performance Analysis of Professional, Semiprofessional, and Junior Elite Rugby League Match-Play Using Global Positioning Systems. J. Strength Cond. Res. 2013, 27, 3266–3274. [Google Scholar] [CrossRef]
- Peña, J.; Moreno-Doutres, D.; Peña, I.; Chulvi-Medrano, I.; Ortegón, A.; Aguilera-Castells, J.; Bernat, B. Predicting the Unknown and the Unknowable. Are Anthropometric Measures and Fitness Profile Associated with the Outcome of a Simulated CrossFit® Competition? Sports 2021, 18, 3692. [Google Scholar] [CrossRef]
- Schlegel, P.; Režný, L.; Fialová, D. Pilot study: Performance-ranking relationship analysis in Czech crossfiters. J. Hum. Sport Exerc. 2020, 16, 187–198. [Google Scholar] [CrossRef]
- Conde, T.F.; De Souza Silva, M.R.; Caobianco, J.; Robalino, J.; Ferreira, J.C. Sensitivity of operational tests to training load in Crossfit®. J. Phys. Educ. Sport. 2022, 22, 1493–1498. [Google Scholar] [CrossRef]
- Mangine, G.T.; Stratton, M.T.; Almeda, C.G.; Roberts, M.D.; Esmat, T.A.; VanDusseldorp, T.A.; Feito, Y. Physiological differences between advanced CrossFit athletes, recreational CrossFit participants, and physically-active adults. PLoS ONE 2020, 15, e0223548. [Google Scholar] [CrossRef] [PubMed]
- Párraga-Montilla, J.A.; Cabrera Linares, J.C.; Jiménez Reyes, P.; Moyano López, M.; Serrano Huete, V.; Morcillo Losa, J.A.; Latorre, P.Á. Force–velocity profiles in CrossFit athletes: A cross-sectional study considering sex, age, and training frequency. Balt. J. Health Phys. Act. 2023, 15, 5. [Google Scholar] [CrossRef]
- Comfort, P.; Thomas, C.; Dos’Santos, T.; Suchomel, T.J.; Jones, P.A.; McMahon, J.J. Changes in Dynamic Strength Index in Response to Strength Training. Sports 2018, 6, 176. [Google Scholar] [CrossRef]
- Owen, N.; Watkins, J.; Kilduff, L.; Bevan, H.; Bennett, M. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef]
- McMahon, J.J.; Ripley, N.J.; Comfort, P. Force Plate-Derived Countermovement Jump Normative Data and Benchmarks for Professional Rugby League Players. Sensors 2022, 22, 8669. [Google Scholar] [CrossRef]
- McMahon, J.J.; Comfort, P.; Pearson, S. Lower limb stiffness: Effect on performance and training considerations. Strength Cond. J. 2012, 34, 94–101. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Stratford, C.; Comfort, P. A Proposed Method for Evaluating Drop Jump Performance with One Force Platform. Biomechanics 2021, 1, 178–189. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comyns, T.M.; Chavda, S.; Bishop, C. The Countermovement Rebound Jump: Between-Session Reliability and a Comparison with the Countermovement and Drop Jump Tests. J. Strength Cond. Res. 2024, 38, e150–e159. [Google Scholar] [CrossRef]
- Xu, J.; Turner, A.; Comyns, T.M.; Harry, J.R.; Chavda, S.; Bishop, C. Countermovement Rebound Jump: A Comparison of Joint Work and Joint Contribution to the Countermovement and Drop Jump Tests. Appl. Sci. 2023, 13, 10680. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon, J.J.; Lake, J.; Ripley, N.J.; Triplett, N.T.; Haff, G.G. Relative strength explains the differences in multi-joint rapid force production between sexes. PLoS ONE 2024, 19, e0296877. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.M.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sixto, A.; McMahon, J.J.; Floría, P. Verbal instructions affect reactive strength index modified and time-series waveforms in basketball players. Sports Biomech. 2024, 23, 211–221. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Suchomel, T. Vertical jump testing. In Performance Assessment in Strength and Conditioning; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge: Oxon, UK, 2019; Volume 1, pp. 96–116. [Google Scholar]
- Xu, J.; Turner, A.; Jordan, M.J.; Comyns, T.M.; Chavda, S.; Bishop, C. A Narrative Review of Rebound Jumping and Fast Stretch-Shortening Cycle Mechanic. Strength Cond. J. 2024. [Google Scholar] [CrossRef]
- Harry, J.R.; Blinch, J.; Barker, L.A.; Krzykowski, J.; Chowning, L. Low-Pass Filter Effects on Metrics of Countermovement Vertical Jump Performance. J. Strength Cond. Res. 2022, 36, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The Validity of Hawkin Dynamics Wireless Dual Force Plates for Measuring Countermovement Jump and Drop Jump Variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.; Guppy, S.; Haff, G. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
- Ripley, N.; Fahey, J.T.; Cuthbert, M.; McMahon, J.; Comfort, P. Rapid force generation during unilateral isometric hamstring assessment: Reliability and relationship to maximal force. Sports Biomech. 2023, 1–12. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 163–166. [Google Scholar] [CrossRef]
- Hopkins, W. A New View of Statistics: A Scale of Magnitudes for Effect Statistics. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 28 June 2023).
