Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = foot strike patterns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1180 KB  
Article
Comparison of Time–Frequency Characteristics of Lower Limb EMG Signals Among Different Foot Strike Patterns During Running Using the EEMD Algorithm
by Shuqiong Shi, Xindi Ni, Loi Ieong, Lei Li and Ye Liu
Life 2025, 15(9), 1386; https://doi.org/10.3390/life15091386 - 1 Sep 2025
Viewed by 804
Abstract
Runners have a high probability of sports injuries due to improper landing patterns. This study aimed to investigate the effects of three different foot strike patterns on lower limb muscle activation in healthy young male university students without specialized sports training experience. Methods: [...] Read more.
Runners have a high probability of sports injuries due to improper landing patterns. This study aimed to investigate the effects of three different foot strike patterns on lower limb muscle activation in healthy young male university students without specialized sports training experience. Methods: Sixteen healthy male college students (age: 21 ± 1 years) participated in this study. They performed running with three different foot strike patterns: forefoot strike (FFS), midfoot strike (MFS), and rearfoot strike (RFS) at controlled speeds of 1.4–1.6 m/s. EMG signals from six lower limb muscles (vastus lateralis, vastus medialis, rectus femoris, tibialis anterior, lateral gastrocnemius, and medial gastrocnemius) during the stance phase were collected using a wireless EMG system (1000 Hz). Ensemble Empirical Mode Decomposition (EEMD) was employed to analyze the time–frequency characteristics of lower limb EMG signals and ankle joint co-activation patterns to investigate the corresponding neuromuscular control mechanisms. Statistical analyses were performed using repeated-measures ANOVA, and significance was set at p < 0.05. Results: The timing of maximum energy in lower limb muscles during the stance phase occurred earlier in RFS compared to FFS and MFS. At initial ground contact, the low-frequency component energy (below 60 Hz) of the medial gastrocnemius was significantly higher in MFS and RFS compared to FFS, while FFS exhibited significantly higher high-frequency component energy (61–200 Hz). The co-activation of ankle dorsiflexors and plantar flexors (TA/GM) was also significantly higher in MFS and RFS compared to FFS. During the 100 ms before foot contact, the low-frequency component energy (below 60 Hz) of the lateral gastrocnemius was significantly higher in MFS compared to FFS, and the degree of TA/GM co-activation was significantly higher in both MFS and RFS compared to FFS. Conclusions: The maximum frequency in lower limb muscles appeared earliest during the mid-stance phase in the rearfoot strike (RFS) pattern. Moreover, during the pre-activation and early stance phases, frequency differences were observed only in the medial gastrocnemius, with RFS showing significantly higher low-frequency power. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

11 pages, 1303 KB  
Article
Spectral and Spatial Analysis of Plantar Force Distributions Across Foot-Strike Patterns During Treadmill Running
by Paul William Macdermid and Stephanie Julie Walker
Appl. Sci. 2025, 15(15), 8709; https://doi.org/10.3390/app15158709 - 6 Aug 2025
Viewed by 754
Abstract
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces [...] Read more.
Treadmill running gait differs to overland running and is commonly used to evaluate interventions. One challenge is accurately defining strike pattern and related impact kinetics. This study aimed to characterise foot-strike patterns during treadmill running using the spatial distribution of in-shoe plantar forces and to identify differences in impact kinetics through spectral analysis. Low- and high-frequency power components were analysed in heel, midfoot and forefoot strike patterns. No distinct impact peaks were identified in the force traces; however, significant spatial differences were found. Forefoot strikes exhibited lower peak impact force, average loading rate, and high-frequency power spectral density (PSD) components compared to heel and midfoot strikes, with heel also lower than midfoot. Strike pattern classification was derived from spatial force distribution, where >70% posterior and >50% anterior denote heel and forefoot strikes, while midfoot strikes demonstrate a more balanced distribution with >25% in the central zone. These findings support the integration of spatial, force-based classification with frequency-domain analysis to enhance the evaluation of impact attenuation in treadmill-based running interventions. Full article
Show Figures

