Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = food-contact surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3236 KiB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

16 pages, 4508 KiB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 - 1 Aug 2025
Viewed by 122
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Figure 1

22 pages, 3480 KiB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 390
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

22 pages, 826 KiB  
Review
Inactivation of Emerging Opportunistic Foodborne Pathogens Cronobacter spp. and Arcobacter spp. on Fresh Fruit and Vegetable Products: Effects of Emerging Chemical and Physical Methods in Model and Real Food Systems—A Review
by Junior Bernardo Molina-Hernandez, Beatrice Cellini, Fatemeh Shanbeh Zadeh, Lucia Vannini, Pietro Rocculi and Silvia Tappi
Foods 2025, 14(14), 2463; https://doi.org/10.3390/foods14142463 - 14 Jul 2025
Viewed by 703
Abstract
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and [...] Read more.
The consumption of fresh fruit and vegetables is essential for a healthy diet as they contain a diverse composition of vitamins, minerals, fibre, and bioactive compounds. However, cross-contamination during harvest and post-harvest poses a high risk of microbial contamination. Therefore, handling fruit and vegetables during processing and contact with wet equipment and utensil surfaces is an ideal environment for microbial contamination and foodborne illness. Nevertheless, less attention has been paid to some emerging pathogens that are now increasingly recognised as transmissible to humans through contaminated fruit and vegetables, such as Arcobacter and Cronobacter species in various products, which are the main risk in fruit and vegetables. Cronobacter and Arcobacter spp. are recognised food-safety hazards because they pose a risk of foodborne disease, especially in vulnerable groups such as newborns and immunocompromised individuals. Cronobacter spp. have been linked to severe infant conditions—notably meningitis and sepsis—most often traced to contaminated powdered infant formula. Although Arcobacter spp. have been less extensively studied, they have also been associated with foodborne disease, chiefly from dairy products and meat. With this in mind, this review provides an overview of the main chemical and physical sanitisation methods in terms of their ability to reduce the contamination of fresh fruit and vegetable products caused by two emerging pathogens: Arcobacter and Cronobacter. Emerging chemical (organic acid compounds, extracts, and essential oils) and physical methods (combination of UV-C with electrolysed water, ultrasound, and cold atmospheric plasma) offer innovative and environmentally friendly alternatives to traditional approaches. These methods often utilise natural materials, less toxic solvents, and novel techniques, resulting in more sustainable processes compared with traditional methods that may use harsh chemicals and environmentally harmful processes. This review provides the fruit and vegetable industry with a general overview of possible decontamination alternatives to develop optimal and efficient processes that ensure food safety. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
Total Culturable Microbial Diversity of Food Contact Surfaces in Poultry and Fish Processing Industries After the Pre-Operational Cleaning Process
by Luiz Gustavo Bach, Gabriela Zarpelon Anhalt Braga, Márcia Cristina Bedutti, Layza Mylena Pardinho Dias, Emanoelli Aparecida Rodrigues dos Santos, Leonardo Ereno Tadielo, Evelyn Cristine da Silva, Jhennifer Arruda Schmiedt, Virgínia Farias Alves, Elaine Cristina Pereira De Martinis, Fábio Sossai Possebon, Vinicius Cunha Barcellos and Luciano dos Santos Bersot
Foods 2025, 14(13), 2387; https://doi.org/10.3390/foods14132387 - 6 Jul 2025
Viewed by 421
Abstract
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, [...] Read more.
This study assessed the viable and culturable microbial diversity that remained on equipment surfaces after hygiene procedures in Brazilian poultry and fish slaughterhouses. Food-contact surface samples were collected using sterile swabs in poultry (n = 50) and fish (Oreochromis niloticus, n = 50) slaughterhouses. The swab samples were used to prepare culture plates to recover viable and culturable cells. The grown plates were washed, and the total DNA of the cell suspension was extracted with a commercial kit. Sequencing of the total DNA extracted from cultures was targeted at the V3 and V4 regions of the 16S rRNA. DNA reads were analyzed by QIIME2 software, with results expressed in relative frequency (%RF). Alpha and beta diversity indexes were analyzed considering the spots of sample collection, type of industry, surfaces (smooth or modular), and materials (polypropylene, stainless steel, or polyurethane). The results showed that in the poultry slaughterhouse, the most abundant genera were Acinetobacter (27.4%), Staphylococcus (7.7%), and Pseudomonas (5.3%), while for the fish slaughterhouse, there was a higher abundance of Staphylococcus (27.7%), Acinetobacter (17.2%), and Bacillus (12.5%). Surface characteristics influenced the microbial diversity, with Acinetobacter spp. dominating modular surfaces and Staphylococcus spp. prevailing on smooth surfaces. The results obtained indicate there is an important resident microbiota that persists even after hygiene processes, and surface-specific cleaning strategies should be developed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 3845 KiB  
Article
Electrospun Nanofibers of Polyvinylidene Fluoride Enriched with Active Antimicrobial Tannic Acid for the Improvement of the Shelf Life of Cherry Tomatoes
by Rajaram Rajamohan, Ajmal P. Muhammed, Chaitany Jayprakash Raorane, Subramaniyan Ramasundaram, Iruthayapandi Selestin Raja, Sivakumar Allur Subramanian, Seong Cheol Kim, Tae Hwan Oh and Seho Sun
Materials 2025, 18(13), 3112; https://doi.org/10.3390/ma18133112 - 1 Jul 2025
Viewed by 406
Abstract
Active packaging films have been an essential component in food material research to ensure the safe and efficient preservation of food, fruit, and vegetables. The shelf life of fruits and vegetables may likely be extended by covering them with high-performance nanofiber (NF) films. [...] Read more.
Active packaging films have been an essential component in food material research to ensure the safe and efficient preservation of food, fruit, and vegetables. The shelf life of fruits and vegetables may likely be extended by covering them with high-performance nanofiber (NF) films. The selection of materials for active packaging film has been a critical factor in preventing food materials from environmental contaminants (microbes) and extending the shelf life. This study aims to develop NF-based materials for cherry tomatoes to prevent fungal and bacterial damage. Bioactive NFs were produced through an electrospinning process using tannic acid (TA) within a polyvinylidene fluoride (PVDF) template. These NFs offer a sustainable alternative to synthetic packaging for food preservation. TA was incorporated into the PVDF matrix at varying concentrations (0.4 to 1.2%). Key parameters, including moisture content, thickness, opacity, water-contact angle, and thermal shrinkage, were assessed. The physicochemical results indicate that the TA NFs are suitable for further shelf-life performance evaluations. The antifungal and antibiofilm activity of the NFs was tested, showing that the TA1.2 in the PVDF matrix was more effective than other concentrations. Shelf-life tests demonstrated that cherry tomatoes covered with TA1.2 NFs showed no surface changes for up to 4 days. Importantly, the NFs were confirmed to be non-toxic to normal cells, as evidenced by tests on mouse 3T3-L1 fibroblast cells. In summary, we have developed bioactive NFs composed of TA in a PVDF matrix that enhance the shelf life of cherry tomatoes by preventing bacterial and fungal attacks on the fruit surfaces. Full article
Show Figures

