Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Selection and Quality Assessment
2.2. Data Extraction Strategy
2.3. Statistical Analysis
3. Results
3.1. Exploratory Moderator and Subgroup Analysis
3.2. Assessment of Bias and Sensitivity Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doeven, S.H.; Brink, M.S.; Kosse, S.J.; Lemmink, K. Postmatch recovery of physical performance and biochemical markers in team ball sports: A systematic review. BMJ Open Sport Exerc. Med. 2018, 4, e000264. [Google Scholar] [CrossRef] [PubMed]
- Soligard, T.; Schwellnus, M.; Alonso, J.M.; Bahr, R.; Clarsen, B.; Dijkstra, H.P.; Gabbett, T.; Gleeson, M.; Hägglund, M.; Hutchinson, M.R.; et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 2016, 50, 1030–1041. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef]
- Smith, L.L. Tissue trauma: The underlying cause of overtraining syndrome? J. Strength Cond. Res. 2004, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Slivka, D. Effects of 21 days of intensified training on markers of overtraining. Med. Sci. Sports Exerc. 2010, 24, 2604–2612. [Google Scholar] [CrossRef]
- Tolusso, D.V.; Dobbs, W.C.; MacDonald, H.V.; Winchester, L.J.; Laurent, C.M.; Fedewa, M.V.; Esco, M.R. The validity of perceived recovery status as a marker of daily recovery following a high-volume back-squat protocol. Int. J. Sports Physiol. Perform. 2022, 17, 886–892. [Google Scholar] [CrossRef]
- Alba-Jiménez, C.; Moreno-Doutres, D.; Peña, J. Trends assessing neuromuscular fatigue in team sports: A narrative review. Sports 2022, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.; Chapman, D.; Cronin, J.; Newton, M.J.; Gill, N. Fatigue monitoring in high performance sport: A survey of current trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Welsh, T.; Alemany, J.; Montain, S.; Frykman, P.; Tuckow, A.; Young, A.; Nindl, B.C. Effects of intensified military field training on jumping performance. Int. J. Sports Med. 2008, 29, 45–52. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Pleša, J. Discrepancy among different methods for vertical jump height determination and its implications for field-based testing: A narrative review. Meas. Phys. Educ. Exerc. Sci. 2023, 27, 248–256. [Google Scholar] [CrossRef]
- Rago, V.; Brito, J.; Figueiredo, P.; Carvalho, T.; Fernandes, T.; Fonseca, P.; Rebelo, A. Countermovement jump analysis using different portable devices: Implications for field testing. Sports 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhotal, J.; Haff, G.G.; Joyce, C. Monitoring and managing fatigue in basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Strang, A.; Eckerle, J.; Mackowski, N.; Hierholzer, K.; Ray, N.T.; Smith, R.; Hagen, J.A.; Briggs, R.A. Countermovement jump force-time curve analyses: Reliability and comparability across force plate systems. J. Strength Cond. Res. 2024, 38, 30–37. [Google Scholar] [CrossRef]
- Bishop, C.; Jordan, M.; Torres-Ronda, L.; Loturco, I.; Harry, J.; Virgile, A.; Mundy, P.; Turner, A.; Comfort, P. Selecting metrics that matter: Comparing the use of the countermovement jump for performance profiling, neuromuscular fatigue monitoring, and injury rehabilitation testing. Strength Cond. J. 2023, 45, 545–553. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Jordan, M.; Harry, J.; Loturco, I.; Lake, J.; Comfort, P. A framework to guide practitioners for selecting metrics during the countermovement and drop jump tests. Strength Cond. J. 2022, 44, 95–103. [Google Scholar] [CrossRef]