Figure 1

15 pages, 1849 KB  
Article
Evolution of Gait Biomechanics During a Nine-Month Exercise Program for Parkinson’s Disease: An Interventional Cohort Study
by Dielise Debona Iucksch, Elisangela Ferretti Manffra and Vera Lucia Israel
Biomechanics 2025, 5(3), 53; https://doi.org/10.3390/biomechanics5030053 - 1 Aug 2025
Viewed by 1521
Abstract
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, [...] Read more.
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, kinetics, and kinematics throughout a long-term exercise program conducted in water and on dry land. Methods: We have compared the trajectories of biomechanical variables across the treatment phases using statistical parametric mapping (SPM). A cohort of fourteen individuals with PD (mean age: 65.6 ± 12.1 years) participated in 24 sessions of aquatic exercises over three months, followed by a three-month retention phase, and then 24 additional sessions of land-based exercises. Three-dimensional gait data and spatiotemporal parameters were collected before and after each phase. Two-way ANOVA with repeated measures was used to compare spatiotemporal parameters. Results: The walking speed increased while the duration of the double support phase decreased. Additionally, the knee extensor moment consistently increased in the entire interval from midstance to midswing (20% to 70% of the stride period), approaching normal gait patterns. Regarding kinematics, significant increases were observed in both hip and knee flexion angles. Furthermore, the abnormal ankle dorsiflexion observed at the foot strike disappeared. Conclusions: These findings collectively suggest positive adaptations in gait biomechanics during the observation period. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

11 pages, 1070 KB  
Article
Foot Strike Pattern Detection Using a Loadsol® Sensor Insole
by Keiichiro Hata, Yohei Yamazaki, Misato Ishikawa and Toshio Yanagiya
Sensors 2025, 25(14), 4417; https://doi.org/10.3390/s25144417 - 15 Jul 2025
Viewed by 985
Abstract
Understanding the foot strike pattern (FSP) and impact force of running-related injuries is crucial for athletes and researchers. This study investigated a novel method for detecting FSP using the loadsol® sensor insole during treadmill running. Twelve collegiate athletes ran at three different [...] Read more.
Understanding the foot strike pattern (FSP) and impact force of running-related injuries is crucial for athletes and researchers. This study investigated a novel method for detecting FSP using the loadsol® sensor insole during treadmill running. Twelve collegiate athletes ran at three different speeds (12, 15, and 20 km/h), with their FSP determined using both the kinematic method based on the foot strike angle and the loadsol® method based on the plantar force applied to the rear-, mid-, and forefoot sensor areas. This study provides significant insights into FSP detection. Comparing the kinematic method to the loadsol® method, the rearfoot, midfoot, and forefoot strike detection rates were 94.7%, 37.1%, and 81.8%, respectively. Moreover, the FSP was not uniform, even during treadmill running at a constant speed, with most participants exhibiting mixed patterns across different speeds. The loadsol® sensor insole could offer a promising device for in-field measurement of FSP and impact forces, potentially helping researchers and athletes better understand and predict the potential running-related injury risks by monitoring step-to-step variations in running biomechanics. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

