Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = food packaging design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 800 KiB  
Article
“Innovatives” or “Sceptics”: Views on Sustainable Food Packaging in the New Global Context by Generation Z Members of an Academic Community
by Gerasimos Barbarousis, Fotios Chatzitheodoridis, Achilleas Kontogeorgos and Dimitris Skalkos
Sustainability 2025, 17(15), 7116; https://doi.org/10.3390/su17157116 - 6 Aug 2025
Abstract
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered [...] Read more.
The growing concern over environmental sustainability has intensified the focus on consumers’ perceptions of eco-friendly food packaging, especially among younger generations. This study aims to investigate the attitudes, preferences, and barriers faced by Greek university students regarding sustainable food packaging, a demographic considered pivotal for driving future consumption trends. An online questionnaire assessing perceptions, preferences, and behaviours related to sustainable packaging was administered to students, with responses measured on a five-point Likert scale. Three hundred and sixty-four students took part in this survey, with the majority (60%) of them being female. Principal component analysis was employed to identify underlying factors influencing perceptions, and k-means cluster analysis revealed two consumer segments: “Innovatives”, including one hundred and ninety-eight participants (54%), who demonstrate strong environmental awareness and willingness to adopt sustainable behaviours, and “Sceptics”, including one hundred sixty-six participants (46%), who show moderate engagement and remain cautious in their choices. Convenience, affordability, and clear product communication emerged as significant factors shaping student preferences. The findings suggest that targeted educational campaigns and transparent information are essential to converting positive attitudes into consistent purchasing behaviours. This research provides valuable insights for policymakers and marketers looking to design effective sustainability strategies tailored to the student population. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

10 pages, 216 KiB  
Article
Migration of Phthalates and Bisphenol A from Polyethylene Terephthalate Bottles into Beer During Storage at Controlled Temperatures
by Krešimir Mastanjević, Brankica Kartalović, Dragan Kovačević, Vinko Krstanović and Kristina Habschied
Foods 2025, 14(15), 2689; https://doi.org/10.3390/foods14152689 - 30 Jul 2025
Viewed by 302
Abstract
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily [...] Read more.
PET (polyethylene terephthalate) bottles contain different chemicals that can act as endocrine disruptors. Phthalates and bisphenol A can be found in various foods and beverages packaged in PET packaging or aluminum cans. For some phthalates, the European Union has established specified tolerable daily intakes for humans. This study aimed to establish the changes, types of phthalates (dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate, di-n-octyl phthalate), and bisphenol A concentrations in beer packaged in PET bottles and stored at two temperatures (4 °C and 20 °C) for four months. Beers were obtained from a local brewery after packaging into PET bottles and stored at the designated temperatures. GC-MS analysis was performed to determine phthalates and bisphenol A. Obtained data show that beers packaged in PET bottles can contain significant amounts of bisphenol A, and that their concentration increases with storage time. Phthalates were also identified in the samples, with the highest concentration of bis(2-ethylhexyl) phthalate found in the sample kept at 20 °C after 1 month of storage, sample P5; this concentration was 164.814 µg/L. BPA was recorded with the highest concentration in sample P11, which underwent 4 months of storage at a temperature of 20 °C. Full article
29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 494
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

29 pages, 4008 KiB  
Article
Food Culture: Strengthening Collaborative Entrepreneurship Between Tourism and Agri-Food Businesses
by Maria Spilioti and Konstantinos Marinakos
Adm. Sci. 2025, 15(8), 291; https://doi.org/10.3390/admsci15080291 - 25 Jul 2025
Viewed by 361
Abstract
This research aims to determine the utilization levels of local products and the challenges and opportunities of creating a recognizable food-centered cultural identity based on collaborative networks developed between agriculture and tourism. This has the potential to strengthen collaborative entrepreneurship. It uniquely contributes [...] Read more.
This research aims to determine the utilization levels of local products and the challenges and opportunities of creating a recognizable food-centered cultural identity based on collaborative networks developed between agriculture and tourism. This has the potential to strengthen collaborative entrepreneurship. It uniquely contributes to the existing literature by exploring the connections between agri-food and tourism, while proposing strategies to maximize business opportunities centered on food culture. Descriptive and inferential statistics are conducted based on primary data collected by distributing a questionnaire to 59 public and private organizations in the Peloponnese region in Greece, which has significant agricultural production but limited tourist flows. The results indicate a lack of collective action and business recognition of the value of regional food culture among participants. The human resources employed in tourism lack the skills to highlight traditional food heritage. The presence of structural and operational barriers undermines efforts to facilitate communication, manage suppliers, and enhance the visibility of products designated with Geographical Indications. This paper offers preliminary results; however, extensive future studies are needed to validate the findings fully. The study highlights key implications: Improved communication between stakeholders could enhance the management of the local food network. Agri-food and tourism businesses can develop educational programs and food-focused tourism packages that promote social cohesion and preserve cultural heritage. Full article
Show Figures

