Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = food waste disposal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

17 pages, 685 KiB  
Article
Food Safety and Waste Management in TV Cooking Shows: A Comparative Study of Turkey and the UK
by Kemal Enes, Gülbanu Kaptan and Edgar Meyer
Foods 2025, 14(15), 2591; https://doi.org/10.3390/foods14152591 - 24 Jul 2025
Viewed by 431
Abstract
This study examines food safety and waste behaviours depicted in the televised cooking competition MasterChef, a globally franchised series that showcases diverse culinary traditions and influences viewers’ practices. The research focuses on the MasterChef editions aired in Turkey and the United Kingdom, [...] Read more.
This study examines food safety and waste behaviours depicted in the televised cooking competition MasterChef, a globally franchised series that showcases diverse culinary traditions and influences viewers’ practices. The research focuses on the MasterChef editions aired in Turkey and the United Kingdom, two countries with distinctly different social and cultural contexts. Video content analysis, based on predefined criteria, was employed to assess observable behaviours related to food safety and waste. Additionally, content analysis of episode transcripts identified verbal references to these themes. Principal Component Analysis was employed to categorise patterns in the observed behaviours. The findings revealed frequent lapses in food safety, with personal hygiene breaches more commonly observed in MasterChef UK, while cross-contamination issues were more prevalent in MasterChef Turkey. In both versions, the use of disposable materials and the discarding of edible food parts emerged as the most common waste-related practices. These behaviours appeared to be shaped by the cultural and culinary norms specific to each country. The study highlights the importance of cooking shows in promoting improved food safety and waste management practices. It recommends involving relevant experts during production and clearly communicating food safety and sustainability messages to increase viewer awareness and encourage positive behaviour change. Full article
(This article belongs to the Special Issue Food Policy, Strategy and Safety in the Middle East)
Show Figures

Figure 1

14 pages, 1175 KiB  
Article
Recovery of Natural Pyrazines and Alcohols from Fusel Oils Using an Innovative Extraction Installation
by Waldemar Studziński, Michał Podczarski, Justyna Piechota, Marzena Buziak, Myroslava Yakovenko and Yurii Khokha
Molecules 2025, 30(14), 3028; https://doi.org/10.3390/molecules30143028 - 18 Jul 2025
Viewed by 294
Abstract
The production of spirits generates significant amounts of waste in the form of fusel oils-previously treated mainly as an environmental problem. This paper presents an innovative installation designed to recover valuable components from this difficult waste. The key achievement is the effective separation [...] Read more.
The production of spirits generates significant amounts of waste in the form of fusel oils-previously treated mainly as an environmental problem. This paper presents an innovative installation designed to recover valuable components from this difficult waste. The key achievement is the effective separation and recovery of pyrazine derivatives-natural aromatic compounds with high utility value in the food, cosmetics and pharmaceutical industries. The designed system allows for the recovery of as much as 98% of pyrazines and isoamyl alcohol and isobutanol fractions with a purity above 96%, which is a significant advance compared to previous disposal methods. The installation was designed to be consistent with the idea of a circular economy, maximizing the use of by-products and minimizing losses. The results of the work indicate that fusel oils, previously perceived as waste, can become a source of valuable secondary raw materials, and the presented solution opens up new possibilities for the sustainable development of the alcohol industry. Full article
Show Figures

Figure 1

26 pages, 1271 KiB  
Article
The Effects of Interventions Using Support Tools to Reduce Household Food Waste: A Study Using a Cloud-Based Automatic Weighing System
by Yasuko Seta, Hajime Yamakawa, Tomoko Okayama, Kohei Watanabe and Maki Nonomura
Sustainability 2025, 17(14), 6392; https://doi.org/10.3390/su17146392 - 12 Jul 2025
Viewed by 395
Abstract
Food waste is a global sustainability issue, and in Japan, approximately half of all food waste is generated in households. This study focused on refrigerator management behaviors aimed at using up the food inventory in the home. An intervention study involving 119 households [...] Read more.
Food waste is a global sustainability issue, and in Japan, approximately half of all food waste is generated in households. This study focused on refrigerator management behaviors aimed at using up the food inventory in the home. An intervention study involving 119 households with two or more members across Japan, with a two-week baseline period and a two-week intervention, was conducted. Target behaviors were set as “search food that should be eaten quickly,” “move it to a visible place,” and “use the foods that should be eaten quickly,” and tools to support these behaviors were selected, including an organizer for the refrigerator, photos, and food management apps. Each tool was assigned to approximately 30 households, and a control group was established. Food waste was measured using a cloud-based automatic weighing system, and all participants were asked to separate avoidable food waste at home and dispose of it in the designated waste bin. During the intervention period, the average weekly food waste per household decreased by 29% to 51% in the intervention group, while there was little change in the control group. An analysis using a two-way mixed ANOVA revealed a marginally significant interaction (p < 0.10), indicating moderate effectiveness. Among the behaviors contributing to reduced food waste, three actions—“having trouble not being able to recall food inventory at home during shopping,” “moving foods that should be used sooner,” and “organizing refrigerator”—showed significant interaction effects (p < 0.05) in a two-way mixed ANOVA, indicating the effectiveness of the intervention. Full article
Show Figures

