Eco-Friendly Packaging for Functional Food
Abstract
1. Introduction
2. Functional Foods
2.1. Definition and Regulatory Framework
2.2. Global Market and Consumer Acceptability
3. Bioactive Compounds/Microorganisms
3.1. Definition
- Polyphenols;
- Omega-3 PUFAs;
- Phytosterols;
- Pro-, pre-, post-, and symbiotics;
- Bioactive peptides.
3.2. Bioactivity and Health Effects of Bioactive Compounds
3.2.1. Polyphenols
3.2.2. Omega-3 PUFAs
3.2.3. Phytosterols
3.2.4. Pro-, Pre-, Syn-, and Postbiotics
3.2.5. Bioactive Peptides
3.3. Determination and Quantification of Bioactive Compounds/Microorganisms
3.3.1. Polyphenols
3.3.2. Omega-3 Fatty Acids
3.3.3. Phytosterols
3.3.4. Pro-, Pre-, and Postbiotics
3.3.5. Bioactive Peptides
4. Food Packaging
4.1. Innovative Packaging
4.2. Barrier Packaging Strategies
4.3. Modified Atmosphere Packaging
4.4. Effect of Industrial Food Processing on Packaging
4.5. Eco-Friendly Packaging
4.6. Packaging Requirements and Solutions for Functional Foods
4.7. Strategies to Overcome the Drawbacks of Using Bio-Based Polymers in Packaging of Functional Food
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Arachidonic acid |
AFLP | Amplified fragment length polymorphism |
ALA | α-linolenic acid |
Al2O3 | Aluminum oxide |
bio-PA | Bio-polyamide |
bio-PE | Bio-polyethylene |
bio-PET | Bio-polyethylene-terephthalate |
bio-PP | Bio-polypropylene |
bio-PTT | Bio-polytrimethylene terephthalate |
BOPP | Biaxially oriented polypropylene |
CAGR | Compound Annual Growth Rate |
CE | Capillary electrophoresis |
CLA | Conjugated linoleic acid |
CO2 | Carbon dioxide |
DGGE | Denaturing gradient gel electrophoresis |
DHA | Docosahexaenoic acid |
DLC | Diamond-like carbon |
DNA | Deoxyribonucleic acid |
DPA | Docosapentaenoic acid |
ELSD | Evaporative light scattering detection |
EMAP | Equilibrium Modified Atmosphere Packaging |
EPA | Eicosapentaenoic acid |
EU | European Union |
EVOH | Ethylene vinyl alcohol |
FAO | Food and Agriculture Organization |
FFC | Functional Food Center |
FID | Flame ionization detector |
FLE | Ficus leaf extract |
FOS | Fructooligosaccharides |
FOSHU | Food for Specific Health Uses |
FT-IR | Fourier transform infrared spectroscopy |
GC | Gas chromatography |
GMP | Good Manufacturing Practices |
GOS | Galactooligosaccharides |
HMDB | Human Metabolome Database |
HPAEC-PED | High-performance anion-exchange chromatography with pulsed electrochemical detection |
HPE | Hypericum perforatum extract |
HPLC | High-performance liquid chromatography |
IR | Infrared spectroscopy |
ISAPP | International Scientific Association for Probiotics and Prebiotics |
KC | Natural kaolinite clay |
LA | Linoleic acid |
LC | Liquid chromatography |
LDL | Low-density lipoprotein |
LDPE | Low-density polyethylene |
MALDI-TOF-MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
MAP | Modified-atmosphere-packed |
MIR | Mid-infrared spectroscopy |
MOS | Milk oligosaccharides |
MS | Mass spectrometry |
N2 | Nitrogen |
NIR | Near-infrared spectroscopy |
NMR | Nuclear magnetic resonance |
NTP | Non-thermal processing technologies |
O2 | Oxygen |
OBSM | Ocimum basilicum seed mucilage |
OPP | Oriented polypropylene |
PA | Polyamide |
PAD | Pulsed amperometric detection |
PBAT | Polybutylene adipate terephthalate |
PBS | Polybutylene succinate |
PCL | Polycaprolactone |
PDA | Photodiode array detector |
PGA | Polyglycolic acid |
PE | Polyethylene |
PESu | Polyethylene succinate |
PET | Polyethylene terephthalate |
PHA | Polyhydroxyalkonoates |
PHB | Polyhydroxy-butyrate |
PHV | Polyhydroxyvalerate |
PLA | Polylactic acid |
PLGA | Poly(lactide-co-glycolide) |
PLSR | Partial least squares regression |
pMAP | Passive modified atmosphere packaging |
PP | Polypropylene |
PS | Polystyrene |
PTT | Poly(trimethylene terephthalate) |
PUFAs | Polyunsaturated fatty acids |
PVA | Polyvinyl alcohol |
RAPD | Randomly amplified polymorphic |
RFID | Radio frequency identification |
RID | Refractive index detection |
RNA | Ribonucleic acid |
rRNA | Ribosomal ribonucleic acid |
ROS | Reactive oxygen species |
SDA | Stearidonic acid |
SFC | Supercritical fluid chromatography |
SiOx | Silicon oxide |
TGGE | Temperature gradient gel electrophoresis |
UHPLC | Ultra-high-performance liquid chromatography |
UHPLC-QTOF-MS/MS | Ultra-high-performance liquid chromatography-triple/time-of-flight mass spectrometry |
VP | Vacuum-packed |
WE | Working electrode |
XOS | Xylooligosaccharides |
References
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Ponte, L.G.S.; Ribeiro, S.F.; Pereira, J.C.V.; Antunes, A.E.C.; Bezerra, R.M.N.; da Cunha, D.T. Consumer Perceptions of Functional Foods: A Scoping Review Focusing on Non-Processed Foods. Food Rev. Int. 2025, 1–19. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Guimarães, J.F.; Coutinho, N.M.; Pimentel, T.C.; Ranadheera, C.S.; Santillo, A.; Albenzio, M.; Cruz, A.G.; Sant’Ana, A.S. The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2560–2586. [Google Scholar] [CrossRef]