24 pages, 5453 KB  
Article
Biomechanical Analysis of Gait in Forestry Environments: Implications for Movement Stability and Safety
by Martin Röhrich, Eva Abramuszkinová Pavlíková and Jakub Šácha
Forests 2025, 16(6), 996; https://doi.org/10.3390/f16060996 - 13 Jun 2025
Cited by 1 | Viewed by 1173
Abstract
Forestry is recognized as one of the most physically demanding professions. Walking in presents unique biomechanical challenges due to complex, irregular terrain, with several possible risks. This study investigated how human gait adapts across solid surfaces, forest trails, and natural forest environments. Fifteen [...] Read more.
Forestry is recognized as one of the most physically demanding professions. Walking in presents unique biomechanical challenges due to complex, irregular terrain, with several possible risks. This study investigated how human gait adapts across solid surfaces, forest trails, and natural forest environments. Fifteen healthy adult participants (average age 38.3; ten males and five females) completed 150 walking trials, with full-body motion captured via a 17 Inertial Measurement Unit (IMU) sensors (Xsens MVN Awinda system). The analysis focused on spatial and temporal gait parameters, including cadence, step length, foot strike pattern, and center of mass variability. Statistical methods (ANOVA and Kruskal–Wallis) revealed that surface type significantly influenced gait mechanics. On forest terrain, participants exhibited wider steps, reduced cadence, increased step and stride variability, and a substantial shift from heel-to-toe strikes. Gait adaptations reflect compensatory neuromuscular strategies to maintain body balance. The findings confirm that forestry terrain complexity compromises human gait stability and increases physical demands, supporting step variability and slip, trip, and fall risk. By identifying key biomechanical markers of instability, this study contributes to understanding human locomotion principles. Understanding these changes can help design safety measures for outdoor professions, particularly forestry. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

15 pages, 1683 KB  
Article
The Influence of Running Technique Modifications on Vertical Tibial Load Estimates: A Combined Experimental and Machine Learning Approach in the Context of Medial Tibial Stress Syndrome
by Taylor Miners, Jeremy Witchalls, Jaquelin A. Bousie, Ceridwen R. Radcliffe and Phillip Newman
Biomechanics 2025, 5(2), 22; https://doi.org/10.3390/biomechanics5020022 - 2 Apr 2025
Viewed by 4114
Abstract
Background/Objectives: Currently, there is no strong evidence to support interventions for medial tibial stress syndrome (MTSS), a common running injury associated with tibial loading. Vertical ground reaction force (vGRF) and axial tibial acceleration (TA) are the most common methods of estimating tibial [...] Read more.
Background/Objectives: Currently, there is no strong evidence to support interventions for medial tibial stress syndrome (MTSS), a common running injury associated with tibial loading. Vertical ground reaction force (vGRF) and axial tibial acceleration (TA) are the most common methods of estimating tibial loads, yet clinical recommendations for technique modification to reduce these metrics are not well documented. This study investigated whether changes to speed, cadence, stride length, and foot-strike pattern influence vGRF and TA. Additionally, machine-learning models were evaluated for their ability to estimate vGRF metrics. Methods: Sixteen runners completed seven 1 min trials consisting of preferred technique, ±10% speed, ±10% cadence, forefoot, and rearfoot strike. Results: A 10% speed reduction decreased peak tibial acceleration (PTA), vertical average loading rate (VALR), vertical instantaneous loading rate (VILR), and vertical impulse by 13%, 10.9%, 9.3%, and 3.2%, respectively. A 10% cadence increase significantly reduced PTA (11.5%), VALR (15.6%), VILR (13.5%), and impulse (3.5%). Forefoot striking produced significantly lower PTA (26.6%), VALR (68.3%), and VILR (68.9%). Habitual forefoot strikers had lower VALR (58.1%) and VILR (47.6%) compared to rearfoot strikers. Machine-learning models predicted all four vGRF metrics with mean average errors of 9.5%, 10%, 10.9%, and 3.4%, respectively. Conclusions: This study demonstrates that small-scale modifications to running technique effectively reduce tibial load estimates. Machine-learning models offer an accessible, affordable tool for gait retraining by predicting vGRF metrics without reliance on IMU data. The findings support practical strategies for reducing MTSS risk. Full article
(This article belongs to the Special Issue Biomechanics in Sport and Ageing: Artificial Intelligence)
Show Figures