Figure 1

13 pages, 1054 KiB  
Article
Applying Visual Storytelling in Food Marketing: The Effect of Graphic Storytelling on Narrative Transportation and Purchase Intention
by Lingnuo Wang, Xin Fang, Ying Xiao, Yangyue Li, Yulin Sun, Lei Zheng and Charles Spence
Foods 2025, 14(15), 2572; https://doi.org/10.3390/foods14152572 - 23 Jul 2025
Viewed by 431
Abstract
In today’s market, consumers appear to be less interested in promotional strategies, particularly those that rely on text-based advertisements. Graphic storytelling can be seen as providing a more engaging visual approach to attract audiences and is increasingly being used by marketers and food [...] Read more.
In today’s market, consumers appear to be less interested in promotional strategies, particularly those that rely on text-based advertisements. Graphic storytelling can be seen as providing a more engaging visual approach to attract audiences and is increasingly being used by marketers and food packaging designers. However, the questions of whether and how graphic storytelling influences consumers’ purchase intentions remain underexplored. Based on the Transportation–Imagery Model, two experimental studies were conducted to examine the effect of graphic storytelling on narrative transportation and food purchase intention, and to explore its underlying mechanism from the perspective of cognitive fluency. The results demonstrated the positive effect of graphic storytelling on narrative transportation (Studies 1 and 2), as well as a significant impact on food purchase intention (Study 2). Furthermore, cognitive fluency was identified as a critical factor impacting narrative transportation, facilitated by graphic storytelling (Studies 1 and 2). This study extends the Transportation–Imagery Model by positioning cognitive fluency as an important antecedent of narrative transportation. Practically, the suggestion would be for restaurants and food firms to optimize their advertising by displaying cooking processes, particularly for part-prepared foods. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

22 pages, 2429 KiB  
Article
Integrated Physical–Mechanical Characterization of Fruits for Enhancing Post-Harvest Quality and Handling Efficiency
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(14), 2521; https://doi.org/10.3390/foods14142521 - 18 Jul 2025
Viewed by 509
Abstract
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between [...] Read more.
Quality and mechanical resilience are crucial for reducing losses in fruit production and for supporting food chains. Indeed, integrating empirical data with rheological models bridges gaps in fruit processing equipment design. Therefore, the objective of this research is to analyze the relationship between the mechanical and physical properties of seven economically important fruits—nectarine, kiwi, cherry, apple, peach, pear, and apricot—to assess their mechanical behavior and post-harvest quality. Standardized compression, creep, and puncture tests were conducted to establish mechanical parameters, such as rupture force, elasticity, and deformation energy. Physical characteristics including size, weight, density, and moisture content were also measured. The results indicated significant differences among the various categories of fruits; apples and pears were most suitable for mechanical harvesting and long storage periods, whereas cherries and apricots were least resistant and susceptible to injury. Correlations were high among the physical measurements, tissue firmness, and viscoelastic properties, thereby confirming structural properties’ contribution in influencing fruit quality and handling efficiency. The originality of this research is in its holistic examination of physical and mechanical properties under standardized testing conditions, thus offering an integrated framework for enhancing post-harvest operations. These findings offer practical insights for optimizing harvesting, packaging, transportation, and quality monitoring strategies based on fruit-specific mechanical profiles. Full article
Show Figures

