Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Preparation
2.2. Surface Characterization
2.3. Surface Properties
2.3.1. Mechanical Properties
2.3.2. Electrochemical Properties
3. Results
3.1. Surfaces Characteristics
3.2. Mechanical Properties
3.2.1. Hardness Test
3.2.2. Scratch Test
3.3. Electrochemical Properties
3.4. Tribocorrosion Properties
3.4.1. Wear
3.4.2. Friction Force
3.4.3. Open Circuit Potential (OCP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Schuldt, S.; Witt, T.; Schmidt, C.; Schneider, Y.; Nündel, T.; Majschak, J.-P.; Rohm, H. High-speed cutting of foods: Development of a special testing device. J. Food Eng. 2018, 216, 36–41. [Google Scholar] [CrossRef]
- Ageev, O.V.; Dowgiałło, A.; Sterczyńska, M.; Piepiórka-Stepuk, J.; Samojlova, N.V.; Jakubowski, M. Increasing the efficiency of food material cutting during inclined and shear movements of knife. Materials 2021, 15, 289. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO in the 2024 Humanitarian Response; Plans Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Brown, T.; James, S.J.; Purnell, G.L. Cutting forces in foods: Experimental measurements. J. Food Eng. 2005, 70, 165–170. [Google Scholar] [CrossRef]
- Liu, W.; Lyu, J.; Wu, D.; Cao, Y.; Ma, Q.; Lu, Y.; Zhang, X. Cutting techniques in the fish industry: A critical review. Foods 2022, 11, 3206. [Google Scholar] [CrossRef]
- Schuldt, S.; Schneider, Y.; Rohm, H. High-speed cutting of foods: Cutting behavior and initial cutting forces. J. Food Eng. 2018, 230, 55–62. [Google Scholar] [CrossRef]
- Salas, B.V.; Wiener, M.S.; Stoytcheva, M.; Zlatev, R.; Beltran, M.C. Corrosion in the food industry and its control. In Food Industrial Processes-Methods and Equipment; InTech: Rijeka, Croatia, 2012; Volume 29168. [Google Scholar]
- Rossi, S.; Leso, S.M.; Calovi, M. Study of the corrosion behavior of stainless steel in food industry. Materials 2024, 17, 1617. [Google Scholar] [CrossRef]
- ‘Aqilah, N.M.N.; Rovina, K.; Felicia, W.X.L.; Vonnie, J.M. A review on the potential bioactive components in fruits and vegetable wastes as value-added products in the food industry. Molecules 2023, 28, 2631. [Google Scholar] [CrossRef]
- Ihlas, A. Failure analysis of blade on coconut shell crusher machine. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 012061. [Google Scholar]
- Echegaray, N.; Hassoun, A.; Jagtap, S.; Tetteh-Caesar, M.; Kumar, M.; Tomasevic, I.; Goksen, G.; Lorenzo, J.M. Meat 4.0: Principles and applications of industry 4.0 technologies in the meat industry. Appl. Sci. 2022, 12, 6986. [Google Scholar] [CrossRef]
- Bremer, F.; Matthiesen, S. A review of research relating to food slicing in industrial applications. J. Food Eng. 2020, 268, 109735. [Google Scholar] [CrossRef]
- D’Addio, L.; Carotenuto, C.; Di Natale, F.; Nigro, R. A new arrangement of blades in scraped surface heat exchangers for food pastes. J. Food Eng. 2012, 108, 143–149. [Google Scholar] [CrossRef]
- Singh, K.; Khatirkar, R.K.; Sapate, S.G. Microstructure evolution and abrasive wear behavior of D2 steel. Wear 2015, 328, 206–216. [Google Scholar] [CrossRef]
- Kurt, B.; Günen, A.; Kanca, Y.; Koç, V.; Gök, M.S.; Kırar, E.; Askerov, K. Properties and tribologic behavior of titanium carbide coatings on AISI D2 steel deposited by thermoreactive diffusion. Jom 2018, 70, 2650–2659. [Google Scholar] [CrossRef]