- Catenza, K.F.; Donkor, K.K. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem. 2021, 355, 129416. [Google Scholar] [CrossRef]
- Ahire, J.J.; Rohilla, A.; Kumar, V.; Tiwari, A. Quality management of probiotics: Ensuring safety and maximizing health benefits. Curr. Microbiol. 2024, 81, 1. [Google Scholar] [CrossRef]
- Boylston, T.D. Understanding and Measuring the Shelf Life of Food. J. Food Qual. 2005, 28, 403–404. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Koch, J.; Frommeyer, B.; Schewe, G. Managing the transition to eco-friendly packaging—An investigation of consumers’ motives in online retail. J. Clean. Prod. 2022, 351, 131504. [Google Scholar] [CrossRef]
- Hussain, S.; Akhter, R.; Maktedar, S.S. Advancements in sustainable food packaging: From eco-friendly materials to innovative technologies. Sustain. Food Technol. 2024, 2, 1297–1364. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Parker, L.; Brennan, L.; Lockrey, S. A consumer definition of eco-friendly packaging. J. Clean. Prod. 2020, 252, 119792. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and bio-based food packaging: A review on past and current design innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.; Miller, S.A. Environmental impacts of plastic packaging of food products. Resour. Conserv. Recycl. 2022, 180, 106156. [Google Scholar] [CrossRef]
- Westlake, J.R.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable biopolymers for active packaging: Demand, development and directions. Sustain. Food Technol. 2023, 1, 50–72. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.K.I.; Maan, A.A.; Nazir, A.; Riaz, S.; Khan, M.U.; Sultan, M.; Munekata, P.E.S.; Lorenzo, J.M. Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag. Shelf Life 2022, 33, 100903. [Google Scholar] [CrossRef]
- D’Amico, V.; Cavaliere, M.; Ivone, M.; Lacassia, C.; Celano, G.; Vacca, M.; la Forgia, F.M.; Fontana, S.; De Angelis, M.; Denora, N.; et al. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics 2025, 17, 185. [Google Scholar] [CrossRef]
- Ramazanidoroh, F.; Hosseininezhad, M.; Shahrampour, D.; Wu, X. Edible packaging as a functional carrier of prebiotics, probiotics, and postbiotics to boost food safety, quality, and shelf life. Probiotics Antimicrob. Proteins 2024, 16, 1327–1347. [Google Scholar] [CrossRef]
- Jagtiani, E.; Adsare, S. Microencapulsation: Probiotics, Prebiotics, and Nutraceuticals. J. Nanotechnol. Nanomater. 2022, 3, 34–60. [Google Scholar]
- Neekhra, S.; Pandith, J.A.; Mir, N.A.; Manzoor, A.; Ahmad, S.; Ahmad, R.; Sheikh, R.A. Innovative approaches for microencapsulating bioactive compounds and probiotics: An updated review. J. Food Process. Preserv. 2022, 46, e16935. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Markets and Markets. Available online: https://www.marketsandmarkets.com/Market-Reports (accessed on 27 March 2025).
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- González-Díaz, C.; Vilaplana-Aparicio, M.J.; Iglesias-García, M. How is functional food advertising understood? An approximation in university students. Nutrients 2020, 12, 3312. [Google Scholar] [CrossRef]
- Ahn, B.I.; Bae, M.S.; Nayga, R.M., Jr. Information effects on consumers’ preferences and willingness to pay for a functional food product: The case of red ginseng concentrate. Asian Econ. J. 2016, 30, 197–219. [Google Scholar] [CrossRef]
- Ares, G.; Gimenez, A.; Gambaro, A. Consumer perceived healthiness and willingness to try functional milk desserts. Influence of ingredient, ingredient name and health claim. Food Qual. Prefer. 2009, 20, 50–56. [Google Scholar] [CrossRef]
- Marette, S.; Roosen, J.; Blanchemanche, S.; Feinblatt-Mélèze, E. Functional food, uncertainty and consumers’ choices: A lab experiment with enriched yoghurts for lowering cholesterol. Food Policy 2010, 35, 419–428. [Google Scholar] [CrossRef]
- Siegrist, M.; Stampfli, N.; Kastenholz, H. Consumers’ willingness to buy functional foods. The influence of carrier, benefit and trust. Appetite 2008, 51, 526–529. [Google Scholar] [CrossRef]
- Van Kleef, E.; Van Trijp, H.C.; Luning, P. Functional foods: Health claim-food product compatibility and the impact of health claim framing on consumer evaluation. Appetite 2005, 44, 299–308. [Google Scholar] [CrossRef]
- Bruschi, V.; Teuber, R.; Dolgopolova, I. Acceptance and willingness to pay for health-enhancing bakery products–Empirical evidence for young urban Russian consumers. Food Qual. Prefer. 2015, 46, 79–91. [Google Scholar] [CrossRef]
- Narayana, N.M.N.K.; Fernando, S.; Samaraweera, G.C. Awareness and attitude towards functional dairy products among consumers in western province of Sri Lanka. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 1308–1314. [Google Scholar] [CrossRef]