- Pernigoni, M.; Ferioli, D.; Calleja-González, J.; Sansone, P.; Tessitore, A.; Scanlan, A.T.; Conte, D. Match-related fatigue in basketball: A systematic review. J. Sports Sci. 2024, 42, 1727–1758. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Lemeshow, A.R.; Blum, R.E.; Berlin, J.A.; Stoto, M.A.; Colditz, G.A. Searching one or two databases was insufficient for meta-analysis of observational studies. J. Clin. Epidemiol. 2005, 58, 867–873. [Google Scholar] [CrossRef]
- Boguszewski, D.; Szkoda, S.; Adamczyk, J.G.; Białoszewski, D. Sports mass age therapy on the reduction of delayed onset muscle soreness of the quadriceps femoris. Hum. Mov. 2014, 15, 234–237. [Google Scholar] [CrossRef]
- Naclerio, F.; Seijo, M.; Earnest, C.P.; Puente-Fernández, J.; Larumbe-Zabala, E. Ingesting a post-workout vegan-protein multi-ingredient expedites recovery after resistance training in trained young males. J. Diet. Suppl. 2021, 18, 698–713. [Google Scholar] [CrossRef]
- Cockburn, E.; Bell, P.G.; Stevenson, E. Effect of milk on team sport performance after exercise-induced muscle damage. Med. Sci. Sports Exerc. 2013, 45, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Ronglan, L.T.; Raastad, T.; Borgesen, A. Neuromuscular fatigue and recovery in elite female handball players. Scand. J. Med. Sci. Sports 2006, 16, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; Howatson, G.; van Someren, K.; Gaze, D.; Legg, H.; Lineham, J.; Pedlar, C. The effects of compression-garment pressure on recovery after strenuous exercise. Int. J. Sports Physiol. Perform. 2017, 12, 1078–1084. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Hopkins, W.G.; Dorman, J.C.; Cook, K.; Minahan, C.L. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J. Sports Sci. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- National Heart Lung and Blood Institute. Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. Study Quality Assessment Tools. 2021. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 28 August 2024).
- Aben, H.G.J.; Hills, S.P.; Higgins, D.; Cooke, C.B.; Davis, D.; Jones, B.; Russell, M. The reliability of neuromuscular and perceptual measures used to profile recovery, and the time-course of such responses following academy rugby league match-play. Sports 2020, 8, 73. [Google Scholar] [CrossRef]
- Kotikangas, J.; Walker, S.; Toivonen, S.; Peltonen, H.; Haekkinen, K. Acute neuromuscular and hormonal responses to power, strength, and hypertrophic protocols and training background. Front. Sports Act. Living 2022, 4, 919228. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Hatfield, D.L.; Spiering, B.A.; Vingren, J.L.; Fragala, M.S.; Ho, J.Y.; Volek, J.S.; Anderson, J.M.; Maresh, C.M. Effects of a multi-nutrient supplement on exercise performance and hormonal responses to resistance exercise. Eur. J. Appl. Physiol. 2007, 101, 637–646. [Google Scholar] [CrossRef]
- Schumann, M.; Eklund, D.; Taipale, R.S.; Nyman, K.; Kraemer, W.J.; Häkkinen, A.; Izquierdo, M.; Häkkinen, K. Acute neuromuscular and endocrine responses and recovery to single-session combined endurance and strength loadings: “order effect” in untrained young men. J. Strength Cond. Res. 2013, 27, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Skurvydas, A.; Jascaninas, J.; Zachovajevas, P. Changes in height of jump, maximal voluntary contraction force and low-frequency fatigue after 100 intermittent or continuous jumps with maximal intensity. Acta Physiol. Scand. 2000, 169, 55–62. [Google Scholar] [CrossRef]