- Zou, J.; Grosdidier, T.; Bolle, B.; Zhang, K.; Dong, C. Texture and microstructure at the surface of an AISI D2 steel treated by high current pulsed electron beam. Metall. Mater. Trans. A 2007, 38, 2061–2071. [Google Scholar] [CrossRef]
- Yapici, A.; Aydin, S.; Koç, V.; Kanca, E.; Yildiz, M. Wear behavior of borided AISI D2 steel under linear reciprocating sliding conditions. Prot. Met. Phys. Chem. Surf. 2019, 55, 341–351. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, Y.; Xie, Z.; Chen, T.; Wan, Y.; Wang, H.; Gao, X.; Chen, Y.; Zhou, Y.; Guo, Y. Tribocorrosion behaviors of CrN coating in 3.5 wt% NaCl solution. Thin Solid Films 2017, 622, 41–47. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Zeng, Z.; Gao, Y. Tribocorrosion behaviour of F690 and 316L steel in artificial seawater. Lubr. Sci. 2018, 30, 365–375. [Google Scholar] [CrossRef]
- Sun, Y. Tribocorrosion behavior of low temperature plasma carburized stainless steel. Surf. Coat. Technol. 2013, 228, S342–S348. [Google Scholar] [CrossRef]
- Pokhmurs’kyi, V.; Dovhunyk, V. Tribocorrosion of stainless steels. Mater. Sci. 2010, 46, 87. [Google Scholar] [CrossRef]
- Azzi, M.; Paquette, M.; Szpunar, J.; Klemberg-Sapieha, J.; Martinu, L. Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 2009, 267, 860–866. [Google Scholar] [CrossRef]
- Sun, Y.; Rana, V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution. Mater. Chem. Phys. 2011, 129, 138–147. [Google Scholar] [CrossRef]
- Kaigude, A.R.; Khedkar, N.K.; Jatti, V.S.; Salunkhe, S.; Cep, R.; Nasr, E.A. Surface roughness prediction of AISI D2 tool steel during powder mixed EDM using supervised machine learning. Sci. Rep. 2024, 14, 9683. [Google Scholar] [CrossRef] [PubMed]
- Reséndiz-Calderón, C.; Cao-Romero-Gallegos, J.; Farfan-Cabrera, L.; Campos-Silva, I.; Soriano-Vargas, O. Influence of boriding on the tribological behavior of AISI D2 tool steel for dry deep drawing of stainless steel and aluminum. Surf. Coat. Technol. 2024, 484, 130832. [Google Scholar] [CrossRef]
- Castillejo, F.; Olaya, J.J.; Alfonso, J.E. Wear and corrosion resistance of chromium–vanadium carbide coatings produced via thermo-reactive deposition. Coatings 2019, 9, 215. [Google Scholar] [CrossRef]
- Voglar, J.; Novak, Ž.; Jovičević-Klug, P.; Podgornik, B.; Kosec, T. Effect of deep cryogenic treatment on corrosion properties of various high-speed steels. Metals 2020, 11, 14. [Google Scholar] [CrossRef]
- Muhammed, M.; Javidani, M.; Ebrahimi Sadrabadi, T.; Heidari, M.; Levasseur, T.; Jahazi, M. A comprehensive review of cathodic arc evaporation physical vapour deposition (CAE-PVD) coatings for enhanced tribological performance. Coatings 2024, 14, 246. [Google Scholar] [CrossRef]
- Zhirkov, I.; Petruhins, A.; Rosén, J. Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes. Surf. Coat. Technol. 2015, 281, 20–26. [Google Scholar] [CrossRef]
- Anders, A. Unfiltered and filtered cathodic arc deposition. In Handbook of Deposition Technologies for Films and Coatings; Elsevier: Amsterdam, The Netherlands, 2010; pp. 466–531. [Google Scholar]
- Çaha, I.; Alves, A.; Affonço, L.; Lisboa-Filho, P.; Da Silva, J.; Rocha, L.; Pinto, A.; Toptan, F. Corrosion and tribocorrosion behaviour of titanium nitride thin films grown on titanium under different deposition times. Surf. Coat. Technol. 2019, 374, 878–888. [Google Scholar] [CrossRef]