Figure 1

24 pages, 10648 KiB  
Article
Green-Synthesized Silver Nanoparticle-Loaded Antimicrobial Films: Preparation, Characterization, and Food Preservation
by Wenxi Yu, Qin Lei, Jingxian Jiang, Jianwei Yan, Xijian Yi, Juan Cheng, Siyu Ou, Wenjia Yin, Ziyan Li and Yuru Liao
Foods 2025, 14(14), 2509; https://doi.org/10.3390/foods14142509 - 17 Jul 2025
Viewed by 402
Abstract
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and [...] Read more.
This study presented a novel antimicrobial packaging PVA/xanthan gum film decorated with green-synthesized silver nanoparticles (AgNPs) derived from Myrica rubra leaf extract (MRLE) for the first time. Montmorillonite (MMT) was used to improve its dispersion (AgNPs@MMT). The synthesis time, temperature, and concentration of AgNO3 were considered using a central composite design coupled with response surface methodology to obtain the optimum AgNPs (2 h, 75 °C, 2 mM). Analysis of substance concentration changes confirmed that the higher phenolic and flavonoid content in MRLE acted as reducing agents and stabilizers in AgNP synthesis, participating in the reaction rather than adsorbing to nanoparticles. TEM, XRD, and FTIR images revealed a spherical shape of the prepared AgNPs, with an average diameter of 8.23 ± 4.27 nm. The incorporation of AgNPs@MMT significantly enhanced the mechanical properties of the films, with the elongation at break and shear strength increasing by 65.19% and 52.10%, respectively, for the PAM2 sample. The films exhibited strong antimicrobial activity against both Escherichia coli (18.56 mm) and Staphylococcus aureus (20.73 mm). The films demonstrated effective food preservation capabilities, significantly reducing weight loss and extending the shelf life of packaged grapes and bananas. Molecular dynamics simulations reveal the diffusion behavior of AgNPs in different matrices, while the measured silver migration (0.25 ± 0.03 mg/kg) complied with EFSA regulations (10 mg/kg), confirming its food safety. These results demonstrate the film’s potential as an active packaging material for fruit preservation. Full article
Show Figures

Figure 1

21 pages, 903 KiB  
Article
Preliminary Analysis of Printed Polypropylene Foils and Pigments After Thermal Treatment Using DSC and Ames Tests
by Lukas Prielinger, Eva Ortner, Martin Novak, Lea Markart and Bernhard Rainer
Materials 2025, 18(14), 3325; https://doi.org/10.3390/ma18143325 - 15 Jul 2025
Viewed by 354
Abstract
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical [...] Read more.
In order to recycle plastic waste back to food contact materials (FCMs), it is necessary to identify hazardous substances in plastic packaging that pose a toxicological risk. Printing inks on plastics are not yet designed to withstand the high heat stress of mechanical recycling processes and therefore require hazard identification. In this study, virgin polypropylene (PP) foils were printed with different types of inks (UV-cured, water-based) and colour shades. Thermal analysis of printed foils and pigments was performed using differential scanning calorimetry (DSC). Samples were then thermally treated below and above measured thermal events at 120 °C, 160 °C, 200 °C or 240 °C for 30 min. Subsequently, migration tests and miniaturised Ames tests were performed. Four out of thirteen printed foils and all three pigments showed positive results for mutagenicity in miniaturised Ames tests after thermal treatment at 240 °C. Additionally, pre-incubation Plate Ames tests (according to OECD 471) were performed on three pigments and one printed foil, yielding two positive results after thermal treatment at 240 °C. These results indicate that certain ink components form hazardous decomposition products when heated up to a temperature of 240 °C. However, further research is needed to gain a better understanding of the chemical processes that occur during high thermal treatment. Full article
Show Figures