Figure 1

15 pages, 2754 KiB  
Article
Adsorption of Ibuprofen from Water Using Waste from Rose Geranium (Pelargonium graveolens) Stems
by Ntaote David Shooto and Patience Mapule Thabede
Appl. Sci. 2025, 15(13), 7203; https://doi.org/10.3390/app15137203 - 26 Jun 2025
Viewed by 215
Abstract
Rose geranium is widely used for oil extraction and in the food, perfume, and pharmaceutical industries. The waste produced after oil extraction has no alternative use and is usually dumped into the environment, causing pollution. This study aimed to use waste rose geranium [...] Read more.
Rose geranium is widely used for oil extraction and in the food, perfume, and pharmaceutical industries. The waste produced after oil extraction has no alternative use and is usually dumped into the environment, causing pollution. This study aimed to use waste rose geranium stems (SPG) as a potential adsorbent for ibuprofen from water. The adsorbent was characterised by SEM-EDX, FTIR, TGA, and BET. The SEM images showed that the adsorbent had a rough surface with voids and pores. Different functional groups were detected on the surface of SPG with FTIR. The trend of IBU adsorption showed that the adsorption capacity increases when the initial concentration of working standards is increased. The data for the contact time effect show that the adsorption rate was fast in the initial stage between 1 and 45 min. Afterward, a slow adsorption rate occurred between 65 and 105 min. The kinetic data corresponded to the Langmuir and pseudo-first-order (PFO) models. The highest recorded IBU uptake was 34.88 mg/g. The ΔHo value shows that the adsorption of IBU on SPG was controlled by physisorption. The obtained values of ΔGo are negative, indicating that the uptake of IBU was spontaneous. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