- Datta, S.; Das, M.; Balla, V.K.; Bodhak, S.; Murugesan, V. Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings. Surf. Coat. Technol. 2018, 344, 214–222. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Y.; Yuan, Z.; Li, J. Structure and tribocorrosion behavior of Ti/TiN multilayer coatings in simulated body fluid by arc ion plating. Surf. Coat. Technol. 2020, 403, 126399. [Google Scholar] [CrossRef]
- Cheng, K.-y.; Nargaraj, R.; Bijukumar, D.; Mathew, M.T.; McNallan, M. Improvement of tribocorrosion behavior on titanium alloy by carbide-derived carbon (CDC). Surf. Coat. Technol. 2020, 392, 125692. [Google Scholar] [CrossRef]
- Guha, S.; Das, S. Investigation over effect of different carbon content on various properties of titanium carbon nitride (TiCN) coating grown on Si (100) substrate by chemical vapor deposition (CVD) process. Eur. Phys. J. Plus 2022, 137, 363. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, H.; Hua, Q.; Liao, B.; Ouyang, X. Tribocorrosion behaviors of superhard yet tough Ti-CN ceramic coatings. Surf. Coat. Technol. 2022, 439, 128448. [Google Scholar] [CrossRef]
- Kenzhegulov, A.; Mamaeva, A.; Panichkin, A.; Alibekov, Z.; Kshibekova, B.; Bakhytuly, N.; Wieleba, W. Comparative study of tribological and corrosion characteristics of TiCN, TiCrCN, and TiZrCN coatings. Coatings 2022, 12, 564. [Google Scholar] [CrossRef]
- Wood, R.J.; Lu, P. Coatings and surface modification of alloys for tribo-corrosion applications. Coatings 2024, 14, 99. [Google Scholar] [CrossRef]
- Prabakaran, V.; Chandrasekaran, K. Characterisation and corrosion resistance of TiCrN composite coating on steel by physical vapour deposition method. J. Bio- Tribo-Corros. 2016, 2, 25. [Google Scholar] [CrossRef]
- Aouadi, S.; Wong, K.; Mitchell, K.; Namavar, F.; Tobin, E.; Mihut, D.; Rohde, S. Characterization of titanium chromium nitride nanocomposite protective coatings. Appl. Surf. Sci. 2004, 229, 387–394. [Google Scholar] [CrossRef]
- Hattori, M.; Takemoto, S.; Yoshinari, M.; Kawada, E.; Oda, Y. Effect of chromium content on mechanical properties of casting Ti-Cr alloys. Dent. Mater. J. 2010, 29, 570–574. [Google Scholar] [CrossRef]
- Xian, G.; Bai, Y.; Qi, X.; Wang, J.; Tian, J.; Xiao, H. Hygrothermal aging on the mechanical property and degradation mechanism of carbon fiber reinforced epoxy composites modified by nylon 6. J. Mater. Res. Technol. 2024, 33, 6297–6306. [Google Scholar] [CrossRef]
- Du, H.; Xian, G.; Tian, J.; Ma, Z.; Li, C.; Xin, M.; Zhang, Y. Effect of fiber surface treatment with silane coupling agents and carbon nanotubes on mechanical properties of carbon fiber reinforced polyamide 6 composites. Polym. Compos. 2025, 46, 1267–1283. [Google Scholar] [CrossRef]
- ASTM C1624-22; Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. ASTM: West Conshohocken, PA, USA, 2022.
- Ageev, O.V.; Dowgiałło, A.; Sterczyńska, M.; Piepiórka-Stepuk, J.; Giurgiulescu, L.; Janowicz, M.; Jakubowski, M. Experimental characterization and theoretical modeling of fracture and friction resistance forces during tuna cutting. J. Food Eng. 2021, 307, 110648. [Google Scholar] [CrossRef]
- Barber, J.; Barber, J. Hertzian contact. In Contact Mechanics; Springer: Cham, Switzerland, 2018; pp. 29–41. [Google Scholar]
- Aly, B.A.; Low, T.; Long, D.; Brett, P.; Baillie, C. Tactile sensing for tissue discrimination in robotic meat cutting: A feasibility study. J. Food Eng. 2024, 363, 111754. [Google Scholar] [CrossRef]
- ASTM G133; Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM: West Conshohocken, PA, USA, 2016.