Graphical abstract

16 pages, 2440 KiB  
Article
Optimization of Cassava Starch/Onion Peel Powder-Based Bioplastics: Influence of Composition on Mechanical Properties and Biodegradability Using Central Composite Design
by Assala Torche, Chouana Toufik, Fairouz Djeghim, Ibtissem Sanah, Rabah Arhab, Maria D’Elia and Luca Rastrelli
Foods 2025, 14(14), 2414; https://doi.org/10.3390/foods14142414 - 8 Jul 2025
Viewed by 482
Abstract
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), [...] Read more.
Synthetic plastic pollution represents a major global concern, driving the search for sustainable and biodegradable packaging alternatives. However, many biodegradable plastics suffer from inadequate mechanical performance. This study aimed to develop a biodegradable film based on cassava starch, incorporating onion peel powder (OPP), a byproduct rich in quercetin derivatives, as a reinforcing agent and plasticized with crude glycerol. A Central Composite Design (CCD), implemented using Minitab 19, was employed to investigate the effects of starch (60–80%) and OPP (0–40%) content on the mechanical properties and biodegradability of the resulting bioplastics. Three optimized formulations were identified according to specific performance criteria. The first formulation, containing 72.07% starch and 21.06% OPP, was optimized for maximum tensile strength while maintaining target values for elongation and biodegradability. The second, composed of 77.28% starch and 37.69% OPP, was optimized to enhance tensile strength and biodegradability while minimizing elongation. The third formulation, with 84.56% starch and 27.74% OPP, aimed to achieve a balanced optimization of tensile strength, elongation, and biodegradability. After a 30-day soil burial test, these formulations exhibited weight loss percentages of 31.86%, 29.12%, and 29.02%, respectively, confirming their biodegradability. This study optimized the mechanical and biodegradability properties of cassava starch-based bioplastics using statistical modeling. The optimized formulations show potential for application in sustainable food packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

34 pages, 4095 KiB  
Article
Integrating LCA and Multi-Criteria Tools for Eco-Design Approaches: A Case Study of Mountain Farming Systems
by Pasqualina Sacco, Davide Don, Andreas Mandler and Fabrizio Mazzetto
Sustainability 2025, 17(14), 6240; https://doi.org/10.3390/su17146240 - 8 Jul 2025
Viewed by 383
Abstract
Designing sustainable farming systems in mountainous regions is particularly challenging because of complex economic, social, and environmental factors. Production models prioritizing sustainability and environmental protection require integrated assessment methodologies that can address multiple criteria and incorporate diverse stakeholders’ perspectives while ensuring accuracy and [...] Read more.
Designing sustainable farming systems in mountainous regions is particularly challenging because of complex economic, social, and environmental factors. Production models prioritizing sustainability and environmental protection require integrated assessment methodologies that can address multiple criteria and incorporate diverse stakeholders’ perspectives while ensuring accuracy and applicability. Life cycle assessment (LCA) and multi-actor multi-criteria analysis (MAMCA) are two complementary approaches that support “eco-design” strategies aimed at identifying the most sustainable options, including on-farm transformation processes. This study presents an integrated application of LCA and MAMCA to four supply chains: rye bread, barley beer, cow cheese, and goat cheese. The results show that cereal-based systems have lower environmental impacts than livestock systems do, although beer’s required packaging significantly increases its footprint. The rye bread chain emerged as the most sustainable and widely preferred option, except under high-climatic risk scenarios. In contrast, livestock-based systems were generally less favorable because of greater impacts and risks but gained preference when production security became a priority. Both approaches underline the need for a deep understanding of production performance. Future assessments in mountain contexts should integrate logistical aspects and cooperative models to enhance the resilience and sustainability of short food supply chains. Full article
Show Figures

Figure 1

21 pages, 1405 KiB  
Article
Analyses of Food-Consumption Data and Migration for the Safety Evaluation of Recycled Polystyrene Intended for Food-Packaging Applications
by David Mittermayr, Wolfgang Roland and Jörg Fischer
Polymers 2025, 17(13), 1846; https://doi.org/10.3390/polym17131846 - 30 Jun 2025
Viewed by 354
Abstract
The recycling of post-consumer plastics for food-contact applications is subject to stringent regulatory requirements, particularly with regard to the removal of potentially harmful non-intentionally added substances (NIAS). While polyethylene terephthalate (PET) recycling processes are already approved by the European Food Safety Authority (EFSA), [...] Read more.
The recycling of post-consumer plastics for food-contact applications is subject to stringent regulatory requirements, particularly with regard to the removal of potentially harmful non-intentionally added substances (NIAS). While polyethylene terephthalate (PET) recycling processes are already approved by the European Food Safety Authority (EFSA), there is a lack of guidance for other polymers like polystyrene (PS). This study aims to provide a scientific basis for assessing the decontamination efficiency required for recycled post-consumer PS in food-contact applications. As one of the first studies to propose a framework for PS decontamination assessment based on EFSA food-consumption data and conservative diffusion modeling, it contributes to filling this regulatory gap. First, European food-consumption data were analyzed to identify critical scenarios of the age-group-dependent intake of PS-packaged food. Based on this, a conservative migration model was applied using a one-dimensional diffusion simulation to determine the maximum allowable initial concentrations of NIAS in PS. The calculated values were then compared with published reference contamination levels to calculate the required cleaning efficiency. The combination of food-consumption values and the migration process showed that trays for fruits and vegetables are the most critical food-contact application for post-consumer PS recycling. The most stringent assumptions resulted in necessary decontamination efficiencies ranging from 92% for the smallest molecule, toluene (92.14 g/mol), to 42% for the largest molecule, methyl stearate (298.50 g/mol). The results provide a methodological basis for regulatory assessments and offer practical guidance for designing safe recycling processes, thereby supporting the circular use of PS in food packaging and building the basis for future regulatory assessments of other polymers, in line with the European Union Plastics Strategy and circular economy objectives. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