- Skurvydas, A.; Sipaviciene, S.; Krutulyte, G.; Gailiuniene, A.; Stasiulis, A.; Mamkus, G.; Stanislovaitis, A. Cooling leg muscles affects dynamics of indirect indicators of skeletal muscle damage. J. Back Musculoskelet. Rehabil. 2006, 19, 141–151. [Google Scholar] [CrossRef]
- Taipale, R.S.; Kyröläinen, H.; Gagnon, S.S.; Nindl, B.; Ahtiainen, J.; Häkkinen, K. Active and passive recovery influence responses of luteinizing hormone and testosterone to a fatiguing strength loading. Eur. J. Appl. Physiol. 2018, 118, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Taipale, R.S.; Schumann, M.; Mikkola, J.; Nyman, K.; Kyröläinen, H.; Nummela, A.; Häkkinen, K. Acute neuromuscular and metabolic responses to combined strength and endurance loadings: The “order effect” in recreationally endurance trained runners. J. Sports Sci. 2014, 32, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Gheibi, S.; Mahmoodzadeh, A.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Data extraction from graphs using adobe photoshop: Applications for meta-analyses. Int. J. Endocrinol. Metab. 2019, 17, e95216. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Lipsey, M.W.; Wilson, D. Practical Meta-Analysis; Sage: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 2016, 112, 155–159. [Google Scholar] [CrossRef]
- Assink, M.; Wibbelink, C.J. Fitting three-level meta-analytic models in R: A step-by-step tutorial. Quant. Methods Psychol. 2016, 12, 154–174. [Google Scholar] [CrossRef]
- Cheung, M.W.; Chan, W. A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Struct. Equ. Model. 2009, 16, 28–53. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Falk, B.; Dotan, R. Child-adult differences in the recovery from high-intensity exercise. Exerc. Sport Sci. Rev. 2006, 34, 107–112. [Google Scholar] [CrossRef]
- Ratel, S.; Duché, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006, 36, 1031–1065. [Google Scholar] [CrossRef]
- Triscott, S.; Gordon, J.; Kuppuswamy, A.; King, N.; Davey, N.; Ellaway, P. Differential effects of endurance and resistance training on central fatigue. J. Sports Sci. 2008, 26, 941–951. [Google Scholar] [CrossRef]
- Hausswirth, C.; Le Meur, Y. Physiological and nutritional aspects of post-exercise recovery: Specific recommendations for female athletes. Sports Med. 2011, 41, 861–882. [Google Scholar] [CrossRef]
- Goulart, K.N.O.; Coimbra, C.C.; Campos, H.O.; Drummond, L.R.; Ogando, P.H.M.; Brown, G.; Couto, B.P.; Duffield, R.; Wanner, S.P. Fatigue and recovery time course after female soccer matches: A systematic review and meta-analysis. Sports Med. Open 2022, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Rosenthal, R. Illustrations of meta-analytic procedures. In Meta-Analytic Procedures for Social Research; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Rosenberg, M.S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Linder, S.K.; Kamath, G.R.; Pratt, G.F.; Saraykar, S.S.; Volk, R.J. Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments. J. Clin. Epidemiol. 2015, 68, 412–417. [Google Scholar] [CrossRef]
- Papaioannou, D.; Sutton, A.; Carroll, C.; Booth, A.; Wong, R. Literature searching for social science systematic reviews: Consideration of a range of search techniques. Health Inf. Libr. J. 2010, 27, 114–122. [Google Scholar] [CrossRef]
- Boullosa, D.; Dragutinovic, B.; Deutsch, J.P.; Held, S.; Donath, L.; Bloch, W.; Schumann, M. Acute and delayed effects of time-matched very short “all out” efforts in concentric vs. eccentric cycling. Int. J. Environ. Res. Public Health 2021, 18, 7968. [Google Scholar] [CrossRef]