- Lyly, M.; Roininen, K.; Honkapää, K.; Poutanen, K.; Lähteenmäki, L. Factors influencing consumers’ willingness to use beverages and ready-to-eat frozen soups containing oat β-glucan in Finland, France and Sweden. Food Qual. Prefer. 2007, 18, 242–255. [Google Scholar] [CrossRef]
- Çakiroğlu, F.P.; Uçar, A. Consumer attitudes towards purchasing functional products. Age 2018, 18, 494. [Google Scholar]
- Michell, K.A.; Isweiri, H.; Newman, S.E.; Bunning, M.; Bellows, L.L.; Dinges, M.M.; Grabos, L.E.; Rao, S.; Foster, M.T.; Heuberger, A.L.; et al. Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Gutkowska, K.; Czarnecki, J. Postawy konsumentów wobec innowacyjnej żywności z uwzględnieniem produktów funkcjonalnych-implikacje dla komunikacji marketingowej w zakresie oświadczeń żywieniowych i zdrowotnych. Mark. Inst. Nauk. I Badaw. 2020, 4, 107–129. [Google Scholar]
- Kitts, D.D. Bioactive substances in food: Identification and potential uses. Can. J. Physiol. Pharmacol. 1994, 72, 423–434. [Google Scholar] [CrossRef]
- Basu, S.K.; Thomas, J.E.; Acharya, S.N. Prospects for growth in global nutraceutical and functional food markets: A Canadian perspective. Aust. J. Basic Appl. Sci. 2007, 1, 637–649. [Google Scholar]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Aluyor, E.O.; Oboh, I.O. Preservatives: Traditional preservatives-vegetable oils. Encycl. Food Microbiol. 2014, 3, 137–140. [Google Scholar]
- Wu, S.J.; Ng, L.T.; Lin, C.C. Antioxidant activities of some common ingredients of traditional Chinese medicine, Angelica sinensis, Lycium barbarum and Poria cocos. Phytother. Res. 2004, 18, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Kumar Deb, P.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Aging: A theory based on free radical and radiation biology. J. Geront. 1956, 11, 298–300. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Kavyani, Z.; Musazadeh, V.; Fathi, S.; Faghfouri, A.H.; Dehghan, P.; Sarmadi, B. Efficacy of the omega-3 fatty acids supplementation on inflammatory biomarkers: An umbrella meta-analysis. Int. Immunopharmacol. 2022, 111, 109104. [Google Scholar] [CrossRef]
- Heshmati, J.; Morvaridzadeh, M.; Maroufizadeh, S.; Akbari, A.; Yavari, M.; Amirinejad, A.; Maleki-Hajiagha, A.; Sepidarkish, M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2019, 149, 104462. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Lange, K.W. Omega-3 fatty acids and mental health. Glob. Health J. 2020, 4, 18–30. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- Patted, P.G.; Masareddy, R.S.; Patil, A.S.; Kanabargi, R.R.; Bhat, C.T. Omega-3 fatty acids: A comprehensive scientific review of their sources, functions and health benefits. Future J. Pharm. Sci. 2024, 10, 94–105. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.S. Omega− 3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—A review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Barta, D.G.; Coman, V.; Vodnar, D.C. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res. 2021, 58, 102410. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2021, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R.; et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother. Res. 2022, 36, 299–322. [Google Scholar] [CrossRef]
- Shahzad, N.; Khan, W.; Shadab; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abduljaleel, Z.; Ibrahim, I.A.A.; Abdel-Wahab, A.F.; et al. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother. 2017, 88, 786–794. [Google Scholar] [CrossRef]
- Ostlund, R.E., Jr.; McGill, J.B.; Zeng, C.M.; Covey, D.F.; Stearns, J.; Stenson, W.F.; Spilburg, C.A. Gastrointestinal absorption and plasma kinetics of soy Δ5-phytosterols and phytostanols in humans. Am. J. Physiol. -Endocrinol. Metab. 2002, 282, E911–E916. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Santos-Hidalgo, A.B.; Saura-Calixto, F. Common sources and estimated intake of plant sterols in the Spanish diet. J. Agric. Food Chem. 2006, 54, 3462–3471. [Google Scholar] [CrossRef]
- Esche, R.; Müller, L.; Engel, K.H. Online LC-GC-based analysis of minor lipids in various tree nuts and peanuts. J. Agric. Food Chem. 2013, 61, 11636–11644. [Google Scholar] [CrossRef]
- Poli, A.; Marangoni, F.; Corsini, A.; Manzato, E.; Marrocco, W.; Martini, D.; Medea, G.; Visioli, F. Phytosterols, cholesterol control, and cardiovascular disease. Nutrients 2021, 13, 2810. [Google Scholar] [CrossRef]
- Barriuso, B.; Otaegui-Arrazola, A.; Menéndez-Carreño, M.; Astiasarán, I.; Ansorena, D. Sterols heating: Degradation and formation of their ring-structure polar oxidation products. Food Chem. 2012, 135, 706–712. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Berni Canani, R.; Flint, H.J.; Salminen, S.; et al. Activity of cecropin P1 and FA-LL-37 against urogenital microflora. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- International Scientific Association for Probiotics and Prebiotics. Available online: https://isappscience.org/for-scientists/resources/probiotics/ (accessed on 20 March 2025).