Figure 1

18 pages, 2885 KB  
Article
Effect of Vibro-Tactile Stimulation Sequence and Support Surface Inclination on Gait and Balance Measures
by Christopher P. Engsberg, Nathaniel H. Hunt, Steven Barlow and Mukul Mukherjee
Brain Sci. 2025, 15(2), 138; https://doi.org/10.3390/brainsci15020138 - 30 Jan 2025
Viewed by 1367
Abstract
The plantar surfaces of the feet are important for balance control during walking, specifically by allowing for the perception of pressure movements during stance. Background/Objectives: The current study aimed to perturb CoP movement perception in healthy individuals by applying vibrations to the [...] Read more.
The plantar surfaces of the feet are important for balance control during walking, specifically by allowing for the perception of pressure movements during stance. Background/Objectives: The current study aimed to perturb CoP movement perception in healthy individuals by applying vibrations to the soles of the feet in different stimulation sequences: a natural pattern that followed CoP movement (gait-like) and a perturbing pattern that did not follow the CoP (random) during walking. We hypothesized that the gait-like stimulation sequence would be similar to walking without any stimulation and therefore have no effect on balance measures and that the random sequence would negatively affect balance measures such as the anteroposterior (AP) and mediolateral (ML) margins of stability (MoSs) and foot placement area. Methods: Subjects walked at a level angle and 5.0 and 8.0 degrees of incline and with low visual conditions to increase reliance on tactile sensations from the feet. Results: No significant effect of the stimulation sequence was found at any incline, while there was a significant effect of incline. As the incline increased from level to 5 deg, subjects reduced their AP MoS measured at heel strikes from 4.36 ± 0.56 cm to 1.95 ± 1.07 cm and increased their foot placement area from 24.04 ± 11.13 cm2 to 38.98 ± 17.47 cm2. However, the AP MoS measured at midstance did not significantly change as the incline increased. Conclusions: The stimulation sequence had no effect on the dependent measures, but the subjects could still feel the vibrations on the plantar surfaces during walking; this implies that similar stimulation techniques could be a useful method for applying directive biofeedback without negatively impacting gait. Overall, this study demonstrates the detailed control of our tactile system and the adaptability of healthy individuals while walking with a perturbing stimulation. Full article
(This article belongs to the Special Issue Multisensory Perception of the Body and Its Movement)
Show Figures

Figure 1

15 pages, 7017 KB  
Case Report
Fibronectin Glomerulopathy Without Typical Renal Biopsy Features in a 4-Year-Old Girl with Incidentally Discovered Proteinuria and a G417V FN1 Gene Mutation
by Tibor Kalmár, Dániel Jakab, Zoltán Maróti, Gyula Pásztor, Sándor Turkevi-Nagy, Éva Kemény, Helmut Hopfer, Jan Ulrich Becker, Csaba Bereczki and Béla Iványi
Int. J. Mol. Sci. 2025, 26(2), 641; https://doi.org/10.3390/ijms26020641 - 14 Jan 2025
Viewed by 1799
Abstract
Fibronectin glomerulopathy (FG) is caused by fibronectin 1 (FN1) gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 [...] Read more.
Fibronectin glomerulopathy (FG) is caused by fibronectin 1 (FN1) gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 μm; age-matched controls: 140 μm), α-SMA-positive and Ki-67-positive mesangial cell proliferation (glomerular proliferation index 1.76), the mild expansion of mesangial areas, no immune or electron-dense deposits, normal glomerular basement membrane, and diffusely effaced foot processes were observed. Genetic testing identified a de novo heterozygous mutation (Gly417Val) in the collagen-binding site of the FN II-2 domain, prompting fibronectin immunostaining. Strong mesangial positivity was noted, hence FG was diagnosed. The follow-up period of 29 months revealed nephrotic range proteinuria, intermittent microhematuria, glomerular hyperfiltration, and preserved renal function. The biopsy features of early childhood-onset FG were compared to a case of FG with a lobular pattern diagnosed in a 44-year-old patient with undulating proteinuria, microhematuria, hypertension known for a year, and a positive family history. Early childhood-onset FG was characterized by glomerular enlargement, mesangial proliferation, and no changes that suggested fibronectin deposition disease. In summary, the novel aspects of the case were that the mutation was located at the collagen-binding site of the FN1 gene, not identified earlier, and the histologic spectrum of FG was expanded by the observed mesangial proliferative pattern and striking glomerulomegaly. Now, FG should also be considered among the monogenic causes of proteinuric kidney diseases in pediatric nephrology practice. Full article
Show Figures