- Cochrane, D.J.; Booker, H.R.; Mundel, T.; Barnes, M.J. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise? Int. J. Sports Med. 2013, 34, 969–974. [Google Scholar] [CrossRef]
- Collins, R.; McGrath, D.; Horner, K.; Eusebi, S.; Ditroilo, M. Effect of external counterpulsation on exercise recovery in team sport athletes. Int. J. Sports Med. 2019, 40, 511–518. [Google Scholar] [CrossRef]
- Dourado, M.A.A.; Vieira, D.C.L.; Boullosa, D.; Bottaro, M. Different time course recovery of muscle edema within the quadriceps femoris and functional performance after single- vs multi-joint exercises. Biol. Sport 2023, 40, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Fonda, B.; Sarabon, N. Effects of intermittent lower-body negative pressure on recovery after exercise-induced muscle damage. Int. J. Sports Physiol. Perform. 2015, 10, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Hotfiel, T.; Höger, S.; Nagel, A.M.; Uder, M.; Kemmler, W.; Forst, R.; Engelhardt, M.; Grim, C.; Heiss, R. Multi-parametric analysis of below-knee compression garments on delayed-onset muscle soreness. Int. J. Environ. Res. Public Health 2021, 18, 3798. [Google Scholar] [CrossRef]
- Kirby, T.J.; Triplett, N.T.; Haines, T.L.; Skinner, J.W.; Fairbrother, K.R.; McBride, J.M. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids 2012, 42, 1987–1996. [Google Scholar] [CrossRef]
- Levitt, D.E.; Idemudia, N.O.; Cregar, C.M.; Duplanty, A.A.; Hill, D.W.; Vingren, J.L. Alcohol after resistance exercise does not affect muscle power recovery. J. Strength Cond. Res. 2020, 34, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Li, F.P.; Song, Y.; Cen, X.Z.; Sun, D.; Lu, Z.H.; Biro, I.; Gu, Y.D. Comparative efficacy of vibration foam rolling and cold water immersion in amateur basketball players after a simulated load of basketball game. Healthcare 2023, 11, 2178. [Google Scholar] [CrossRef]
- Prowting, J.L.; Bemben, D.; Black, C.D.; Day, E.A.; Campbell, J.A. Effects of collagen peptides on recovery following eccentric exercise in resistance-trained males-a pilot study. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 32–39. [Google Scholar] [CrossRef]
- Russell, M.; Sparkes, W.; Northeast, J.; Kilduff, L.P. Responses to a 120 min reserve team soccer match: A case study focusing on the demands of extra time. J. Sports Sci. 2015, 33, 2133–2139. [Google Scholar] [CrossRef]
- West, D.J.; Cook, C.J.; Stokes, K.A.; Atkinson, P.; Drawer, S.; Bracken, R.M.; Kilduff, L.P. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J. Sci. Med. Sport 2014, 17, 688–692. [Google Scholar] [CrossRef]
- White, G.E.; Rhind, S.G.; Wells, G.D. The effect of various cold-water immersion protocols on exercise-induced inflammatory response and functional recovery from high-intensity sprint exercise. Eur. J. Appl. Physiol. 2014, 114, 2353–2367. [Google Scholar] [CrossRef]
- Yoshida, N.; Hornsby, W.G.; Sole, C.J.; Sato, K.; Stone, M.H. Effect of neuromuscular fatigue on the countermovement jump characteristics: Basketball-related high-intensity exercises. J. Strength Cond. Res. 2024, 38, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Fell, J.; Williams, A.D. The effect of aging on skeletal-muscle recovery from exercise: Possible implications for aging athletes. J. Aging Phys. Act. 2008, 16, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Hotfiel, T.; Freiwald, J.; Hoppe, M.W.; Lutter, C.; Forst, R.; Grim, C.; Bloch, W.; Hüttel, M.; Heiss, R. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sport. Sportschaden 2018, 32, 243–250. [Google Scholar] [CrossRef]