- Fredua-Agyeman, M.; Stapleton, P.; Basit, A.W.; Gaisford, S. Microcalorimetric evaluation of a multi-strain probiotic: Interspecies inhibition between probiotic strains. J. Funct. Foods 2017, 36, 357–361. [Google Scholar] [CrossRef]
- Aspri, M.; Papademas, P.; Tsaltas, D. Review on non-dairy probiotics and their use in non-dairy based products. Fermentation 2020, 6, 30. [Google Scholar] [CrossRef]
- Li, S.; Fan, S.; Ma, Y.; Xia, C.; Yan, Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front. Cell. Infect. Microbiol. 2024, 14, 1419884. [Google Scholar] [CrossRef]
- Salvucci, E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019, 70, 781–795. [Google Scholar] [CrossRef]
- Ballan, R.; Battistini, C.; Xavier-Santos, D.; Saad, S.M.I. Interactions of probiotics and prebiotics with the gut microbiota. Prog. Mol. Biol. Transl. Sci. 2020, 171, 265–300. [Google Scholar]
- Parichat, P.; Pongsak, R. Probiotics: Sources, selection and health benefits. Res. J. Biotechnol. 2023, 18, 5. [Google Scholar]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Yan, Y.L.; Hu, Y.; Gänzle, M.G. Prebiotics, FODMAPs and dietary fiber—Conflicting concepts in development of functional food products? Curr. Opin. Food Sci. 2018, 20, 30–37. [Google Scholar] [CrossRef]
- Kherade, M.; Solanke, S.; Tawar, M.; Wankhede, S. Fructooligosaccharides: A comprehensive review. J. Ayurvedic Herb. Med. 2021, 7, 193–200. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzene, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Tomasik, P.; Tomasik, P. Probiotics, non-dairy prebiotics and postbiotics in nutrition. Appl. Sci. 2020, 10, 1470. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Ling, Z. Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Crit. Rev. Food Sci. Nutr. 2022, 62, 7929–7959. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules 2021, 11, 631. [Google Scholar] [CrossRef]
- Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol. 2021, 108, 27–39. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Le, T.D.; Suttikhana, I.; Olatunji, O.J. The regulatory mechanisms of biopeptides in insulin and glucose uptake. J. Funct. Foods 2023, 104, 105552. [Google Scholar] [CrossRef]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765. [Google Scholar] [CrossRef]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Gonzalez-de la Rosa, T.; Montserrat-de la Paz, S. Edible insects as a source of biopeptides and their role in immunonutrition. Food Funct. 2024, 15, 2789–2798. [Google Scholar] [CrossRef] [PubMed]
- González-Ortega, R.; Šturm, L.; Skrt, M.; Di Mattia, C.D.; Pittia, P.; Poklar Ulrih, N. Liposomal encapsulation of oleuropein and an olive leaf extract: Molecular interactions, antioxidant effects and applications in model food systems. Food Biophys. 2021, 16, 84–97. [Google Scholar] [CrossRef]
- Miedes, D.; Makran, M.; Barberá, R.; Cilla, A.; Alegría, A.; Garcia-Llatas, G. Elderly gastrointestinal conditions increase sterol bioaccessibility in a plant sterol-enriched beverage: Adaptation of the INFOGEST method. Food Funct. 2022, 13, 4478–4485. [Google Scholar] [CrossRef]
- Copado, C.N.; Ixtaina, V.Y.; Tomás, M.C. Enrichment of a fruit-based smoothie beverage with omega-3 fatty acids from microencapsulated chia seed oil. J. Sci. Food Agric. 2024, 104, 3352–3360. [Google Scholar] [CrossRef]
- Limbad, M.; Gutierrez-Maddox, N.; Hamid, N.; Kantono, K.; Liu, T.; Young, T. Microbial and chemical changes during fermentation of coconut water kefir beverage. Appl. Sci. 2023, 13, 7257. [Google Scholar] [CrossRef]
- Tang, B.; Wu, L.; Weng, M.; Chen, J.; Li, Y.; Lai, P. Effect of Hypsizygus marmoreus powder on cooking characteristics, color and texture of wheat noodles. Food Sci. Technol. 2022, 42, e00622. [Google Scholar] [CrossRef]
- Lara-Cervantes, T.D.J.; Carrillo-Inungaray, M.L.; Balderas-Hernández, V.E.; Aguilar-Zárate, P.; Veana, F. Valorization of Parmentiera aculeata juice in growth of probiotics in submerged culture and their postbiotic production: A first approach to healthy foods. Arch. Microbiol. 2022, 204, 679–687. [Google Scholar] [CrossRef]
- Poliński, S.; Topka, P.; Tańska, M.; Kowalska, S.; Czaplicki, S.; Szydłowska-Czerniak, A. Impact of bioactive compounds of plant leaf powders in white chocolate production: Changes in antioxidant properties during the technological processes. Antioxidants 2022, 11, 752. [Google Scholar] [CrossRef]
- Topka, P.; Rudzińska, M.; Poliński, S.; Szydłowska-Czerniak, A.; Tańska, M. Enhancing Antioxidant Activity and Nutritional Profile of Dark Chocolate Through Enrichment with Plant Sterols: A Study on Phytosterol Concentrations and Functional Properties. Foods 2024, 13, 3578. [Google Scholar] [CrossRef]