7 pages, 895 KiB  
Proceeding Paper
Detection of Proteus spp. in Artificial Surface Samples and Estimation of the LOD of the Qualitative Microbiological Method
by Dragica Đurđević-Milošević, Andrijana Petrović, Jasmina Elez, Vesna Kalaba and Goran Gagula
Eng. Proc. 2025, 87(1), 83; https://doi.org/10.3390/engproc2025087083 - 25 Jun 2025
Viewed by 446
Abstract
Food contact surfaces can be a source of food contamination. Bacteria of the genus Proteus are known as opportunistic pathogens, often associated with faecal contamination and decomposition of organic matter. This study aimed to isolate Proteus spp. from surface samples (of dimensions 5 [...] Read more.
Food contact surfaces can be a source of food contamination. Bacteria of the genus Proteus are known as opportunistic pathogens, often associated with faecal contamination and decomposition of organic matter. This study aimed to isolate Proteus spp. from surface samples (of dimensions 5 cm2 × 5 cm2). Three levels of artificially soiled aluminium foil were prepared using bacterial suspensions of Proteus hauseri ATCC 13315. Afterwards, the surface swabbing method for the detection of Proteus spp. was applied. The swab was homogenised with Eugon LT 100 broth, and 1 mL was transferred to the enrichment broth. After the incubation of the enrichment broth, streaking on the Brilliant Green Agar and Salmonella Shigella Agar was performed. The characteristic colonies were confirmed by biochemical reactions. The number of positive findings of Proteus hauseri on the applied level of contamination was used for calculation by the PODLOD_ver12.xls ECEL program by Wilrich and Wilrich. This program estimates the probability of detection (POD) function and the limit of detection (LOD) of qualitative microbiological methods. The results of the detection of Proteus hauseri in surface samples showed LOD50 = 24.60 [48.96; 97.45] CFU in 1 mL of swab rinse, and LOD95 = 106.30 [211.59; 421.15] CFU in 1 mL of swab rinse. The applied method for isolation of Proteus spp. from the surface samples can be used for well-contaminated surfaces. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

15 pages, 4409 KiB  
Article
Attachment and Biofilm Formation of Eight Different Salmonella Serotypes on Three Food-Contact Surfaces at Different Temperatures
by Katrina L. Counihan, Shannon Tilman, Joseph Uknalis, Sudarsan Mukhopadhyay, Brendan A. Niemira and Daniela Bermudez-Aguirre
Microorganisms 2025, 13(7), 1446; https://doi.org/10.3390/microorganisms13071446 - 21 Jun 2025
Viewed by 353
Abstract
Salmonella spp. represent a food safety risk in the production chain because of their potential for biofilm development. This study examined the biofilm formation of eight Salmonella serotypes from diverse foodborne outbreaks on three food-contact surfaces, stainless steel, silicone, and nylon, at 10 [...] Read more.
Salmonella spp. represent a food safety risk in the production chain because of their potential for biofilm development. This study examined the biofilm formation of eight Salmonella serotypes from diverse foodborne outbreaks on three food-contact surfaces, stainless steel, silicone, and nylon, at 10 °C and 37 °C. The effect of temperature was observed in slower biofilm formation at 10 °C with about 5-log (cfu/cm2) after 24 h, contrasting with 7-log (cfu/cm2) at 37 °C. The material also influenced biofilm formation, with the strongest biofilms on stainless steel at 10 °C and silicone at 37 °C. The serotypes producing the strongest biofilms were S. Enteritidis, S. Saint Paul, and S. Montevideo. The weakest serotypes were S. Senftenberg, S. Anatum, and the avirulent S. Typhimurium. The production of extra-polymeric substances was evident with S. Enteritidis. The biofilm index showed the highest value for low temperature, nylon, and silicone, and for S. Montevideo, S. Enteritidis, and S. Saint Paul. The whole-genome sequencing of each serovar suggested that single nucleotide polymorphisms in the curli (csg) genes may have contributed to the strong biofilm-forming ability of S. Montevideo and S. Saint Paul and the weaker ability of S. Senftenberg. These results can help with the correct development of sanitizing interventions based on the Salmonella strain of concern. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 4187 KiB  
Article
Development of pH-Sensing Starch and Carrageenan Biodegradable Films Incorporated with Grape and Acerola Industrial Residues
by Mayara Lima Goiana, Glácio Souza Araujo and Fabiano André Narciso Fernandes
Processes 2025, 13(6), 1939; https://doi.org/10.3390/pr13061939 - 19 Jun 2025
Viewed by 478
Abstract
This research has explored the development of pH-sensing starch and carrageenan films incorporated with grape pomace and acerola residue extracts. The main goal was to improve the films’ physicochemical properties and induce pH-sensing capabilities. This study has evaluated the pH-sensing capabilities of the [...] Read more.
This research has explored the development of pH-sensing starch and carrageenan films incorporated with grape pomace and acerola residue extracts. The main goal was to improve the films’ physicochemical properties and induce pH-sensing capabilities. This study has evaluated the pH-sensing capabilities of the films as well as important properties such as amylose content, moisture content, solubility, contact angle, surface morphology, and chemical group profiling. The film incorporated with grape pomace extracts presented satisfactory colorimetric pH indication, while the response of the film incorporated with acerola residue extract was less intense. Integrating natural pigments such as acerola carotenoids and grape pomace anthocyanins enhanced the functional properties of the films and enabled visual indication of food freshness through pH-sensing ability. Full article
Show Figures

