applsci-logo

Journal Browser

Journal Browser

Recent Advances in Motion Analysis, Gait Analysis, and Associated Interventions

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Biosciences and Bioengineering".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 393

Special Issue Editors


E-Mail Website
Guest Editor
School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4410, New Zealand
Interests: exercise performance; athletic performance; sport biomechanics; exercise biomechanics

E-Mail Website
Guest Editor
Department of Kinesiology, University of Wisconsin Oshkosh, 104 Albee, 800 Algoma Blvd, Oshkosh, WI 54904, USA
Interests: biomechanical risk factors and mechanisms of sports and exercise injury; kinetic quantification of plyometric and other resistance exercise; neuromuscular responses and adaptations to resistance training; biomechanics teaching pedagogy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The significance of bipedalism is connected to human evolutionary development, lifecycle processes, and social interactions. Gait analysis serves as an essential tool for understanding human movement, offering valuable insights into biomechanics, injury prevention, rehabilitation, and performance optimisation. Research in this field explores techniques for assessing and analysing movement patterns across the lifespan, as well as the effectiveness of interventions aimed at influencing parameters of gait. To further advance this area of study, we are organising a Special Issue titled “Recent Advances in Motion Analysis, Gait Analysis, and Associated Interventions”.

Dr. Paul William MacDermid
Dr. Brian Wallace
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gait
  • gait analysis
  • rehabilitation
  • fall risk assessment
  • footwear
  • athletic performance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 723 KiB  
Article
Association Between the History of Fall and the Fear of Falling on Stair Descent and Gait Transition Spatiotemporal Parameters and Lower-Limb Kinematics in Older Adults
by Ivone Teles, Juliana Moreira and Andreia S. P. Sousa
Appl. Sci. 2025, 15(12), 6689; https://doi.org/10.3390/app15126689 - 14 Jun 2025
Viewed by 262
Abstract
Background: Among older adults, there is a high incidence of history of fall (HoF), fear of falling (FoF), and falls on stair descent during gait transitions. Purpose: We aim to evaluate the association between HoF and FoF on spatiotemporal and lower-limb kinematic parameters [...] Read more.
Background: Among older adults, there is a high incidence of history of fall (HoF), fear of falling (FoF), and falls on stair descent during gait transitions. Purpose: We aim to evaluate the association between HoF and FoF on spatiotemporal and lower-limb kinematic parameters in older adults during stair descents and gait transitions. Methods: Sixty older adults (>60 years) were evaluated through an optoelectrical motion capture system during stair descents and gait transitions, using the mean value of the task velocity and time; single- and double-support time; peak downward center of mass (CoM) velocity; hip, knee, and ankle positions of ipsi and the contralateral limb; and foot clearance and foot placement, assessed through multivariate analysis of variance. Results: FOF exhibited longer time to complete (p = 0.009) and double-support (p = 0.047) and single-support (p = 0.009) times and a reduced peak downward CoM velocity (p = 0.043). In the gait transition cycle, HOF exhibited reduced ipsi ankle angles at toe-off (p = 0.015), and FOF presented reduced ipsi ankle angles at heel-strike (p = 0.041) and toe-off (p = 0.026) and reduced contralateral ankle angles at toe-off (p = 0.022). Conclusion: Older adults with HoF and FoF exhibit biomechanical changes during stair descents and gait transitions, in line with the use of more conservative strategies to avoid falling. Full article
Show Figures

Figure 1

Back to TopTop