- Faccinetto-Beltrán, P.; Gómez-Fernández, A.R.; Orozco-Sánchez, N.E.; Pérez-Carrillo, E.; Marín-Obispo, L.M.; Hernández-Brenes, C.; Santacruz, A.; Jacobo-Velázquez, D.A. Physicochemical properties and sensory acceptability of a next-generation functional chocolate added with omega-3 polyunsaturated fatty acids and probiotics. Foods 2021, 10, 333. [Google Scholar] [CrossRef] [PubMed]
- Arapović, M.; Puljić, L.; Kajić, N.; Kartalović, B.; Habschied, K.; Mastanjević, K. New Insights in Prebiotic Utilization: A Systematic Review. Processes 2024, 12, 867. [Google Scholar] [CrossRef]
- Singh, S.; Gaur, S. Novel Formulations of Cinnamon-and Orange-Flavored Synbiotic Corn Chocolates with Enhanced Functional Properties and Probiotic Survival Rates. ACS Food Sci. Technol. 2025, 5, 1268–1279. [Google Scholar] [CrossRef]
- Akgül, A.; Sert, D.; Mercan, E. Effects of Bifidobacterium animalis and inulin addition on quality characteristics of synbiotic milk chocolate. J. Food Saf. Food Qual.-Arch. Leb. 2021, 72, 142–149. [Google Scholar] [CrossRef]
- Karimi, R. Viability of Lactobacillus paracasei, L. helveticus and Bifidobacterium lactis in sour cream and considering their effects on textural and sensorial properties of the product. FSCT 2024, 21, 76–85. [Google Scholar]
- Bellinazo, P.L.; Vitola, H.R.S.; Cruxen, C.E.D.S.; Braun, C.L.K.; Hackbart, H.C.D.S.; da Silva, W.P.; Fiorentini, Â.M. Probiotic butter: Viability of Lactobacillus casei strains and bixin antioxidant effect (Bixa orellana L.). J. Food Process. Preserv. 2019, 43, e14088. [Google Scholar] [CrossRef]
- Pereira, C.; Gomes, D.; Dias, S.; Santos, S.; Pires, A.; Viegas, J. Impact of Probiotic and Bioprotective Cultures on the Quality and Shelf Life of Butter and Buttermilk. Dairy 2024, 5, 625. [Google Scholar] [CrossRef]
- Jovanović, M.; Vojvodić, P.; Petrović, M.; Radić, D.; Mitić-Ćulafić, D.; Kostić, M.; Veljović, S. Yogurt fortified with GABA-producing strain and Ganoderma lucidum industrial waste. Czech J. Food Sci. 2022, 40, 456–464. [Google Scholar] [CrossRef]
- Chourasia, R.; Abedin, M.M.; Chiring Phukon, L.; Sahoo, D.; Singh, S.P.; Rai, A.K. Biotechnological approaches for the production of designer cheese with improved functionality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 960–979. [Google Scholar] [CrossRef]
- Figueroa, L.E.; Brugnoni, L.I.; Staffolo, M.D.; Genovese, D.B. Development of a functional dulce de leche (milk jam) with prebiotic carbohydrates and Lacticaseibacillus rhamnosus GG. Int. Dairy J. 2024, 156, 105975. [Google Scholar] [CrossRef]
- Yang, J.; Ciftci, D.; Ciftci, O.N. Fortification of Milk with Omega-3 Fatty Acids Using Novel Bioactive-Carrier Hollow Solid Lipid Micro-and Nanoparticles for Improved Omega-3 Stability and Bioaccessibility. ACS Food Sci. Technol. 2024, 4, 813–820. [Google Scholar] [CrossRef]
- Khalil, R.A.; El-Sawah, T.H.; Alsulami, T.; Zaidalkilani, A.T.; Al-Farga, A.; Elkot, W.F. Development and characterization of functional low-fat frozen dairy dessert enhanced with dried lemongrass powder. Open Chem. 2024, 22, 20240081. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhang, J.; ud Din, J.; Chen, C.; Cao, Y.; Fatima, H.; Yang, Z. Characterization of synbiotic ice cream made with probiotic yeast Saccharomyces boulardii CNCM I-745 in combination with inulin. LWT 2021, 141, 110910. [Google Scholar] [CrossRef]
- Kainat, F.; Ali, M.; Akbar, A.; Masih, R.; Mehnaz, S.; Sadiq, M.B. Ultrasonic Extraction of Phenolic Compounds from Eggplant Peel and Formulation of Eggplant Peel Extract-Enriched Ice-Cream. J. Food Qual. 2023, 2023, 3267119. [Google Scholar] [CrossRef]
- Goh, A.S.E.; Ningtyas, D.W.; Bhandari, B.; Prakash, S. Investigating phytosterol as a potential functional component in milk through textural, flavour and oral perception study. LWT 2021, 141, 110873. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Monteiro, M.J.; Amaro, A.; Gomes, A.; Pintado, M. Cereal bars functionalized through Bifidobacterium animalis subsp. lactis BB-12 and inulin incorporated in edible coatings of whey protein isolate or alginate. Food Funct. 2019, 10, 6892–6902. [Google Scholar] [CrossRef]
- Sarika, K.; Jayathilakan, K.; Lekshmi, R.G.K.; Priya, E.R.; Greeshma, S.S.; Rajkumar, A. Omega-3 enriched Granola bar: Formulation and Evaluation under different Storage Conditions. Fish. Technol. 2019, 56, 130–139. [Google Scholar]
- Spim, S.R.V.; Castanho, N.R.C.M.; Pistila, A.M.H.; Jozala, A.F.; Oliveira Júnior, J.M.; Grotto, D. Lentinula edodes mushroom as an ingredient to enhance the nutritional and functional properties of cereal bars. J. Food Sci. Technol. 2021, 58, 1349–1357. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Ciftci, O.N. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods. Food Res. Int. 2019, 123, 27–35. [Google Scholar] [CrossRef]
- Unno, K.; Furushima, D.; Hamamoto, S.; Iguchi, K.; Yamada, H.; Morita, A.; Pervin, M.; Nakamura, Y. Stress-reducing effect of cookies containing matcha green tea: Essential ratio among theanine, arginine, caffeine and epigallocatechin gallate. Heliyon 2019, 5, e01653. [Google Scholar] [CrossRef]