Figure 1

15 pages, 2061 KiB  
Article
Comparison of Preservatives for the Prevention of Microbial Spoilage of Apple Pomace During Storage
by Ashley Harratt, Wenyuan Wu, Peyton Strube, Joseph Ceravolo, David Beattie, Tara Pukala, Marta Krasowska and Anton Blencowe
Foods 2025, 14(14), 2438; https://doi.org/10.3390/foods14142438 - 10 Jul 2025
Viewed by 401
Abstract
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this [...] Read more.
Apple pomace, a by-product from the production of concentrated juice, is a major contributor to global food waste. Despite its beneficial nutritional profile, apple pomace is predominantly disposed of in landfills. Rapid fermentation and spoilage caused by microorganisms are compounding factors in this demise, despite significant research into upcycling strategies. Thus, there is an unmet need for economical approaches that allow for the preservation of pomace during storage and transportation to centralized processing facilities from regional hubs. To address this challenge, we investigated the potential of different preservatives for preventing microbial growth and the spoilage of apple pomace, including antimicrobials (natamycin and iodine), polysaccharides (chitosan and fucoidan), and acetic acid. Spread plates for total microbial and fungal counts were employed to assess the effectiveness of the treatments. High concentrations (10,000 ppm) of chitosan were effective at reducing the microbial load and inhibiting growth, and in combination with antimicrobials, eliminated all microbes below detectable levels. Nevertheless, acetic acid at an equivalent concentration to commercial vinegar displayed the highest economic potential. Apple pomace submerged in 0.8 M acetic acid (3 kg pomace per liter) resulted in a five-log reduction in the microbial colony-forming units (CFUs) out to 14 days and prevented fermentation and ethanol production. These results provide a foundation for the short-term storage and preservation of apple pomace that could contribute to its upcycling. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

19 pages, 1797 KiB  
Article
From Agricultural Waste to Functional Tea: Optimized Processing Enhances Bioactive Flavonoid Recovery and Antioxidant Capacity with Multifaceted Health Benefits in Loquat (Eriobotrya japonica Lindl.) Flowers
by Mingzheng Duan, Xi Wang, Jinghan Feng, Xu Xiao, Lingying Zhang, Sijiu He, Liya Ma, Xue Wang, Shunqiang Yang and Muhammad Junaid Rao
Horticulturae 2025, 11(7), 766; https://doi.org/10.3390/horticulturae11070766 - 2 Jul 2025
Cited by 1 | Viewed by 335
Abstract
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat [...] Read more.
The large-scale disposal of loquat (Eriobotrya japonica Lindl.) flowers during fruit thinning represents a significant waste of bioactive resources. This study systematically evaluated how three processing methods—fresh (FS), heat-dried (HD), and freeze-dried (FD) treatments—affect the flavonoid composition and antioxidant capacity of loquat flower extracts, with the aim of developing value-added, sugar-free functional tea ingredients. Using UPLC-MS/MS and DPPH assays, we analyzed both pre-(FS/HD/FD) and post-extraction samples (FSP/HDP/FDP) to assess processing-specific metabolic signatures and extraction efficiency. The results revealed that heat-dried powder (HDP) exhibited the highest total flavonoid content and DPPH scavenging capacity (615.24 µg Trolox/g), attributed to enhanced release of stable compounds like quercetin. Freeze-dried powder (FDP) better preserved heat-sensitive flavonoids, such as catechin-(4α→8)-gallocatechin and naringenin, but showed lower overall antioxidant activity. Multivariate analysis confirmed distinct clustering patterns, with heat-drying favoring flavonoid extractability while freeze-drying maintained metabolic diversity. These findings demonstrate that processing methods significantly influence bioactive compound retention and functionality, with heat-drying offering optimal balance between yield and practicality for industrial applications. This work provides a scientific foundation for upcycling loquat flowers into standardized nutraceutical ingredients, addressing both agricultural waste reduction and the growing demand for natural functional foods. Full article
Show Figures