- Robertson, S.; Bartlett, J.D.; Gastin, P.B. Red, Amber, or Green? Athlete Monitoring in Team Sport: The Need for Decision-Support Systems. Int. J. Sports Physiol. Perform. 2017, 12, S273–S279. [Google Scholar] [CrossRef]
- Sauvé, B.; Haugan, M.; Paulsen, G. Physical and Physiological Characteristics of Elite CrossFit Athletes. Sports 2024, 12, 162. [Google Scholar] [CrossRef]
- Moir, G. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- McMahon, J.; Jones, P.; Comfort, P. A Correction Equation for Jump Height Measured Using the Just Jump System. Int. J. Sports Physiol. Perform. 2016, 11, 555–557. [Google Scholar] [CrossRef]
- García-Fernández, P.; Cimadevilla, E.; Guodemar-Pérez, J.; Cañuelo-Márquez, A.M.; Heredia-Elvar, J.R.; Fernández-Rodríguez, T.; Lozano-Estevan, M.D.C.; Hervás-Pérez, J.P.; Sánchez-Calabuig, M.A.; Garnacho-Castaño, M.V.; et al. Muscle Recovery after a Single Bout of Functional Fitness Training. Int. J. Environ. Res. Public Health 2021, 18, 6634. [Google Scholar] [CrossRef]
- Talpey, S.; Drake, M.; Haintz, L.; Belanger, A.; O’Grady, M.W.; Young, W.B.; Mundy, P.D.; Lachlan, J.; Gabbett, T.J.; Gardner, E.C. The Reliability and Validity of the Rebound Countermovement Jump in National Collegiate Athletic Association Division I American Football Players. J. Strength Cond. Res. 2024, 39, 200–209. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports Exerc. 1978, 10, 261–265. [Google Scholar]
- Wilson, G.J.; Elliott, B.C.; Wood, G.A. The effect on performance of imposing a delay during a stretch-shorten cycle movement. Med. Sci. Sports Exerc. 1991, 23, 364–370. [Google Scholar] [CrossRef]
- Dexheimer, J.D.; Schroeder, E.T.; Sawyer, B.J.; Pettitt, R.W.; Aguinaldo, A.L.; Torrence, W.A. Physiological Performance Measures as Indicators of CrossFit® Performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef]
- Turner, A.; Jones, B.; Stewart, P.; Bishop, C.; Parmar, N.; Chavda, S.; Read, P. Total score of athleticism: Holistic athlete profiling to enhance decision-making. Strength Cond. J. 2019, 41, 91–101. [Google Scholar] [CrossRef]
Countermovement Jump | ||||||
---|---|---|---|---|---|---|
Performance Variable | CV% (95% CI) | ICC (95% CI) | Group Mean (SD) | |||
Male | Female | Male | Female | Male | Female | |
CMJ Height (m) | 2.91 (1.72–4.10) | 2.21 (1.31–3.12) | 0.962 (0.943–0.976) | 0.946 (0.913–0.968) | 0.35 (0.08) | 0.30 (0.06) |
CMJ Momentum (kg·m·s−1) | 1.99 (1.59–2.40) | 1.14 (0.68–1.61) | 0.950 (0.924–0.968) | 0.956 (0.922–0.976) | 237.07 (35.85) | 164.77 (19.13) |
CMJ Depth (m) | 4.32 (2.56–6.09) | 6.81 (4.03–9.59) | 0.877 (0.819–0.92) | 0.791 (0.686–0.871) | 0.21 (0.06) | 0.19 (0.05) |
Time to take-off (s) | 5.53 (3.90–7.15) | 4.21 (3.31–6.11) | 0.559 (0.415–0.690) | 0.78 (0.670–0.864) | 0.59 (0.10) | 0.55 (0.11) |
mRSI | 3.32 (2.38–4.27) | 3.48 (2.28–4.68) | 0.780 (0.855–0.687) | 0.845 (0.761–0.906) | 0.59 (0.13) | 0.55 (0.13) |