- Knežević-Jugović, Z.; Culetu, A.; Mijalković, J.; Duta, D.; Stefanović, A.; Šekuljica, N.; Đorđević, V.; Antov, M. Impact of different enzymatic processes on antioxidant, nutritional and functional properties of soy protein hydrolysates incorporated into novel cookies. Foods 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biodi, N.; Tredici, M.R. Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Troncoso Recio, R. Development of Biscuits Enriched with Phytosterols and Fortified with Iron and Calcium Using Ccasein Hydrolysates as Carriers. Ph.D. Thesis, Universidad de Vigo, Spain, 2018. [Google Scholar]
- Meral, R.; Kına, E.; Ceylan, Z. Low-Calorie Cookies Enhanced with Fish Oil-Based Nano-ingredients for Health-Conscious Consumers. ACS Omega 2024, 9, 39159–39169. [Google Scholar] [CrossRef]
- Belmadani, N.; Kassous, W.; Keddar, K.; Amtout, L.; Hamed, D.; Douma-Bouthiba, Z.; Costache, V.; Gérard, P.; Ziar, H. Functional Cyperus esculentus L. Cookies Enriched with the Probiotic Strain Lacticaseibacillus rhamnosus SL42. Foods 2024, 13, 2541. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.; Tu, J.; Yu, L.; Niu, L. Matcha-fortified rice noodles: Characteristics of in vitro starch digestibility, antioxidant and eating quality. LWT 2021, 149, 111852. [Google Scholar] [CrossRef]
- Szydłowska-Tutaj, M.; Szymanowska, U.; Tutaj, K.; Domagała, D.; Złotek, U. The addition of reishi and lion’s mane mushroom powder to pasta influences the content of bioactive compounds and the antioxidant, potential anti-inflammatory, and anticancer properties of pasta. Antioxidants 2023, 12, 738. [Google Scholar] [CrossRef]
- Valdez-Meza, E.E.; Raymundo, A.; Figueroa-Salcido, O.G.; Ramírez-Torres, G.I.; Fradinho, P.; Oliveira, S.; de Souza, I.; Suárez-Jiménez, M.; Cárdenas-Torres, F.I.; Islas-Rubio, A.R.; et al. Pasta enrichment with an amaranth hydrolysate affects the overall acceptability while maintaining antihypertensive properties. Foods 2019, 8, 282. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Quality evaluation of probiotic pasta produced with Bacillus coagulans GBI-30. Innov. Food Sci. Emerg. Technol. 2020, 66, 102489. [Google Scholar] [CrossRef]
- González, A.; Bordón, M.G.; Bustos, M.C.; Córdova Salazar, K.L.; Ribotta, P.D.; Martínez, M.L. Study of the incorporation of native and microencapsulated chia seed oil on pasta properties. Int. J. Food Sci. Technol. 2021, 56, 233–241. [Google Scholar] [CrossRef]
- Garzon, R.; Skendi, A.; Lazo-Velez, M.A.; Papageorgiou, M.; Rosell, C.M. Interaction of dough acidity and microalga level on bread quality and antioxidant properties. Food Chem. 2021, 344, 128710. [Google Scholar] [CrossRef]
- Beikzadeh, S.; Shojaee-Aliabadi, S.; Dadkhodazade, E.; Sheidaei, Z.; Abedi, A.S.; Mirmoghtadaie, L.; Hosseini, S.M. Comparison of properties of breads enriched with omega-3 oil encapsulated in β-glucan and Saccharomyces cerevisiae yeast cells. Appl. Food Biotechnol. 2019, 7, 11–20. [Google Scholar]
- Nartea, A.; Fanesi, B.; Pacetti, D.; Lenti, L.; Fiorini, D.; Lucci, P.; Frega, N.G.; Falcone, P.M. Cauliflower by-products as functional ingredient in bakery foods: Fortification of pizza with glucosinolates, carotenoids and phytosterols. Curr. Res. Food Sci. 2023, 6, 100437. [Google Scholar] [CrossRef] [PubMed]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A.; Zarzycki, P.; Blicharz-Kania, A. The Impact of Ganoderma lucidum (Curtis) P. Karst. Supplementation on the Technological, Chemical, and Quality Parameters of Wheat Bread. Foods 2024, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A.; Ivanišová, E. Lion’s Mane (Hericium erinaceus (Bull.) Pers.) as a functional component for wheat bread production: Influence on physicochemical, antioxidant, and sensory properties. Int. Agrophysics 2025, 39, 13–28. [Google Scholar] [CrossRef]
- Amorim, C.; Cardoso, B.B.; Silvério, S.C.; Silva, J.C.; Alves, J.I.; Pereira, M.A.; Moreira, R.; Rodrigues, L.R. Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. Food Biosci. 2021, 40, 100858. [Google Scholar] [CrossRef]
- Singu, B.D.; Bhushette, P.R.; Annapure, U.S. Thermo-tolerant Saccharomyces cerevisiae var. boulardii coated cornflakes as a potential probiotic vehicle. Food Biosci. 2020, 36, 100668. [Google Scholar] [CrossRef]
- Delgado-Nieblas, C.I.; Ahumada-Aguilar, J.A.; Agramón-Velázquez, S.; Zazueta-Morales, J.J.; Jacobo-Valenzuela, N.; Ruiz-Armenta, X.A.; Ahumada-Aguilar, J.A.; Carrillo-Lopez, A.; Barraza-Elenes, C. Physical, phytochemical and sensory characteristics of extruded high-fiber breakfast cereals prepared by combining carrot by-products with wheat and oat bran. Rev. Mex. Ing. Química. 2021, 20, Alim2441. [Google Scholar] [CrossRef]