Graphical abstract

20 pages, 12281 KiB  
Article
Investigation of Surface Properties and Antibacterial Activity of 3D-Printed Polyamide 12-Based Samples Coated by a Plasma SiOxCyHz Amorphous Thin Film Approved for Food Contact
by Mario Nicotra, Raphael Palucci Rosa, Valentina Trovato, Giuseppe Rosace, Roberto Canton, Anna Rita Loschi, Stefano Rea, Mahmoud Alagawany, Carla Sabia and Alessandro Di Cerbo
Polymers 2025, 17(12), 1678; https://doi.org/10.3390/polym17121678 - 17 Jun 2025
Viewed by 474
Abstract
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand [...] Read more.
Microbial contamination and biofilm formation on food contact materials (FCMs) represent critical challenges within the food supply chain, compromising food safety and quality while increasing the risk of foodborne illnesses. Traditional materials often lack sufficient microbial resistance to contamination, creating a high demand for innovative antimicrobial surfaces. This study assessed the effectiveness of a nanosized deposited SiOxCyHz coating approved for food contact on 3D-printed polyamide 12 (PA12) disk substrates, aiming at providing antimicrobial and anti-biofilm functionality to mechanical components and packaging material in the food supply chain. The coating was applied using plasma-enhanced chemical vapor deposition (PECVD) and characterized through Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and contact angle measurements. Coated PA12 samples exhibited significantly enhanced hydrophobicity, with an average water contact angle of 112.9°, thus improving antibacterial performance by markedly reducing bacterial adhesion. Microbiological assays revealed a significant (p < 0.001) bactericidal activity (up to 4 logarithms after 4 h, ≥99.99%) against Gram-positive and Gram-negative bacteria, including notable foodborne pathogens such as L. monocytogenes, S. aureus, E. coli, and S. typhimurium. SiOxCyHz-coated PA12 surfaces exhibited strong antibacterial activity, representing a promising approach for coating additive-manufactured components and equipment for packaging production in the food and pharmaceutical supply chain able to enhance safety, extend product shelf life, and reduce reliance on chemical sanitizers. Full article
Show Figures

Figure 1

18 pages, 6403 KiB  
Article
Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution
by Ernesto David García-Bustos, Diego Maxemin-Lugo, Norberto Diez-Torres, Noé López-Perrusquia, Marco Antonio Doñu-Ruiz, Martin Flores-Martinez, Johans Restrepo and Stephen Muhl-Saunders
Materials 2025, 18(12), 2733; https://doi.org/10.3390/ma18122733 - 11 Jun 2025
Viewed by 474
Abstract
Food security is one of the main problems in several countries. In food processing the cutting operation is very important as the operation is basic to food preparation. Due to cutting tools being exposed to a high-demand environment that includes high contact pressure, [...] Read more.
Food security is one of the main problems in several countries. In food processing the cutting operation is very important as the operation is basic to food preparation. Due to cutting tools being exposed to a high-demand environment that includes high contact pressure, a corrosive atmosphere, and a high-speed process, they are subject to high mechanical and corrosive wear that reduces their lifetime and efficiency. Tribocorrosion is one of the main phenomena that reduces the lifetime and efficiency of cutting tools. This work presents electrochemical and tribocorrosion studies of D2 steel surfaces coated with TiN, TiCN, and TiCrN films. The samples were coated by a commercial source, using the PVD-cathodic arc technique. The crystalline structure of TiN and TiCN films presented a TiN and Ti phase, while the crystalline structure of TiCrN showed CrN and Cr phases. The films exhibited good adhesion, but the surfaces coated with TiN and TiCN films presented lower hardness. Although the TiN, TiCN, and TiCrN films showed better wear and corrosion resistance than the D2 steel surfaces, the inclusion of C and Cr in the TiN films decreased the TiN wear and electrochemical resistance in 3.5% (w/w) of NaCl solution. Full article
Show Figures