Figure 1

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 634
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

11 pages, 4873 KiB  
Article
Potential Expansion of Low-Carbon Liquid Fuel Production Using Hydrogen-Enhanced Biomass/Municipal Solid Waste Gasification
by Mohammad Ostadi, Daniel R. Cohn, Guiyan Zang and Leslie Bromberg
Sustainability 2025, 17(13), 5718; https://doi.org/10.3390/su17135718 - 21 Jun 2025
Viewed by 443
Abstract
Low-carbon liquid fuels are needed for decarbonization of hard-to-decarbonize segments of the transportation sector. This decarbonization can be limited by the amount of renewable carbon. Thermochemical conversion of biomass/municipal solid waste (MSW) through gasification is a promising route for producing low-carbon fuels. There [...] Read more.
Low-carbon liquid fuels are needed for decarbonization of hard-to-decarbonize segments of the transportation sector. This decarbonization can be limited by the amount of renewable carbon. Thermochemical conversion of biomass/municipal solid waste (MSW) through gasification is a promising route for producing low-carbon fuels. There are two major opportunities for increasing the amount of low-carbon liquid fuel that can be produced from gasification in any region. One is to increase the amount of liquid fuel from a given amount of biomass/MSW, particularly by hydrogen-enhancement of gasification synthesis gas. Second is the potential for large expansion of use of biomass feedstocks from its present level. Such biomass feedstocks include agricultural waste, forestry waste, MSW, and specially grown biomass that does not interfere with food production. The use of MSW may provide advantages of an established network for pickup and transportation of feedstock to disposal sites and the avoidance of methane produced from landfilling of MSW. As a case study, we looked at potential expansion of US low-carbon fuel production, considering the recent projections of the 2024 USDOE report, which estimated potential production of a billion tons/yr of biomass/MSW feedstocks in the US. This report included an estimated potential for liquid biofuel production of 60 billion gallons/yr of diesel energy equivalent fuel without the use of hydrogen enhancement. By hydrogen-enhanced biomass/MSW gasification, this projection could be doubled to 120 billion gallons/yr of diesel energy equivalent fuel. Furthermore, the co-location potential of biomass/MSW resources with potential renewable energy generation sites is explored. This overlap of hydrogen production and biomass production in the US are located in regions such as the US Midwest, Texas, and California. This co-location strategy enhances logistical feasibility, reducing transport costs and optimizing energy system integration; and can be applied to other geographical locations. Hydrogen-enhanced biomass/MSW gasification offers a promising route to substantially increase low-carbon liquid fuel production (e.g., methanol) and support increased liquid fuel production and greenhouse gas reduction goals. Full article
Show Figures

Figure 1

33 pages, 1374 KiB  
Review
Antimicrobials in Livestock Farming and Resistance: Public Health Implications
by Marilena Trinchera, Silvia De Gaetano, Elenoire Sole, Angelina Midiri, Serena Silvestro, Giuseppe Mancuso, Teresa Catalano and Carmelo Biondo
Antibiotics 2025, 14(6), 606; https://doi.org/10.3390/antibiotics14060606 - 14 Jun 2025
Viewed by 1549
Abstract
The accelerated spread of bacterial resistance has been demonstrated to reduce the effectiveness of antibiotic treatments for infections, resulting in higher morbidity and mortality rates, as well as increased costs for livestock producers. It is expected that the majority of future antimicrobial use [...] Read more.
The accelerated spread of bacterial resistance has been demonstrated to reduce the effectiveness of antibiotic treatments for infections, resulting in higher morbidity and mortality rates, as well as increased costs for livestock producers. It is expected that the majority of future antimicrobial use will be in animal production. The management of antimicrobial resistance (AMR) in the livestock sector poses significant challenges due to the multifaceted nature of the problem. In order to identify appropriate solutions to the rise of antimicrobial resistance, it is imperative that we have a comprehensive understanding of the disease dynamics underpinning the ways in which antimicrobial resistance is transmitted between humans and animals. Furthermore, in consideration of the anticipated requirement to satisfy the global demand for food, it is imperative that we guarantee that resistance is not transmitted or propagated during the treatment and disposal of animal waste, particularly from intensive farming. It is also crucial to formulate a research agenda to investigate how antibiotic resistance in animal faeces from livestock farming is affected by intensified farming activities. The review analyses the environment’s role in the transmission resistance chain and reviews methodologies for disrupting the link. A particular focus is placed on the limitations of the applied methodologies to reduce antimicrobial resistance in global animal production. Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
Show Figures