- de Alencar, M.G.; de Quadros, C.P.; Luna, A.L.L.P.; Neto, A.F.; da Costa, M.M.; Queiroz, M.A.A.; de Carvalho, F.A.L.; da Silva Araújo, D.H.; Costa Gois, G.; dos Anjos Santos, V.L.; et al. Grape skin flour obtained from wine processing as an antioxidant in beef burgers. Meat Sci. 2022, 194, 108963. [Google Scholar] [CrossRef]
- Pratap, M.; Das, A.K.; Nanda, P.K.; Samiran, B.; Prasant, J.; Akshay, S.; Maity, B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J. Food Sci. Technol. 2020, 57, 1449–1461. [Google Scholar]
- Martínez, E.; Pardo, J.E.; Álvarez-Ortí, M.; Rabadán, A.; Pardo-Giménez, A.; Alvarruiz, A. Substitution of pork fat by emulsified seed oils in fresh deer sausage (‘Chorizo’) and its impact on the physical, nutritional, and sensory properties. Foods 2023, 12, 828. [Google Scholar] [CrossRef]
- Barbut, S.; Marangoni, A. Organogels use in meat processing–Effects of fat/oil type and heating rate. Meat Sci. 2019, 149, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, L.; Yang, Q. Partial replacement of nitrite with a novel probiotic Lactobacillus plantarum on nitrate, color, biogenic amines and gel properties of Chinese fermented sausages. Food Res. Int. 2020, 137, 109351. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Godoy, C.L.; Costa, L.M.; Guerra, C.A.; de Oliveira, V.S.; de Paula, B.P.; Lemos Junior, W.J.F.; da Silva Duarte, V.; Luchese, R.H.; Rossi Bautitz, I.; Guerra, A.F. Potentially postbiotic-containing preservative to extend the use-by date of raw chicken sausages and semifinished chicken products. Sustainability 2022, 14, 2646. [Google Scholar] [CrossRef]
- Lone, A.B.; Bhat, H.F.; Aït-Kaddour, A.; Hassoun, A.; Aadil, R.M.; Dar, B.N.; Bhat, Z.F. Cricket protein hydrolysates pre-processed with ultrasonication and microwave improved storage stability of goat meat emulsion. Innov. Food Sci. Emerg. Technol. 2023, 86, 103364. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzym. 1999, 299, 152–178. [Google Scholar]
- Almeida, L.C.; Zeferino, J.F.; Branco, C.; Squillaci, G.; Morana, A.; Santos, R.; Ihalainen, P.; Sobhana, L.; Correia, J.P.; Viana, A.S. Polynorepinephrine and polydopamine-bacterial laccase coatings for phenolic amperometric biosensors. Bioelectrochemistry 2025, 161, 108826. [Google Scholar] [CrossRef]
- Patil, N.D.; Bains, A.; Sridhar, K.; Sharma, M.; Dhull, S.B.; Gosken, G.; Chawla, P.; Inbaraj, B.S. Recent advances in the analytical methods for quantitative determination of antioxidants in food matrices. Food Chem. 2024, 463, 141348. [Google Scholar] [CrossRef]
- Joshi, R.; Sathasivam, R.; Park, S.U.; Lee, H.; Kim, M.S.; Baek, I.; Cho, B.K. Application of Fourier transform infrared spectroscopy and multivariate analysis methods for the non-destructive evaluation of phenolics compounds in moringa powder. Agriculture 2021, 12, 10. [Google Scholar] [CrossRef]
- Scano, P. Characterization of the medium infrared spectra of polyphenols of red and white wines by integrating FT IR and UV–Vis spectral data. LWT 2021, 147, 111604. [Google Scholar] [CrossRef]
- Santos, Y.J.D.S.; Malegori, C.; Colnago, L.A.; Vanin, F.M. Application on infrared spectroscopy for the analysis of total phenolic compounds in fruits. Crit. Rev. Food Sci. Nutr. 2024, 64, 2906–2916. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Liu, H.; Lin, T.; Yi, L.; Ren, D.; Gu, Y.; Wang, S. Quantification of caffeine and catechins and evaluation of bitterness and astringency of Pu-erh ripen tea based on portable near-infrared spectroscopy. J. Food Compos. Anal. 2024, 125, 105793. [Google Scholar] [CrossRef]
- Hu, Y.; Sheng, W.; Adade, S.Y.S.S.; Wang, J.; Li, H.; Chen, Q. Comparison of machine learning and deep learning models for detecting quality components of vine tea using smartphone-based portable near-infrared device. Food Control 2025, 174, 111244. [Google Scholar] [CrossRef]
- Carvalho, D.G.; Ranzan, L.; Jacques, R.A.; Trierweiler, L.F.; Trierweiler, J.O. Analysis of total phenolic compounds and caffeine in teas using variable selection approach with two-dimensional fluorescence and infrared spectroscopy. Microchem. J. 2021, 169, 106570. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Oppolzer, D.; Queiroz, M.; Brites, C.; Rosa, E.A.; Barros, A.I. Prediction of phytochemical composition, in vitro antioxidant activity and individual phenolic compounds of common beans using MIR and NIR spectroscopy. Food Bioprocess Technol. 2020, 13, 962–977. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Gomes, A.; Mattos, G.J.; Coldibeli, B.; Dekker, R.F.; Dekker, A.M.B.; Sartori, E.R. Covalent attachment of laccase to carboxymethyl-botryosphaeran in aqueous solution for the construction of a voltammetric biosensor to quantify quercetin. Bioelectrochemistry 2020, 135, 107543. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Tyrosinase-based biosensor—A new tool for chlorogenic acid detection in nutraceutical formulations. Materials 2022, 15, 3221. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Cârâc, G.; Bahrim, G.; Camurlu, P. Utilization of enzyme extract self-encapsulated within polypyrrole in sensitive detection of catechol. Enzym. Microb. Technol. 2019, 128, 34–39. [Google Scholar] [CrossRef]