- Cheung, K.; Hume, P.A.; Maxwell, L. Delayed onset muscle soreness. Sports Med. 2003, 33, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.B. Mechanisms of exercise-induced delayed onset muscular soreness: A brief review. Med. Sci. Sports Exerc. 1984, 16, 529–538. [Google Scholar] [CrossRef]
- Callegari, G.A.; Novaes, J.S.; Neto, G.R.; Dias, I.; Garrido, N.D.; Dani, C. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. J. Hum. Kinet. 2017, 58, 65–72. [Google Scholar] [CrossRef]
- Smith, L.L. Causes of delayed onset muscle soreness and the impact on athletic performance: A review. J. Strength Cond. Res. 1992, 6, 135–141. [Google Scholar]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Tejero-González, C.M.; del Campo-Vecino, J.; Bavaresco, N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J. Strength Cond. Res. 2014, 28, 528–533. [Google Scholar] [CrossRef]
- Tesch, P.A.; Karlsson, J. Muscle fiber types and size in trained and untrained muscles of elite athletes. J. Appl. Physiol. 1985, 59, 1716–1720. [Google Scholar] [CrossRef]
- Oliveira, A.N.; Hood, D.A. Exercise is mitochondrial medicine for muscle. Sports Med. Health Sci. 2019, 1, 11–18. [Google Scholar] [CrossRef]
- Laughlin, M.H.; Roseguini, B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: Differences with interval sprint training versus aerobic endurance training. J. Physiol. Pharmacol. 2008, 59 (Suppl. S7), 71–88. [Google Scholar]
- Xu, J.; Turner, A.; Comfort, P.; Harry, J.R.; McMahon, J.J.; Chavda, S.; Bishop, C. A systematic review of the different calculation methods for measuring jump height during the countermovement and drop jump tests. Sports Med. 2023, 53, 1055–1072. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, T.; Yamaguchi, S.; Inami, T. Flight-time method modified: Development of a novel and more accurate method for measuring vertical jump height using a smartphone application. Int. J. Sports Physiol. Perform. 2025, 20, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.W.; Carson, B.P.; Jakeman, P.M. Sex differences in the temporal recovery of neuromuscular function following resistance training in resistance trained men and women 18 to 35 Years. Front. Physiol. 2018, 9, 1480. [Google Scholar] [CrossRef]
- Wüst, R.C.; Morse, C.I.; de Haan, A.; Jones, D.A.; Degens, H. Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp. Physiol. 2008, 93, 843–850. [Google Scholar] [CrossRef]
- Ansdell, P.; Thomas, K.; Howatson, G.; Hunter, S.; Goodall, S. Contraction intensity and sex differences in knee-extensor fatigability. J. Electromyogr. Kinesiol. 2017, 37, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef]
- Klerings, I.; Robalino, S.; Booth, A.; Escobar-Liquitay, C.M.; Sommer, I.; Gartlehner, G.; Devane, D.; Waffenschmidt, S. Rapid reviews methods series: Guidance on literature search. BMJ Evid. Based Med. 2023, 28, 412–417. [Google Scholar] [CrossRef]
- Borah, R.; Brown, A.W.; Capers, P.L.; Kaiser, K.A. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open 2017, 7, e012545. [Google Scholar] [CrossRef]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
Effector Moderator | Levels |
---|---|
Age | Continuous variable, the mean age of the participants reported in years |
Athlete Type | Categorical variable, coded as follows: |
Athlete: data from competitive sport athletes including those involved in rugby, basketball, track and field, or soccer or other highly trained physically active participants including body builders or power athletes | |