Figure 1

14 pages, 1882 KB  
Article
Influence of Sudden Changes in Foot Strikes on Loading Rate Variability in Runners
by Maxime Chabot, Alexandre Thibault-Piedboeuf, Marie-Lyne Nault, Jean-Sébastien Roy, Philippe C. Dixon and Martin Simoneau
Sensors 2024, 24(24), 8163; https://doi.org/10.3390/s24248163 - 21 Dec 2024
Viewed by 4822
Abstract
Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability. This study evaluated the effects [...] Read more.
Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability. This study evaluated the effects of running with an imposed and usual foot strike on vertical loading rate variability and amplitude. Twenty-seven participants (16 men and 11 women; age range: 18–30 years) ran on an instrumented treadmill with their usual foot strike for 10 min. Then, the participants were instructed to run with an unusual foot strike for 6 min. We calculated the vertical instantaneous and vertical average loading rates and their variances over 200 steps to quantify vertical loading rate variability. We also calculated the amplitude and variability of the shank acceleration peak using an inertial measurement unit. The vertical loading rate and shank acceleration peak amplitudes were higher when running with a rearfoot strike, regardless of the foot strike conditions (i.e., usual or imposed). The vertical loading rate and shank acceleration peak variability were higher when running with an imposed rearfoot strike than when running with a usual forefoot strike. No differences were found in the vertical loading rate and shank acceleration peak variabilities between the imposed forefoot strike and usual rearfoot strike conditions. This study offers compelling evidence that adopting an imposed (i.e., unusual) rearfoot strike amplifies loading rate and shank acceleration peak variabilities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 2149 KB  
Article
Ankle Taping Does Not Affect Running Kinematics During a Treadmill Protocol in Well-Trained Runners: A Secondary Analysis from a Randomized Cross-Over Controlled Trial
by Federico Salniccia, Javier López-Ruiz, Guillermo García-Pérez-de-Sevilla, Ángel González-de-la-Flor and María García-Arrabé
J. Clin. Med. 2024, 13(22), 6740; https://doi.org/10.3390/jcm13226740 - 8 Nov 2024
Viewed by 1619
Abstract
Background: The purpose of this randomized cross-over controlled trial was to evaluate the biomechanical effects of ankle taping using rigid tape (RT) or kinesiotape (KT) compared to no taping during treadmill running in well-trained amateur runners. Methods: A total of 22 participants [...] Read more.
Background: The purpose of this randomized cross-over controlled trial was to evaluate the biomechanical effects of ankle taping using rigid tape (RT) or kinesiotape (KT) compared to no taping during treadmill running in well-trained amateur runners. Methods: A total of 22 participants (15 men and 7 women) completed three running sessions on a treadmill, each lasting 30 min, under different conditions: no taping (CG), RT, and KT. Sagittal and frontal plane kinematics were analyzed using the Kinovea software to assess the ankle dorsiflexion, knee flexion, hip extension, tibial angle, foot strike pattern, heel eversion, and pelvic drop across three intervals (0–10, 10–20, and 20–30 min). Results: The results demonstrated no significant differences in sagittal plane variables (ankle dorsiflexion, knee flexion, hip extension, and cadence) or frontal plane variables (heel eversion and pelvic drop) between the CG, RT and KT groups at any time point. Although heel eversion significantly increased over time due to fatigue, the taping conditions did not affect running kinematics. Conclusions: These findings suggest that neither RT nor KT alters running biomechanics in well-trained runners over prolonged treadmill running. The study highlights that taping, commonly used to prevent ankle injuries, does not significantly modify lower limb kinematics in the absence of injury. Further research is needed to evaluate the effects of taping in novice or injured runners and under more demanding conditions, such as overground running. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