Relative average propulsive force (N·kg−1) | 4.04 (2.02–6.06) | 3.25 (1.74–5.76) | 0.873 (0.813–0.918) | 0.837 (0.751–0.901) | 244.46 (21.36) | 238.28 (25.43) |
Relative peak propulsive power (W·kg−1) | 4.74 (3.44–6.75) | 6.37 (4.22–8.52) | 0.862 (0.842–0.876) | 0.847 (0.815–0.869) | 57.47 (8.23) | 51.83 (7.52) |
Countermovement Rebound Jump | ||||||
---|---|---|---|---|---|---|
Performance Variable | CV% (95% CI) | ICC (95% CI) | Group Mean (SD) | |||
Male | Female | Male | Female | Male | Female | |
CMJ Height (m) | 3.08 (3.23–4.92) | 3.62 (2.37–4.87) | 0.948 (0.922–0.967) | 0.844 (0.759–0.906) | 0.33 (0.08) | 0.29 (0.06) |
RJ Height (m) | 5.93 (0.55–1.31) | 4.46 (3.86–5.05) | 0.894 (0.844–0.932) | 0.963 (0.940–0.979) | 0.32 (0.08) | 0.30 (0.06) |
RJ Ground contact Time (ms) | 3.19 (1.89–4.50) | 4.28 (1.35–3.22) | 0.736 (0.630–0.823) | 0.620 (0.461–0.755) | 261.03 (75.14) | 247.56 (63.23) |
Rebound RSI | 6.91 (5.72–9.09) | 5.80 (4.06–6.53) | 0.752 (0.650–0.835) | 0.775 (0.661–0.862) | 2.05 (0.53) | 2.03 (0.47) |
Isometric Mid-Thigh Pull | ||||||
---|---|---|---|---|---|---|
Performance Variable | CV% (95% CI) | ICC (95% CI) | Group Mean (SD) | |||
Male | Female | Male | Female | Male | Female | |
Gross Peak Force (N) | 3.69 (1.41–4.97) | 3.50 (1.30–5.71) | 0.977 (0.964–0.985) | 0.950 (0.920–0.971) | 3695.80 (787.46) | 2548.99 (425.12) |
Net Peak Force (N) | 3.05 (1.62–4.47) | 3.68 (1.40–5.96) | 0.832 (0.757–0.890) | 0.904 (0.849–0.943) | 2785.42 (802.05) | 1875.50 (418.57) |
Relative Gross Peak Force (N·kg−1) | 2.49 (1.88–3.09) | 2.95 (1.15–3.74) | 0.729 (0.620–0.818) | 0.781 (0.672–0.864) | 40.43 (10.01) | 37.30 (6.44) |
Relative Net Peak Force (N·kg−1) | 3.01 (1.78–4.25) | 3.38 (2.82–4.94) | 0.940 (0.909–0.962) | 0.780 (0.672–0.864) | 30.62 (10.01) | 27.49 (6.44) |
Net Peak Force at 250 ms (N) | 5.38 (3.41–7.85) | 4.44 (3.04–5.85) | 0.680 (0.559–0.783) | 0.701 (0.566–0.811) | 1499.46 (35.63) | 1250.91 (179.81) |
Relative Net Peak Force 250 ms (N·kg−1) | 4.91 (3.54–6.28) | 4.97 (3.76–7.18) | 0.717 (0.605–0.809) | 0.674 (0.531–0.792) | 15.76 (5.85) | 18.33 (6.20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jowsey, J.R.; Haff, G.G.; Comfort, P.; Ripley, N.J. Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes. Biomechanics 2025, 5, 35. https://doi.org/10.3390/biomechanics5020035
Jowsey JR, Haff GG, Comfort P, Ripley NJ. Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes. Biomechanics. 2025; 5(2):35. https://doi.org/10.3390/biomechanics5020035
Chicago/Turabian StyleJowsey, James R., G. Gregory Haff, Paul Comfort, and Nicholas Joel Ripley. 2025. "Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes" Biomechanics 5, no. 2: 35. https://doi.org/10.3390/biomechanics5020035
APA StyleJowsey, J. R., Haff, G. G., Comfort, P., & Ripley, N. J. (2025). Performance in Multi-Joint Force-Plate Assessments in Male and Female CrossFit® Athletes. Biomechanics, 5(2), 35. https://doi.org/10.3390/biomechanics5020035