Non-athlete: data from sedentary or inactive participants | |
Body Mass | Continuous variable, the mean body mass of the participants reported in kg |
Body Mass Index | Continuous variable, the mean body mass index of the participants reported in kg/m2 |
Day of Recovery | Continuous variable and categorical variable, coded with values ranging from 1 to 7 days |
Exercise Stressor | Categorical variable, coded as follows: |
Game: data collected following in-game or simulated game competition | |
Laboratory-based: data collected following high-intensity resistance or aerobic exercise protocol | |
Height | Continuous variable, the mean height of the participants reported in cm |
Percent Female | Continuous variable, the percentage (0–100) of the experimental group self-reporting female gender |
Sex Group | Categorical variable, coded as follows: |
Female: data from female participants only | |
Male: data from males participants only | |
Mixed: data from combined samples of female and male participants | |
Year Published | Continuous variable, year of publication |
N | Mean | SD | Min | Max | |
---|---|---|---|---|---|
Age (yrs) | 286 | 24.70 | 4.57 | 18.00 | 45.00 |
Body Mass (kg) | 278 | 78.53 | 7.71 | 59.80 | 93.10 |
BMI (kg/m2) | 284 | 24.36 | 1.77 | 21.10 | 28.15 |
Height (cm) | 266 | 179.00 | 4.57 | 165.90 | 187.60 |
Study Name | Participant Description | Age | Height | Body Mass | Study Overview and Investigated Outcomes |
---|---|---|---|---|---|
Aben et al., 2020 [26] | Male Rugby League Players (n = 10) | 18 ± 1 yrs | 183 ± 4 cm | 92 ± 9 kg | Countermovement Jump Height and Velocity up to 120 h following rugby league match play |
Boullosa et al., 2021 [52] | Physically Active Men (n = 12) | 23.4 ± 2.8 yrs | 183 ± 6 cm | 76.6 ± 7.8 kg | Countermovement Jump Height, Peak Power, and Vertical Stiffness up to 24 h following concentric and eccentric cycling |
Cochrane et al., 2013 [53] | Physically Active Men (n = 10) | 21.0 ± 1.7 yrs | 178.6 ± 6.5 cm | 79.2 ± 12.8 kg | Countermovement Jump Height and Peak Power up to 72 h following 3 sets of 100 maximum eccentric contractions (quadriceps) |
Collins et al., 2019 [54] | Male Sport Athletes (n = 10) | 23.0 ± 4.5 yrs | 182.1 ± 9.5 cm | 82.3 ± 12.9 kg | Countermovement Jump Height, Relative Peak Power, and the ratio between Flight Time and Contact Time up to 24 h following high-intensity sprint and plyometric exercise |
Dourado et al., 2022 [55] | Untrained Young Men (n = 14) | 22.8 ± 3.6 yrs | 175 ± 9 cm | 79.1 ± 9.7 kg | Countermovement Jump Height, Peak Power, and Vertical Stiffness up to 96 h following single- and multi-joint lower body resistance exercise |
Fonda et al., 2015 [56] | Healthy Female Adults (n = 12) | 21.0 ± 2.1 yrs | 168.5 ± 4.5 cm | 59.9 ± 8.5 kg | Countermovement Jump Height, Force, Power, and Energy up to 96 h following 50 drop jumps and 50 hamstring leg curls |
Hotfiel et al., 2021 [57] | Healthy Adults (n = 8 women, 10 men) | 24.1 ± 3.6 yrs | NR | NR | Countermovement Jump Height, Force, Power, and Energy up to 48 h following 50 drop jumps and lower body eccentric exercises |
Kirby et al., 2012 [58] | Untrained Males (n = 8) | 21.1 ± 1.7 yrs | 178.7 ± 4.1 cm | 76.7 ± 14.8 kg | Countermovement Jump Height up to 96 h following 100 drop jumps and eccentric leg press exercise |
Kotikangas et al., 2022 [27] | Power Athletes (n = 8) | 23.9 ± 2.9 yrs 24.1 ± 2.7 yrs 27.6 ± 2.8 yrs | 181.1 ± 3.6 cm | 80.5 ± 8.4 kg | Countermovement Jump Height up to 48 h following power, strength, and hypertrophic loading |