14 pages, 1187 KiB  
Review
Towards the Rational Use of Plastic Packaging to Reduce Microplastic Pollution: A Mini Review
by Evmorfia Athanasopoulou, Deborah M. Power, Emmanouil Flemetakis and Theofania Tsironi
J. Mar. Sci. Eng. 2025, 13(7), 1245; https://doi.org/10.3390/jmse13071245 - 28 Jun 2025
Viewed by 634
Abstract
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when [...] Read more.
Plastic pollution has been recognized as an emerging risk for the aquatic environment. Shifting from the prevailing linear “take-make-dispose” model to a “circular” economy framework is essential for mitigating the environmental impact of plastics. Microplastics (MPs) in the natural environment are formed when synthetic polymers are fragmented and micronized to a size ≤ 5 mm. MPs are a global environmental problem, particularly within aquatic ecosystems, due to their persistence, accumulation, and uncertain long-term effects. This review examines the degradation pathways of polymers that result in MP formulation, their rate and distribution across ecosystems, and their potential entry into food systems. Key challenges include a lack of standardized detection methods, specifically for nanoparticles; limited evidence of long-term toxicity; and the inefficiency of current waste management frameworks. Emphasis is placed on the cradle-to-grave lifecycle of plastic materials, highlighting how poor design, excessive packaging, and inadequate post-consumer treatment contribute to MP release. The transition from Directive 94/62/EC to the new Regulation (EU) 2025/40 marks a significant policy shift towards stronger preventive measures. In line with the waste hierarchy and reduction in unnecessary packaging and plastic use, effective recycling must be supported by appropriate collection systems, improved separation processes, and citizen education to prevent waste and improve recycling rates to minimize the accumulation of MPs in the environment and reduce health impacts. This review identifies critical gaps in current knowledge and suggests crucial approaches in order to mitigate MP pollution and protect marine biodiversity and public health. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

56 pages, 2921 KiB  
Review
Eco-Friendly Packaging for Functional Food
by Ana Luisa Grafia, Natalia Gonzalez, Consuelo Pacheco, Mariela Fernanda Razuc, Carolina Cecilia Acebal and Olivia Valeria López
Processes 2025, 13(7), 2027; https://doi.org/10.3390/pr13072027 - 26 Jun 2025
Viewed by 1163
Abstract
Eco-friendly packaging for functional foods aims to reduce environmental impact while maintaining product integrity and ensuring consumer safety. Both the food industry and consumers must transition toward packaging solutions that are sustainable, biodegradable, and non-toxic. Among the key benefits of using environmentally friendly [...] Read more.
Eco-friendly packaging for functional foods aims to reduce environmental impact while maintaining product integrity and ensuring consumer safety. Both the food industry and consumers must transition toward packaging solutions that are sustainable, biodegradable, and non-toxic. Among the key benefits of using environmentally friendly materials for functional food packaging are their sustainability, growing consumer preference, and regulatory compliance. Functional foods are products that offer health benefits beyond basic nutrition, such as enhancing immunity, improving digestion, or promoting overall well-being. This review emphasizes that the packaging of functional foods using an eco-friendly design approach is aligned with the Sustainable Development Goals and the consumers’ preferences. It included the definition and regulatory framework of functional foods, the bioactivity and health effects of bioactive compounds/microorganisms, packaging requirements and solutions for functional foods, as well as conventional and innovative analytical techniques for bioactive compound analysis. Eco-friendly packaging for functional foods is environmentally vital for waste reduction, socially crucial for meeting conscious demand, and economically sound for driving sustainable innovation and green markets. Full article
(This article belongs to the Special Issue Advances in the Design, Analysis and Evaluation of Functional Foods)
Show Figures