- Odabas, D. Effects of load and speed on wear rate of abrasive wear for 2014 Al alloy. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012008. [Google Scholar]
- Nyman, J. Cathodic Arc Deposition of Metal-Rich Cr-Based Coatings; Linköpings Universitet: Linköping, Sweden, 2023. [Google Scholar]
- Kothari, D.; Kale, A. Recent trends in surface engineering using cathodic arc technique. Surf. Coat. Technol. 2002, 158, 174–179. [Google Scholar] [CrossRef]
- Kuprin, A.S.; Gilewicz, A.; Kuznetsova, T.A.; Lapitskaya, V.A.; Tolmachova, G.N.; Warcholinski, B.; Aizikovich, S.M.; Sadyrin, E.V. Structure and properties of ZrON coatings synthesized by cathodic arc evaporation. Materials 2021, 14, 1483. [Google Scholar] [CrossRef]
- Mahajan, U.; Dhonde, M.; Sahu, K.; Ghosh, P.; Shirage, P.M. Titanium nitride (TiN) as a promising alternative to plasmonic metals: A comprehensive review of synthesis and applications. Mater. Adv. 2024, 5, 846–895. [Google Scholar] [CrossRef]
- Cheng, Y.; Tay, B.; Lau, S.P.; Kupfer, H.; Richter, F. Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. J. Appl. Phys. 2002, 92, 1845–1849. [Google Scholar] [CrossRef]
- Escalona, M.; Bhuyan, H.; Ibacache, S.; Retamal, M.; Saikia, P.; Borgohain, C.; Valenzuela, J.; Veloso, F.; Favre, M.; Wyndham, E. Study of titanium nitride film growth by plasma enhanced pulsed laser deposition at different experimental conditions. Surf. Coat. Technol. 2021, 405, 126492. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Rajam, K. Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. J. Mater. Res. 2004, 19, 3196–3205. [Google Scholar] [CrossRef]
- Guo, Q.; Xie, Y.; Wang, X.; Lv, S.; Hou, T.; Bai, C. Synthesis of uniform titanium nitride nanocrystalline powders via a reduction–hydrogenation–dehydrogenation–nitridation route. J. Am. Ceram. Soc. 2005, 88, 249–251. [Google Scholar] [CrossRef]
- Spengler, W.; Kaiser, R.; Christensen, A.; Müller-Vogt, G. Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric TiN. Phys. Rev. B 1978, 17, 1095. [Google Scholar] [CrossRef]
- Rawat, R.; Lee, P.; White, T.; Ying, L.; Lee, S. Room temperature deposition of titanium carbide thin films using dense plasma focus device. Surf. Coat. Technol. 2001, 138, 159–165. [Google Scholar] [CrossRef]
- Ivanovskaya, M.; Ovodok, E.; Kotsikau, D.; Azarko, I.; Micusik, M.; Omastova, M.; Golovanov, V. Structural transformation and nature of defects in titanium carbide treated in different redox atmospheres. RSC Adv. 2020, 10, 25602–25608. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Rodil, S.; Robertson, J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 2003, 67, 155306. [Google Scholar] [CrossRef]
- Ferrari, A.; Rodil, S.; Robertson, J. Resonant Raman spectra of amorphous carbon nitrides: The G peak dispersion. Diam. Relat. Mater. 2003, 12, 905–910. [Google Scholar] [CrossRef]
- Arif, M.; Sanger, A.; Singh, A. Sputter deposited chromium nitride thin electrodes for supercapacitor applications. Mater. Lett. 2018, 220, 213–217. [Google Scholar] [CrossRef]
- Michau, A.; Maury, F.; Schuster, F.; Boichot, R.; Pons, M. Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment. Appl. Surf. Sci. 2017, 422, 198–206. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chen, M.-L.; Lai, K.-L. Corrosion resistance of TiN/TiAlN-coated ADI by cathodic arc deposition. Mater. Sci. Eng. A 2006, 421, 182–190. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Gasem, Z.M.; Mohammed, A.S. Comparative investigation and characterization of the scratch and wear resistance behavior of TiN, CrN, AlTiN and AlCrN cathodic arc PVD coatings. Arab. J. Sci. Eng. 2019, 44, 10355–10371. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Yang, W.-J.; Guo, C.-Q.; Chen, Y.-Q.; Yu, B.-H.; Xiao, J.-Q. Effect of axial magnetic field on the microstructure, hardness and wear resistance of TiN films deposited by arc ion plating. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 984–993. [Google Scholar] [CrossRef]