Strength Athletes (n = 8) | 176.6 ± 6.3 cm | 83.2 ± 13.0 kg | |||
Non-Athletes (n = 7) | 186.6 ± 7.2 cm | 93.1 ± 17.4 kg | |||
Kraemer et al., 2007 [28] | Resistance-Trained Men (n = 9) | 22 ± 3 yrs | 179 ± 8 cm | 89.7 ± 14.9 kg | Countermovement Jump Power up to 48 h following lower body resistance exercise |
Levitt et al., 2020 [59] | Resistance-Trained Men (n = 10) | 21–28 yrs (mean and SD not reported) | 179.5 ± 5.6 cm | 85.9 ± 13.2 kg | Countermovement Jump Height, Power, and Force up to 48 h following lower body eccentric resistance exercise |
Li et al., 2023 [60] | Amateur Male Basketball Players (n = 10) | 22.8 ± 0.8 yrs | 179 ± 4 cm | 75.6 ± 6.6 kg | Countermovement Jump Height up to 24 h following a simulated load basketball game |
Prowting et al., 2021 [61] | Resistance-Trained Men (n = 8) | 22.3 ± 2.5 yrs | 175.9 ± 8.3 cm | 87.1 ± 19.1 kg | Countermovement Jump Height up to 120 h following 100 drop jumps |
Russell et al., 2015 [62] | Professional Soccer Players (n = 5) | 21 ± 1 yrs | 177.0 ± 3.0 cm | 70.4 ± 2.3 kg | Countermovement Jump Height and Peak Power up to 48 h following soccer match play |
Schumann et al., 2013 [29] | Untrained Young Men (n = 42) | 29.2 ± 4.9 yrs | 178.3 ± 5.2 cm | 75.9 ± 8.6 kg | Countermovement Jump Height up to 48 h following combined strength and endurance loading |
Skurvydas et al., 2000 [30] | Healthy Untrained Men (n = 12) | 25.4 ± 1.7 yrs | NR | 74.3 ± 6.2 kg | Squat and Countermovement Jump Height up to 24 h following 100 drop jumps |
Skurvydas et al., 2006 [31] | Healthy Untrained Men (n = 20) | 20.4 ± 1.7 yrs | 180.7 ± 6.5 cm | 76.2 ± 4.7 kg | Drop Jump Height up to 72 h following 100 drop jumps |
Taipale et al., 2014 [33] | Recreationally Trained Women (n = 10) and Men (n = 12) | 33.5 ± 8.3 yrs 38.8 ± 7.1 yrs | 165.9 ± 7.6 cm | 59.8 ± 5.1 kg | Countermovement Jump Height up to 48 h following combined strength and endurance loading |
177.4 ± 6.4 cm | 75.7 ± 3.6 kg | ||||
Taipale et al., 2018 [32] | Physically Active Men (n = 11) | 25.7 ± 3.9 yrs | 181.0 ± 7.7 cm | 78.4 ± 10.9 kg | Countermovement Jump Height up to 19 h following lower body resistance loading |
West et al., 2014 [63] | Elite International Rugby Players (n = 10) | 26 ± 5 yrs | 183 ± 8 cm | 86.1 ± 10.0 kg | Countermovement Jump Height and Peak Power up to 48 h following rugby tournament competition |
White et al., 2014 [64] | Healthy Recreationally Active Men (n = 8) | 23.6 ± 3.7 yrs | 180.8 ± 8.1 cm | 76.1 ± 8.6 kg | Squat and Drop Jump Height and Peak Power up to 48 h following high-intensity sprint exercise |
Yoshida et al., 2023 [65] | Male College Basketball Players (n = 11) | 19.9 ± 1.0 yrs | 187.6 ± 13.7 cm | 88.4 ± 12.2 kg | Countermovement Jump Height, Net Impulse, Relative Net Impulse, Relative Peak Force, Relative Mean Force, Relative Mean Power, Total Time to Peak Force, Total Time to Peak Power, Average Rate of Force Development, and Ratio of Flight Time to Contraction Time up to 72 h following basketball-related high intensity exercises |
β | 95%CI | p | |
---|---|---|---|
Age (yrs) | −0.0489 | −0.0719 to −0.0258 | <0.0001 |
Body Mass (kg) | 0.0014 | −0.0112 to 0.0140 | 0.8323 |
BMI (kg/m2) | −0.0166 | −0.0767 to 0.0434 | 0.5848 |
Days of Recovery | 0.1370 | 0.0875 to 0.1864 | <0.0001 |
Height (cm) | 0.0045 | −0.0135 to 0.0225 | 0.6240 |
Percent Female | 0.0875 | −0.2960 to 0.4710 | 0.6531 |
Publication Year | −0.0003 | −0.0208 to 0.0203 | 0.9800 |
k | ES | 95% CI | Within p | Between p | |