Figure 1

20 pages, 961 KiB  
Article
Cartooning Consumption: The Power of Mascots in the Plant-Based Consumer Sustainable Behavior
by Dávid Takács, Ingrida Košičiarová, Zdenka Kádeková and Adriana Mateášiková
Sustainability 2025, 17(13), 5865; https://doi.org/10.3390/su17135865 - 26 Jun 2025
Viewed by 498
Abstract
In the context of growing interest in sustainable plant-based alternatives and sustainable eating, this study focused on the impact of visual elements of packaging design—specifically the presence of mascots—on consumer sustainable decision-making when choosing plant-based food products. The quantitative research, conducted through an [...] Read more.
In the context of growing interest in sustainable plant-based alternatives and sustainable eating, this study focused on the impact of visual elements of packaging design—specifically the presence of mascots—on consumer sustainable decision-making when choosing plant-based food products. The quantitative research, conducted through an online questionnaire, consists of four parts: the evaluation of the visual attractiveness of authentic brands of plant-based products; the identification of key factors influencing consumers’ choices when purchasing plant-based foods; the selection between graphic packaging designs featuring different types of mascots; and the assessment of the perceived importance of mascots in dietary habits. The collected data allows an analysis of how much mascots influence consumer sustainable preferences and willingness to try plant-based products. The findings suggest that mascots may be an effective tool in shaping positive perceptions of plant-based food and strengthening brand trust within sustainable concepts. The results offer practical implications for marketing strategies of producers of plant-based alternatives and highlight the potential of visual communication to promote sustainable consumption. This study contributes to understanding how packaging design affects consumer sustainable behavior in the plant-based food sector, with a focus on mascots as a previously underexplored visual element. Full article
Show Figures

Figure 1

16 pages, 819 KiB  
Article
Screening and Relative Quantification of Migration from Novel Thermoplastic Starch and PBAT Blend Packaging
by Phanwipa Wongphan, Elena Canellas, Cristina Nerín, Carlos Estremera, Nathdanai Harnkarnsujarit and Paula Vera
Foods 2025, 14(13), 2171; https://doi.org/10.3390/foods14132171 - 21 Jun 2025
Viewed by 515
Abstract
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while [...] Read more.
A novel biodegradable food packaging material based on cassava thermoplastic starch (TPS) and polybutylene adipate terephthalate (PBAT) blends containing food preservatives was successfully developed using blown-film extrusion. This active packaging is designed to enhance the appearance, taste, and color of food products, while delaying quality deterioration. However, the incorporation of food preservatives directly influences consumer perception, as well as health and safety concerns. Therefore, this research aims to assess the risks associated with both intentionally added substances (IAS) and non-intentionally added substances (NIAS) present in the developed active packaging. The migration of both intentionally and non-intentionally added substances (IAS and NIAS) was evaluated using gas chromatography–mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Fifteen different volatile compounds were detected, with the primary compound identified as 1,6-dioxacyclododecane-7,12-dione, originating from the PBAT component. This compound, along with others, resulted from the polymerization of adipic acid, terephthalic acid, and butanediol, forming linear and cyclic PBAT oligomers. Migration experiments were conducted using three food simulants—95% ethanol, 10% ethanol, and 3% acetic acid—over a period of 10 days at 60 °C. No migration above the detection limits of the analytical methods was observed for 3% acetic acid and 10% ethanol. However, migration studies with 95% ethanol revealed the presence of new compounds formed through interactions between the simulant and PBAT monomers or oligomers, indicating the packaging’s sensitivity to high-polarity food simulants. Nevertheless, the levels of these migrated compounds remained below the regulatory migration limits. Full article
Show Figures

Figure 1

Back to TopTop