Figure 1

32 pages, 2113 KiB  
Review
Agricultural Waste: Challenges and Solutions, a Review
by Maximilian Lackner and Maghsoud Besharati
Waste 2025, 3(2), 18; https://doi.org/10.3390/waste3020018 - 3 Jun 2025
Cited by 2 | Viewed by 2662
Abstract
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such [...] Read more.
Agricultural waste poses significant environmental, economic, and social challenges globally, with estimates indicating that 10–50% of agricultural products are discarded annually as waste. This review explores strategies for managing agricultural waste to mitigate its adverse impacts and promote sustainable development. Agricultural residues, such as those from sugarcane, rice, and wheat, contribute to pollution when improperly disposed of through burning or burying, contaminating soil, water, and air. However, these residues also represent untapped resources for bioenergy production, composting, mulching, and the creation of value-added products like biochar, bioplastics, single-cell protein and biobased building blocks. The paper highlights various solutions, including integrating agricultural waste into livestock feed formulations to reduce competition for human food crops, producing biofuels like ethanol and biodiesel from lignocellulosic materials, and adopting circular economy practices to upcycle waste into high-value products. Technologies such as anaerobic digestion for biogas production and gasification for synthesis gas offer renewable energy alternatives and ample feedstocks for gas fermentation while addressing waste management issues. Composting and vermicomposting enhance soil fertility, while mulching improves moisture retention and reduces erosion. Moreover, the review emphasizes the importance of policy frameworks, public-private partnerships, and farmer education in promoting effective waste management practices. By implementing these strategies, agricultural waste can be transformed into a resource, contributing to food security, environmental conservation, and economic growth. Full article
Show Figures

Figure 1

19 pages, 1788 KiB  
Review
From Natural to Industrial: How Biocoagulants Can Revolutionize Wastewater Treatment
by Renata Machado Pereira da Silva, Bruna Silva de Farias and Sibele Santos Fernandes
Processes 2025, 13(6), 1706; https://doi.org/10.3390/pr13061706 - 29 May 2025
Viewed by 947
Abstract
The environmental impacts of industrial processes have increased the demand for sustainable alternatives in wastewater treatment. Conventional chemical coagulants, though widely used, can generate toxic residues and pose environmental and health risks. Biocoagulants, derived from natural and renewable sources, offer a biodegradable and [...] Read more.
The environmental impacts of industrial processes have increased the demand for sustainable alternatives in wastewater treatment. Conventional chemical coagulants, though widely used, can generate toxic residues and pose environmental and health risks. Biocoagulants, derived from natural and renewable sources, offer a biodegradable and eco-friendly alternative. This review explores their potential to replace synthetic coagulants by analyzing their origins, mechanisms of action, and applications. A total of 15 studies published between 2020 and 2025 were analyzed, all focused on industrial wastewater. These studies demonstrated that biocoagulants can achieve similar, or the superior, removal of turbidity (>67%), solids (>83%), and heavy metals in effluents from food, textile, metallurgical, and paper industries. While raw materials are often inexpensive, processing costs may increase production expenses. However, life cycle assessments suggest long-term advantages due to reduced sludge and environmental impact. A textile industry case study showed a 25% sludge reduction and improved biodegradability using a plant-based biocoagulant compared to aluminum sulfate. Transforming this waste into inputs for wastewater treatment not only reduces negative impacts from disposal but also promotes integrated environmental management aligned with circular economy and cleaner production principles. The review concludes that biocoagulants constitute a viable and sustainable alternative for industrial wastewater treatment. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