Graphical abstract

13 pages, 621 KiB  
Article
Influence of Sugars and Surface Properties on Wettability and Adhesion of Starch-Based Model Suspensions on Polytetrafluoroethylene (PTFE) and Polyethylene Terephthalate (PET) Surfaces
by Ana Caroline Frabetti, Jaqueline Oliveira de Moraes, Vanessa Jury, Lionel Boillereaux and João Borges Laurindo
Foods 2025, 14(12), 2033; https://doi.org/10.3390/foods14122033 - 9 Jun 2025
Viewed by 428
Abstract
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, [...] Read more.
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, which served as model systems. Wettability was assessed on hydrophobic surfaces, including new polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) films, with additional testing on sandpaper-abraded PTFE (named PTFE R+) to evaluate the influence of surface roughness. PET film exhibited lower roughness (Ra = X µm) and higher surface tension (71 mN/m) compared to PTFE (surface tension 65 mN/m). Contact angles on PET (93–124°) were significantly higher than on PTFE (89–113°), indicating greater product adhesion on PET. All suspensions showed pseudoplastic behavior, and the addition of the surfactant Tween 20 slightly reduced surface tension (by ≈1–5 mN/m) but did not significantly enhance wettability. Sucrose and fructose increased wettability on PTFE R+, but the effects of the sugar varied depending on the surface. These findings suggest that PTFE surfaces reduce product sticking during drying compared to PET. Interactions between sugars, Tween 20, and hydrophobic surfaces must be considered to optimize spreading and reduce product sticking during drying. This knowledge can guide improvements in drying processes for food products. Full article
Show Figures

Figure 1

14 pages, 1230 KiB  
Article
Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
by Yan Liu, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen and Lifen Zhang
Foods 2025, 14(11), 1999; https://doi.org/10.3390/foods14111999 - 5 Jun 2025
Viewed by 397
Abstract
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose [...] Read more.
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose mass ratio, temperature, and time) on the functional properties of PM were investigated, and its structural properties were evaluated using water contact angle measurements, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. It was found that TGase-coupled glycation modification altered the secondary structure of PM and increased both the water contact angle and the surface hydrophobicity, thereby significantly affecting its functional properties. Additionally, superior emulsification, foaming, and oil-absorbing properties were achieved for the modified PM, which were named EPM, FPM, and OPM, respectively (specimens under different modification conditions). Notably, the emulsification activity of the EPM sample was enhanced by 69.8% (i.e., from 18.48 to 31.38 m2/g); the foaming capacity of the FPM specimen was increased by 84.00% (i.e., from 21.00 to 46.00%); and the oil-absorbing capacity of the OPM sample was enhanced by 359.57% (i.e., from 1.41 to 6.48 g/g protein). Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

20 pages, 9749 KiB  
Article
Sustainable Strategy for Microplastic Mitigation: Fe3O4 Acid-Functionalized Magnetic Nanoparticles for Microplastics Removal
by Ivanilson da Silva de Aquino, Ester de Araújo Freire, Alisson Mendes Rodrigues, Otilie Eichler Vercillo, Mauro Francisco Pinheiro da Silva, Mateus Faustino Salazar da Rocha, Míriam Cristina Santos Amaral and Ariuska Karla Barbosa Amorim
Sustainability 2025, 17(11), 5203; https://doi.org/10.3390/su17115203 - 5 Jun 2025
Cited by 1 | Viewed by 1194
Abstract
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O [...] Read more.
Microplastic (MPs) pollution has emerged as a critical environmental issue due to its persistent accumulation in ecosystems, posing risks to aquatic life, food safety, and human health. In this study, magnetic Fe3O4 nanoparticles functionalized with citric acid (Fe3O4@AC) were used to remove high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) MPs from an aqueous medium. Fe3O4@AC was synthesized via the coprecipitation method and characterized by morphology (SEM), crystalline phases (XRD), chemical aspects (FTIR), and surface area (nitrogen sorption isotherms). The MPs removal efficiency of Fe3O4@AC was evaluated based on the initial concentration, contact time, and pH. The adsorption isotherm and kinetics data were best described by the Sips and pseudo-second-order models, respectively. Fe3O4@AC removed 80% of the MPs at a pH of 6. Based on experimental observations (zeta potential, porosity, and SEM) and theoretical insights, it was concluded that hydrogen bonding, pore filling, and van der Waals forces governed the adsorption mechanism. Reusability tests showed that Fe3O4@AC could be reused up to five times, with a removal efficiency above 50%. These findings suggest that Fe3O4@AC is a sustainable and promising material for the efficient removal of microplastics from wastewater, offering a reusable and low-impact alternative that contributes to environmentally responsible wastewater treatment strategies. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Graphical abstract

Back to TopTop