- Hernández, L.C.; Ponce, L.; Fundora, A.; López, E.; Pérez, E. Nanohardness and residual stress in TiN coatings. Materials 2011, 4, 929–940. [Google Scholar] [CrossRef]
- Colombo, D.A.; Massone, J.M.; Echeverría, M.D.; Márquez, A.B. Rolling contact fatigue behavior of Ti/TiN coated ADI by cathodic arc deposition. Ceram. Int. 2017, 43, 4263–4271. [Google Scholar] [CrossRef]
- Yan, W.; Pun, C.L.; Simon, G.P. Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites. Compos. Sci. Technol. 2012, 72, 1147–1152. [Google Scholar] [CrossRef]
- Shugurov, A.; Panin, A.; Oskomov, K. Specific features of the determination of the mechanical characteristics of thin films by the nanoindentation technique. Phys. Solid State 2008, 50, 1050–1055. [Google Scholar] [CrossRef]
- Pharr, G.; Oliver, W. Measurement of thin film mechanical properties using nanoindentation. Mrs Bull. 1992, 17, 28–33. [Google Scholar] [CrossRef]
- Tuck, J.; Korsunsky, A.; Bhat, D.; Bull, S. Indentation hardness evaluation of cathodic arc deposited thin hard coatings. Surf. Coat. Technol. 2001, 139, 63–74. [Google Scholar] [CrossRef]
- Korsunsky, A.; McGurk, M.; Bull, S.; Page, T. On the hardness of coated systems. Surf. Coat. Technol. 1998, 99, 171–183. [Google Scholar] [CrossRef]
- Broitman, E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribol. Lett. 2017, 65, 23. [Google Scholar] [CrossRef]
- Gonzalez-Carmona, J.M.; Mambuscay, C.L.; Ortega-Portilla, C.; Hurtado-Macias, A.; Piamba, J.F. TiNbN Hard coating deposited at varied substrate temperature by cathodic arc: Tribological performance under simulated cutting conditions. Materials 2023, 16, 4531. [Google Scholar] [CrossRef]
- Tu, R.; Jiao, J.; Jiang, M.; Yang, M.; Ji, B.; Gao, T.; Li, Q.; Zhang, S.; Zhang, L. Effect of Gradient Multilayer Design on Tribological Performance of TiN/TiSiN Coatings Prepared by Cathodic Arc Ion Plating. Coatings 2023, 13, 836. [Google Scholar] [CrossRef]
- Kindlund, H.; Sangiovanni, D.; Petrov, I.; Greene, J.E.; Hultman, L. A review of the intrinsic ductility and toughness of hard transition-metal nitride alloy thin films. Thin Solid Films 2019, 688, 137479. [Google Scholar] [CrossRef]
- Richter, N.; Yang, B.; Barnard, J.; Niu, T.; Sheng, X.; Shaw, D.; Watanabe, M.; Rane, G.; Krause, U.; Dürrenfeld, P. Significant texture and wear resistance improvement of TiN coatings using pulsed DC magnetron sputtering. Appl. Surf. Sci. 2023, 635, 157709. [Google Scholar] [CrossRef]
- Kashani, H.; Sohi, M.H.; Kaypour, H. Microstructural and physical properties of titanium nitride coatings produced by CVD process. Mater. Sci. Eng. A 2000, 286, 324–330. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Z.; Wang, M.; Li, Y.; Wang, Y. Microstructure and properties of TiCrN coatings by arc ion plating. Surf. Eng. 2016, 32, 284–288. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, F.; Yan, J. Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests. Surf. Coat. Technol. 2016, 285, 203–213. [Google Scholar] [CrossRef]
- Nolan, D.; Leskovsek, V.; Jenko, M. Estimation of fracture toughness of nitride compound layers on tool steel by application of the Vickers indentation method. Surf. Coat. Technol. 2006, 201, 182–188. [Google Scholar] [CrossRef]
- Mao, W.; Wan, J.; Dai, C.; Ding, J.; Zhang, Y.; Zhou, Y.; Lu, C. Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique. Surf. Coat. Technol. 2012, 206, 4455–4461. [Google Scholar] [CrossRef]
- Rao, X.; Zhang, F.; Luo, X.; Ding, F. Characterization of hardness, elastic modulus and fracture toughness of RB-SiC ceramics at elevated temperature by Vickers test. Mater. Sci. Eng. A 2019, 744, 426–435. [Google Scholar] [CrossRef]