27 pages, 7413 KB  
Systematic Review
The Influence of General and Local Muscle Fatigue on Kinematics and Plantar Pressure Distribution during Running: A Systematic Review and Meta-Analysis
by Walaaeldin Aly Hazzaa, Laura Hottenrott, Manar Ahmed Kamal and Klaus Mattes
Sports 2023, 11(12), 241; https://doi.org/10.3390/sports11120241 - 6 Dec 2023
Cited by 5 | Viewed by 5643
Abstract
Fatigue has the potential to alter how impact forces are absorbed during running, heightening the risk of injury. Conflicting findings exist regarding alterations in both kinematics and plantar pressure. Thus, this systematic review and subsequent meta-analysis were conducted to investigate the impact of [...] Read more.
Fatigue has the potential to alter how impact forces are absorbed during running, heightening the risk of injury. Conflicting findings exist regarding alterations in both kinematics and plantar pressure. Thus, this systematic review and subsequent meta-analysis were conducted to investigate the impact of general and localized muscle fatigue on kinematics and plantar pressure distribution during running. Initial searches were executed on 30 November 2021 and updated on 29 April 2023, encompassing PubMed, The Cochrane Library, SPORTDiscus, and Web of Science without imposing any restrictions on publication dates or employing additional filters. Our PECOS criteria included cross-sectional studies on healthy adults during their treadmill running to mainly evaluate local muscle fatigue, plantar pressure distribution, biomechanics of running (kinematics, kinetics, and EMG results), and temporospatial parameters. The literature search identified 6626 records, with 4626 studies removed for titles and abstract screening. Two hundred and one articles were selected for full-text screening, and 20 studies were included in qualitative data synthesis. The pooled analysis showed a non-significant decrease in maximum pressure under the right forefoot’s metatarsus, which was more than the left rearfoot after local muscle fatigue at a velocity of 15 km/h (p-values = 0.48 and 0.62). The results were homogeneous and showed that local muscle fatigue did not significantly affect the right forefoot’s stride frequency and length (p-values = 0.75 and 0.38). Strength training for the foot muscles, mainly focusing on the dorsiflexors, is recommended to prevent running-related injuries. Utilizing a standardized knee and ankle joint muscle fatigue assessment protocol is advised. Future experiments should focus on various shoes for running and varying foot strike patterns for injury prevention. Full article
Show Figures

Figure 1

25 pages, 10632 KB  
Article
Acceleration-Based Estimation of Vertical Ground Reaction Forces during Running: A Comparison of Methods across Running Speeds, Surfaces, and Foot Strike Patterns
by Dovin Kiernan, Brandon Ng and David A. Hawkins
Sensors 2023, 23(21), 8719; https://doi.org/10.3390/s23218719 - 25 Oct 2023
Cited by 7 | Viewed by 5749
Abstract
Twenty-seven methods of estimating vertical ground reaction force first peak, loading rate, second peak, average, and/or time series from a single wearable accelerometer worn on the shank or approximate center of mass during running were compared. Force estimation errors were quantified for 74 [...] Read more.
Twenty-seven methods of estimating vertical ground reaction force first peak, loading rate, second peak, average, and/or time series from a single wearable accelerometer worn on the shank or approximate center of mass during running were compared. Force estimation errors were quantified for 74 participants across different running surfaces, speeds, and foot strike angles and biases, repeatability coefficients, and limits of agreement were modeled with linear mixed effects to quantify the accuracy, reliability, and precision. Several methods accurately and reliably estimated the first peak and loading rate, however, none could do so precisely (the limits of agreement exceeded ±65% of target values). Thus, we do not recommend first peak or loading rate estimation from accelerometers with the methods currently available. In contrast, the second peak, average, and time series could all be estimated accurately, reliably, and precisely with several different methods. Of these, we recommend the ‘Pogson’ methods due to their accuracy, reliability, and precision as well as their stability across surfaces, speeds, and foot strike angles. Full article
(This article belongs to the Special Issue Sensor Technology for Improving Human Movements and Postures: Part II)
Show Figures