36 pages, 2259 KiB  
Review
Bioactive Compounds of Agro-Industrial By-Products: Current Trends, Recovery, and Possible Utilization
by Ramesh Kumar Saini, Mohammad Imtiyaj Khan, Vikas Kumar, Xiaomin Shang, Ji-Ho Lee and Eun-Young Ko
Antioxidants 2025, 14(6), 650; https://doi.org/10.3390/antiox14060650 - 28 May 2025
Cited by 1 | Viewed by 1248
Abstract
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, [...] Read more.
Domestic food waste and agro-industrial by-products (AIBPs) occurring throughout the food chain, including production, processing, and storage, have become a global sustainability concern. Interestingly, this waste and these by-products contain a significant amount of commercially vital bioactive compounds, including polyphenols and carotenoids. Remarkably, discarded by-products such as fruit and vegetable peels contain more bioactive compounds than edible pulp. Thus, valorizing this waste and these by-products for commercially vital bioactive products can solve their disposal problems and help alleviate climate change crises. Additionally, it can generate surplus revenue, significantly improving food production and processing economics. Interestingly, several bioactive extracts derived from citrus peel, carrot pomace, olive leaf, and grape seed are commercially available, highlighting the importance of agro-food waste and by-product valorization. Considering this background information, this review aims to provide holistic information on major AIBPs; recovery methods of bioactive compounds focusing on polyphenols, carotenoids, oligosaccharides, and pectin; microencapsulation of isolated bioactive for enhanced physical, chemical, and biological properties; and their commercial application. In addition, green extraction methods are discussed, which have several advantages over conventional extraction. The concept of the circular bio-economy approach, challenges in waste valorization, and future perspective are also discussed. Full article
(This article belongs to the Special Issue Valorization of Waste Through Antioxidant Extraction and Utilization)
Show Figures

Figure 1

30 pages, 5472 KiB  
Article
Effectiveness of Municipal Waste Collection and Management Policy in Lithuania
by Viktorija Bobinaite and Gediminas Naujokas
Sustainability 2025, 17(10), 4623; https://doi.org/10.3390/su17104623 - 18 May 2025
Viewed by 652
Abstract
This article addresses the scientific gap relating to the limited representation of municipal waste policies in quantitative assessments, as well as their goal to “catch up” economies in the context of SDG 12. The novelty of the paper is defined by the guidelines [...] Read more.
This article addresses the scientific gap relating to the limited representation of municipal waste policies in quantitative assessments, as well as their goal to “catch up” economies in the context of SDG 12. The novelty of the paper is defined by the guidelines developed for the consistent logical research of the effectiveness of municipal waste collection and management policies. Herein, a Lithuanian case is considered, with the period of analysis ranging from 2012 to 2023. A review of the scientific literature, an analysis of waste policy, and statistical data analysis methods were applied. The statistical data analysis showed that, while waste generation was historically increasing in parallel with the growth in national income and was therefore inconsistent with the long-term goal to reduce waste, municipal waste, which remains present in a significant amount and makes up one-fifth of the waste structure, is decreasing by 2.0% a year, which is conducive to achieving the goal. An analysis of the municipal waste treatment structure revealed that the priority order of waste management is maintained, as ready-to-reuse and recycling are dominant (accounting for half of all municipal waste management activities), followed by incineration, which accounts for a third of all municipal waste management activities. The requirement to reduce municipal waste disposal in landfills is being successfully implemented. From 2012 to 2023, the proportion of municipal waste disposal in landfills significantly decreased, and it presently accounts for 8.0%, while the target value is 5% by 2030. Difficulties arise in implementing requirements to sort municipal waste and increase the share of ready-to-reuse and recycled waste. In 2023, 66% of municipal waste was mixed, and the share of sorted municipal waste is slowly increasing. A decrease in recycled and ready-to-reuse municipal waste has been observed since 2017. Food waste is a particular issue. A total of 100.9 kilotons of food was wasted in 2023; however, this value is 12.3% less than that of 2020. Other indicators are also analyzed in this article. The results show changes in unsustainable consumption habits and a shift towards responsible consumption in relation to the implemented municipal waste collection and management policy. In the future, it will be necessary to conduct research into the problems that are identified in this article in order to propose scientifically sound and responsible consumption solutions in the areas responding to SDG 12; this will increase the effectiveness of municipal waste collection and management policies. Full article
Show Figures