- Bull, S.; Berasetegui, E. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 2006, 39, 99–114. [Google Scholar] [CrossRef]
- Akono, A.-T.; Ulm, F.-J. An improved technique for characterizing the fracture toughness via scratch test experiments. Wear 2014, 313, 117–124. [Google Scholar] [CrossRef]
- Silva, J.; Alves, A.; Pinto, A.; Toptan, F. Corrosion and tribocorrosion behavior of Ti− TiB− TiNx in-situ hybrid composite synthesized by reactive hot pressing. J. Mech. Behav. Biomed. Mater. 2017, 74, 195–203. [Google Scholar] [CrossRef]
- Shanaghi, A.; Chu, P.K.; Rouhaghdam, A.R.S.; Xu, R.; Hu, T. Structure and corrosion resistance of Ti/TiC coatings fabricated by plasma immersion ion implantation and deposition on nickel–titanium. Surf. Coat. Technol. 2013, 229, 151–155. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, W.; Bi, F.; Peng, L.; Lai, X. Enhanced corrosion resistance and interfacial conductivity of TiCx/aC nanolayered coatings via synergy of substrate bias voltage for bipolar plates applications in PEMFCs. ACS Appl. Mater. Interfaces 2018, 10, 19087–19096. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Gao, Z.; Zhang, J.; He, H.; Wang, X. Comparative investigation on corrosion resistance of stainless steels coated with titanium nitride, nitrogen titanium carbide and titanium-diamond-like carbon films. Coatings 2021, 11, 1543. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Gasem, Z.M.; Madhan Kumar, A. Corrosion resistance behavior of single-layer cathodic arc PVD nitride-base coatings in 1M HCl and 3.5 pct NaCl solutions. Metall. Mater. Trans. B 2017, 48, 1321–1332. [Google Scholar] [CrossRef]
- Wang, H.; Ye, Y.; Wang, Y. Structure, corrosion, and tribological properties of CrSiN coatings with various Si contents in 3.5% NaCl solution. Surf. Interface Anal. 2018, 50, 471–479. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Y.; Ye, C.; Li, F.; Chen, H.; Miao, Y.; Zhao, Z.; Chen, R. The effect of AlCrN, TiN and Ni-Cr-Nb coatings on the wear and corrosion performance of 45# steel in 3.5% sodium chloride solution. Int. J. Electrochem. Sci. 2024, 19, 100608. [Google Scholar]
- Wang, B.; Tian, X.; Gong, C.; Geng, H.; Hu, T. Internal cylindrical cathode arc deposited Cr coatings on the interior of slender tube: The influence of arc currents. Vacuum 2025, 232, 113883. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Shafyei, A.; Salimijazi, H. Characterization of TiN, CrN and (Ti, Cr) N coatings deposited by cathodic ARC evaporation. Int. J. Eng. Trans. A Basics 2014, 27, 1127–1132. [Google Scholar]
- Hudak, O.E.; Kutrowatz, P.; Wojcik, T.; Ntemou, E.; Primetzhofer, D.; Shang, L.; Ramm, J.; Hunold, O.; Kolozsvári, S.; Polcik, P. Improved corrosion resistance of cathodic arc evaporated Al0.7Cr0.3−xVxN coatings in NaCl-rich media. Corros. Sci. 2023, 221, 111376. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, Z.; Zeng, J.; Chen, D.; Luo, F.; Wang, Q.; Dai, W.; Zhang, R. Comparison of Corrosion Behavior of aC Coatings Deposited by Cathode Vacuum Arc and Filter Cathode Vacuum Arc Techniques. Coatings 2024, 14, 1053. [Google Scholar] [CrossRef]
- Alkan, S.; Gök, M.S. Influence of plasma nitriding pre-treatment on the corrosion and tribocorrosion behaviours of PVD CrN, TiN and AlTiN coated AISI 4140 steel in seawater. Lubr. Sci. 2022, 34, 67–83. [Google Scholar] [CrossRef]
- Kasar, A.K.; Siddaiah, A.; Ramachandran, R.; Menezes, P.L. Tribocorrosion performance of tool steel for rock drilling process. J. Bio- Tribo-Corros. 2019, 5, 44. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of growth defects in thin films prepared by PVD techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Azar, G.T.P.; Yelkarasi, C.; Ürgen, M. The role of droplets on the cavitation erosion damage of TiN coatings produced with cathodic arc physical vapor deposition. Surf. Coat. Technol. 2017, 322, 211–217. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, W.; Wang, J.; Ju, J.; Li, J. A novel biomedical TiN-embedded TiO2 nanotubes composite coating with remarkable mechanical properties, corrosion, tribocorrosion resistance, and antibacterial activity. Ceram. Int. 2023, 49, 15629–15640. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Tao, Y.; Hu, L. High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding. Appl. Surf. Sci. 2017, 402, 478–494. [Google Scholar] [CrossRef]