Figure 1

10 pages, 1582 KB  
Article
An Analysis of Running Impact on Different Surfaces for Injury Prevention
by Amelia Ferro-Sánchez, Adrián Martín-Castellanos, Alfonso de la Rubia, Abraham García-Aliaga, Mónica Hontoria-Galán and Moisés Marquina
Int. J. Environ. Res. Public Health 2023, 20(14), 6405; https://doi.org/10.3390/ijerph20146405 - 20 Jul 2023
Cited by 6 | Viewed by 7080
Abstract
The impact that occurs on the runner’s foot when it lands on the ground depends on numerous factors: footwear, running technique, foot strike and landing pattern, among others. However, the surface is a decisive factor that can be selected by the runner to [...] Read more.
The impact that occurs on the runner’s foot when it lands on the ground depends on numerous factors: footwear, running technique, foot strike and landing pattern, among others. However, the surface is a decisive factor that can be selected by the runner to improve their sports practice, thereby avoiding injuries. This study aimed to assess the number and magnitude of accelerations in impact (produced by the runner when their foot strikes the ground) on three different surfaces (grass, synthetic track, and concrete) in order to know how to prevent injuries. Thirty amateur runners (age 22.6 ± 2.43 years) participated in the study. They had to run consecutively on three different surfaces at the same speed, with a three axis-accelerometer placed on the sacrum and wearing their own shoes. The results showed that the running impacts differed based on the type of surface. Higher mean acceleration (MA) and mean peak acceleration (PA) in the impacts were observed on concrete compared to the other two surfaces. There were small differences for MA: 1.35 ± 0.1 g (concrete) vs. 1.30 ± 0.1 g (synthetic track) SD: 0.43 (0.33, 0.54) and 1.30 ± 0.1 g (grass) SD: 0.36 (0.25, 0.46), and small differences for PA: 3.90 ± 0.55 g (concrete) vs. 3.68 ± 0.45 g (synthetic track) SD 0.42 (0.21, 0.64) and 3.76 ± 0.48 g (grass) SD 0.27 (0.05, 0.48), implying that greater impacts were produced on concrete compared to synthetic track and grass. The number of peaks of 4 to 5 g of total acceleration was greater for concrete, showing small differences from synthetic track: SD 0.23 (−0.45, 0.9). Additionally, the number of steps was higher on synthetic track (34.90 ± 2.67), and small differences were shown compared with concrete (33.37 ± 2.95) SD 0.30 (−0.25, 0.85) and with grass (35.60 ± 3.94) SD 0.36 (−0.19, 0.91). These results may indicate a change in technique based on the terrain. Given the increasing popularity of running, participants must be trained to withstand the accelerations in impact that occur on different surfaces in order to prevent injuries. Full article
Show Figures