Figure 1

31 pages, 2682 KiB  
Review
The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions
by Ali Mujtaba Shah, Huiling Zhang, Muhammad Shahid, Huma Ghazal, Ali Raza Shah, Mujahid Niaz, Tehmina Naz, Keshav Ghimire, Naqash Goswami, Wei Shi, Dongxu Xia and Hongxia Zhao
Animals 2025, 15(8), 1184; https://doi.org/10.3390/ani15081184 - 21 Apr 2025
Cited by 1 | Viewed by 2100
Abstract
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities [...] Read more.
Sustainable livestock production is a critical component of global food security and environmental stewardship. Agricultural crop residues, such as cereal straws, stovers, and hulls, as well as agro-industrial by-products, including oilseed meals, distillery wastes, and fruit/vegetable processing residues, are generated in large quantities worldwide, and these residues can be used in the diet of the animals to reduce the feed production cost and sustainability. In this review, we found that the use of treated crop residues in the diet of animals increased the production performance without causing any side effects on their health. Additionally, we also noticed that using these crop residues also mitigates the methane production in ruminants and feed costs, particularly for harvesting the feed crops. Traditionally, these materials have often been underutilized or even disposed of improperly, leading to wastage of valuable nutrients and potential environmental pollution. By incorporating these materials into animal feed formulations, livestock producers can benefit from several key advantages. The review further discusses the challenges and considerations involved in the effective utilization of these alternative feed resources, such as variability in nutrient composition, anti-nutritional factors, and the need for appropriate preprocessing and formulation strategies. Emerging technologies and innovative approaches to optimize the integration of crop residues and by-products into sustainable livestock production systems and also reduce global warming, particularly methane, CO2 and other particles that affect the environment after burning these crop residues, are also highlighted. By synthesizing the current knowledge and exploring the multifaceted benefits, this review underscores the vital roles that agricultural crop residues and agro-industrial by-products can play in fostering the sustainability and resilience of livestock production, ultimately contributing to global food security and environmental stewardship. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

27 pages, 1771 KiB  
Review
Sustainable Agriculture Through Compost Tea: Production, Application, and Impact on Horticultural Crops
by Emanuela Campana, Michele Ciriello, Matteo Lentini, Youssef Rouphael and Stefania De Pascale
Horticulturae 2025, 11(4), 433; https://doi.org/10.3390/horticulturae11040433 - 18 Apr 2025
Cited by 3 | Viewed by 2291
Abstract
As part of the European Green Deal, the Farm to Fork strategy was introduced with the idea that environment, agriculture and food are interconnected topics. Reducing the use of synthetic fertilizers by 20% before 2030 through the adoption of circular economy principles is [...] Read more.
As part of the European Green Deal, the Farm to Fork strategy was introduced with the idea that environment, agriculture and food are interconnected topics. Reducing the use of synthetic fertilizers by 20% before 2030 through the adoption of circular economy principles is one of the goals to be achieved. There are several bioproducts that can be obtained from the valorization of agro-industrial wastes used to increase crop yields under low-fertilizer applications. However, the aim of this review is to describe production methods and the use of compost tea on horticultural crops to understand its real potential in providing plant growth support. The effects of compost tea on crops can vary widely depending on the waste material used, compost quality, compost tea production process and parameters, and the interaction between horticultural species and compost tea application dose. Therefore, because of this heterogeneity, it is possible that we would achieve real, positive impacts on the environment and horticultural production if there were more collaboration between the research sector and private farms. This collaboration would allow the development of protocols for compost tea production and customized use according to real farm needs. This would reduce both the costs associated with the disposal of waste produced on the farm and reduce the costs associated with the supply of synthetic fertilizers. The adoption of on-farm guidelines for compost tea use would achieve a balanced trade-off between agricultural productivity and environmental sustainability. The literature review shows that the most-used dilution ratios, regardless of the type of starting compost, range from 1:5 to 1:10 compost–water (v/v). Although a complete understanding of the biostimulatory mechanisms activated by compost tea is lacking, the application of this bioproduct would improve the physiological and productive performance of many horticultural species of interest, especially under suboptimal conditions such as organic production. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

Back to TopTop