- Ramteke, S.M.; Walczak, M.; De Stefano, M.; Ruggiero, A.; Rosenkranz, A.; Marian, M. 2D materials for Tribo-corrosion and -oxidation protection: A review. Adv. Colloid Interface Sci. 2024, 331, 103243. [Google Scholar] [CrossRef]
- Pana, I.; Vladescu, A.; Constantin, L.R.; Sandu, I.G.; Dinu, M.; Cotrut, C.M. In vitro corrosion and tribocorrosion performance of biocompatible carbide coatings. Coatings 2020, 10, 654. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Guo, P.; Sun, L.; Wei, J.; Liu, Y.; Li, S.; Wang, S.; Lee, K.-R.; Ke, P. Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings. Friction 2022, 10, 1707–1721. [Google Scholar] [CrossRef]
- Ali, M.; Hamzah, E.; Hamid, M.A.; Hashim, A.H. Whether macro-droplets generate or develop in depositing hard coatings by cathodic arc evaporation technique. Int. J. Refract. Met. Hard Mater. 2023, 115, 106296. [Google Scholar] [CrossRef]
- Holzapfel, D.M.; Czigány, Z.; Eriksson, A.O.; Arndt, M.; Schneider, J.M. Thermal stability of macroparticles in Ti0.27Al0.21N0.52 coatings. Appl. Surf. Sci. 2021, 553, 149527. [Google Scholar] [CrossRef]
- Baseri, N.A.; Mohammadi, M.; Ghatee, M.; Yousefieh, M.; Abassi-Firouzjah, M. The effect of substrate bias voltage on the mechanical and electrochemical corrosion properties of multilayered CrN/CrAlN coatings produced by cathodic arc evaporation. Int. J. Appl. Ceram. Technol. 2024, 21, 395–407. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Gasem, Z.M.; Kumar, A.M. Electrochemical evaluation of the corrosion protectiveness and porosity of vacuum annealed CrAlN and TiAlN cathodic arc physical vapor deposited coatings. Mater. Corros. 2019, 70, 1601–1616. [Google Scholar] [CrossRef]
Surfaces | Ecorr (mV) | Icorr (μA/cm2) | βa (mV/dec) | βc (mV/dec) | Rp (kΩ/cm2) | Pi% |
---|---|---|---|---|---|---|
D2 | −791.7 | 3.66 × 10−1 | 90.0 | −45.0 | 35.1 | |
TiN | −212.5 | 1.17 × 10−4 | 45.0 | −85.0 | 109,890.1 | 99.97 |
TiCN | −328.9 | 1.16 × 10−2 | 90.0 | −44.0 | 1103.1 | 96.82 |
TiCrN | −655.2 | 5.17 × 10−1 | 70.0 | −52.0 | 24.8 | −41.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Bustos, E.D.; Maxemin-Lugo, D.; Diez-Torres, N.; López-Perrusquia, N.; Doñu-Ruiz, M.A.; Flores-Martinez, M.; Restrepo, J.; Muhl-Saunders, S. Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution. Materials 2025, 18, 2733. https://doi.org/10.3390/ma18122733
García-Bustos ED, Maxemin-Lugo D, Diez-Torres N, López-Perrusquia N, Doñu-Ruiz MA, Flores-Martinez M, Restrepo J, Muhl-Saunders S. Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution. Materials. 2025; 18(12):2733. https://doi.org/10.3390/ma18122733
Chicago/Turabian StyleGarcía-Bustos, Ernesto David, Diego Maxemin-Lugo, Norberto Diez-Torres, Noé López-Perrusquia, Marco Antonio Doñu-Ruiz, Martin Flores-Martinez, Johans Restrepo, and Stephen Muhl-Saunders. 2025. "Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution" Materials 18, no. 12: 2733. https://doi.org/10.3390/ma18122733
APA StyleGarcía-Bustos, E. D., Maxemin-Lugo, D., Diez-Torres, N., López-Perrusquia, N., Doñu-Ruiz, M. A., Flores-Martinez, M., Restrepo, J., & Muhl-Saunders, S. (2025). Electrochemical and Tribocorrosion Study of D2 Steel Coated with TiN with C or Cr Addition Films in 3.5 wt% of NaCl in Bi-Distillated Water Solution. Materials, 18(12), 2733. https://doi.org/10.3390/ma18122733