Figure 1

11 pages, 699 KB  
Article
Effects of Rearfoot Eversion on Foot Plantar Pressure and Spatiotemporal Gait Parameters in Adolescent Athletes
by Hironori Fujishita, Yasunari Ikuta, Noriaki Maeda, Makoto Komiya, Masanori Morikawa, Satoshi Arima, Tetsuhiko Sakamitsu, Hiromune Obayashi, Kouki Fukuhara, Kai Ushio and Nobuo Adachi
Healthcare 2023, 11(13), 1842; https://doi.org/10.3390/healthcare11131842 - 25 Jun 2023
Cited by 5 | Viewed by 3294
Abstract
Background: Foot malalignment can augment the risk of lower-extremity injuries and lead to musculoskeletal disorders. This study aimed to clarify the contribution of rearfoot alignment to plantar pressure distribution and spatiotemporal parameters during gait in healthy adolescent athletes. Methods: This retrospective study included [...] Read more.
Background: Foot malalignment can augment the risk of lower-extremity injuries and lead to musculoskeletal disorders. This study aimed to clarify the contribution of rearfoot alignment to plantar pressure distribution and spatiotemporal parameters during gait in healthy adolescent athletes. Methods: This retrospective study included 39 adolescent athletes who were divided into the rearfoot eversion and control groups according to a leg heel angle of 7°. A total of 78 legs were analyzed (45 and 33 legs in the rearfoot eversion [women, 53.3%] and control groups [women, 48.5%], respectively). Gait was assessed using an in-shoe plantar pressure measuring system and a wearable inertial sensor. Results: The foot plantar pressure distribution in the hallux was higher in the rearfoot eversion group than that in the control group (p = 0.034). Spatiotemporal parameters showed that the foot pitch angle at heel strike was significantly larger in the rearfoot eversion group than that in the control group (24.5° vs. 21.7°; p = 0.015). Total sagittal range of motion of the ankle during the stance phase of gait was significantly larger in the rearfoot eversion group than that in the control group (102.5 ± 7.1° vs. 95.6 ± 15.8°; p = 0.020). Logistic regression analysis revealed that plantar pressure at the hallux and medial heel and foot pitch angle at heel strike were significantly associated with rearfoot eversion. Conclusions: Our findings suggest that rearfoot eversion affects the gait patterns of adolescent athletes. Notably, leg heel angle assessment, which is a simple and quick procedure, should be considered as an alternative screening tool for estimating plantar pressure and spatiotemporal gait parameters to prevent sports-related and overuse injuries in adolescent athletes. Full article
(This article belongs to the Special Issue From Prevention to Recovery in Sports Injury Management)
Show Figures

Figure 1

20 pages, 5115 KB  
Article
Unsupervised Gait Event Identification with a Single Wearable Accelerometer and/or Gyroscope: A Comparison of Methods across Running Speeds, Surfaces, and Foot Strike Patterns
by Dovin Kiernan, Kristine Dunn Siino and David A. Hawkins
Sensors 2023, 23(11), 5022; https://doi.org/10.3390/s23115022 - 24 May 2023
Cited by 18 | Viewed by 4293
Abstract
We evaluated 18 methods capable of identifying initial contact (IC) and terminal contact (TC) gait events during human running using data from a single wearable sensor on the shank or sacrum. We adapted or created code to automatically execute each method, then applied [...] Read more.
We evaluated 18 methods capable of identifying initial contact (IC) and terminal contact (TC) gait events during human running using data from a single wearable sensor on the shank or sacrum. We adapted or created code to automatically execute each method, then applied it to identify gait events from 74 runners across different foot strike angles, surfaces, and speeds. To quantify error, estimated gait events were compared to ground truth events from a time-synchronized force plate. Based on our findings, to identify gait events with a wearable on the shank, we recommend the Purcell or Fadillioglu method for IC (biases +17.4 and −24.3 ms; LOAs −96.8 to +131.6 and −137.0 to +88.4 ms) and the Purcell method for TC (bias +3.5 ms; LOAs −143.9 to +150.9 ms). To identify gait events with a wearable on the sacrum, we recommend the Auvinet or Reenalda method for IC (biases −30.4 and +29.0 ms; LOAs −149.2 to +88.5 and −83.3 to +141.3 ms) and the Auvinet method for TC (bias −2.8 ms; LOAs −152.7 to +147.2 ms). Finally, to identify the foot in contact with the ground when using a wearable on the sacrum, we recommend the Lee method (81.9% accuracy). Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Back to TopTop