---|---|---|---|---|---|
Athlete Status | |||||
Athlete | 101 | −0.1651 | −0.3122 −0.0179 | 0.0283 | |
Non-Athlete | 83 | −0.3285 | −0.5111 −0.145 | 0.0006 | 0.4476 |
Exercise Stressor | |||||
In-Game or Simulated Game Setting | 70 | −0.3299 | −0.6585 −0.0012 | 0.0492 | |
Laboratory Setting | 114 | −0.2751 | −0.4170 −0.1332 | 0.0002 | 0.5803 |
Primary Outcome | |||||
Peak Height | 88 | −0.4687 | −0.7635 −0.1732 | 0.0022 | |
Peak Power | 23 | −0.1399 | −0.3002 0.0203 | 0.0838 | 0.0393 |
Sex | |||||
Female | 16 | −0.9528 | −1.7507 −0.1550 | 0.0224 | |
Male | 167 | −0.2747 | −0.4128 −0.1365 | 0.0001 | 0.6531 |
NIH Scale Question Number | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study Name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total Score |
Aben et al., 2020 [26] | Y | N | Y | Y | Y | N | Y | N | Y | Y | Y | Y | 9 |
Boullosa et al., 2021 [52] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Cochrane et al., 2013 [53] | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 10 |
Collins et al., 2019 [54] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Dourado et al., 2023 [55] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Fonda et al., 2015 [56] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Hotfiel et al., 2021 [57] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Kirby et al., 2012 [58] | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 12 |
Kotikangas et al., 2022 [27] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Kraemer et al., 2007 [28] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Levitt et al., 2020 [59] | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 10 |
Li et al., 2023 [60] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Prowting et al., 2021 [61] | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 12 |
Russell et al., 2015 [62] | Y | Y | Y | N | N | N | Y | N | Y | Y | Y | Y | 8 |
Schumann et al., 2013 [29] | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 10 |
Skurvydas et al., 2000 [30] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Skurvydas et al., 2006 [31] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Taipale et al., 2014 [33] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Taipale et al., 2018 [32] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
West et al., 2014 [63] | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 10 |
White et al., 2014 [64] | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 11 |
Yoshida et al., 2023 [65] | Y | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, C.; Sullivan, K.; Kim, C.; Winchester, L.J.; Fedewa, M.V. Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis. J. Funct. Morphol. Kinesiol. 2025, 10, 230. https://doi.org/10.3390/jfmk10020230
Williams C, Sullivan K, Kim C, Winchester LJ, Fedewa MV. Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology. 2025; 10(2):230. https://doi.org/10.3390/jfmk10020230
Chicago/Turabian StyleWilliams, Caden, Katherine Sullivan, Changki Kim, Lee J. Winchester, and Michael V. Fedewa. 2025. "Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis" Journal of Functional Morphology and Kinesiology 10, no. 2: 230. https://doi.org/10.3390/jfmk10020230
APA StyleWilliams, C., Sullivan, K., Kim, C., Winchester, L. J., & Fedewa, M. V. (2025). Using Force Plates to Monitor the Recovery of Vertical Jump Performance After Strenuous Exercise: A Systematic Review and Meta-Analysis. Journal of Functional Morphology and Kinesiology, 10(2), 230. https://doi.org/10.3390/jfmk10020230