- Tarasov, A.; Stozhko, N.; Bukharinova, M.; Khamzina, E. Biosensors based on phenol oxidases (laccase, tyrosinase, and their mixture) for estimating the total phenolic index in food-related samples. Life 2023, 13, 291. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Li, J.; Liu, J.; Pi, F.; Ping, J. Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens. Bioelectron. 2022, 216, 114601. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 2018, 1009, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Shahamirifard, S.A.; Ghaedi, M.; Razmi, Z.; Hajati, S. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode. Biosens. Bioelectron. 2018, 114, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Bottari, D.; Pigani, L.; Zanardi, C.; Terzi, F.; Paţurcă, S.V.; Grigorescu, S.D.; Matei, C.; Lete, C.; Lupu, S. Electrochemical sensing of caffeic acid using gold nanoparticles embedded in poly (3, 4-ethylenedioxythiophene) layer by sinusoidal voltage procedure. Chemosensors 2019, 7, 65. [Google Scholar] [CrossRef]
- Della Pelle, F.; Rojas, D.; Silveri, F.; Ferraro, G.; Fratini, E.; Scroccarello, A.; Escarpa, A.; Compagnone, D. Class-selective voltammetric determination of hydroxycinnamic acids structural analogs using a WS 2/catechin-capped AuNPs/carbon black–based nanocomposite sensor. Microchim. Acta 2020, 187, 296. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, L.; Li, X.; He, J.; Huang, W.; Cai, Y.; Wang, J.; Tingting, C.; Du, Y.; Yao, Y. Au–nitrogen-doped graphene quantum dot composites as “on–off” nanosensors for sensitive photo-electrochemical detection of caffeic acid. Nanomaterials 2020, 10, 1972. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Zhang, J.; Li, Y.; Zhang, Y.; Li, Y.; Ye, B.C. Novel electrochemical sensing platform based on integration of molecularly imprinted polymer with Au@ Ag hollow nanoshell for determination of resveratrol. Talanta 2019, 196, 479–485. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Q.; Yang, J.; Chen, S.; Hu, F.; Hu, Y.; Lin, H. Synergistic effects of layer-by-layer films for highly selective and sensitive electrochemical detection of trans-resveratrol. Food Chem. 2021, 338, 127851. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Li, S.; Qin, Y.; Mo, Q.; Chen, L.; Li, X. Highly sensitive molecular imprinted voltammetric sensor for resveratrol assay in wine via polyaniline/gold nanoparticles signal enhancement and polyacrylamide recognition. J. Electroanal. Chem. 2021, 895, 115455. [Google Scholar] [CrossRef]
- Sebastian, N.; Yu, W.C.; Balram, D. Synthesis of amine-functionalized multi-walled carbon nanotube/3D rose flower-like zinc oxide nanocomposite for sensitive electrochemical detection of flavonoid morin. Anal. Chim. Acta 2020, 1095, 71–81. [Google Scholar] [CrossRef]
- Teker, T.; Aslanoglu, M. A novel voltammetric sensing platform based on carbon nanotubes-niobium nanoparticles for the determination of chlorogenic acid. Arab. J. Chem. 2020, 13, 5517–5525. [Google Scholar] [CrossRef]
- Tang, J.; Huang, R.; Zheng, S.; Jiang, S.; Yu, H.; Li, Z.; Wang, J. A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem. J. 2019, 145, 899–907. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, P.; Wang, C.; Yang, P.; Xie, Y.; Fei, J. Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Microchim. Acta 2020, 187, 130. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hu, S.; Chen, X.; Zhang, G.; Liu, G.; Liu, W. Au@ Pt nanoparticles embedded in n-doped graphene as sensor for determination of catechin. Int. J. Electrochem. Sci. 2020, 15, 6778–6789. [Google Scholar] [CrossRef]
- Cerrato-Alvarez, M.; Bernalte, E.; Bernalte-García, M.J.; Pinilla-Gil, E. Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 2019, 193, 93–99. [Google Scholar] [CrossRef]
- Zrinski, I.; Pungjunun, K.; Martinez, S.; Zavašnik, J.; Stanković, D.; Kalcher, K.; Mehmeti, E. Evaluation of phenolic antioxidant capacity in beverages based on laccase immobilized on screen-printed carbon electrode modified with graphene nanoplatelets and gold nanoparticles. Microchem. J. 2020, 152, 104282. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Moreno-Merchan, J.; Granados, M.; Nuñez, O.; Saurina, J.; Sentellas, S. Total polyphenol content in food samples and nutraceuticals: Antioxidant indices versus high performance liquid chromatography. Antioxidants 2022, 11, 324. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, F.; Sun, M.; Tang, Z.; Wu, Y.; Lyu, J.; Khan, K.S.; Yu, J. Development of a high-performance liquid chromatography method for simultaneous quantification of sixteen polyphenols and application to tomato. J. Chromatogr. A 2024, 1733, 465254. [Google Scholar] [CrossRef]
- Rodríguez, I.F.; Cattaneo, F.; Zech, X.V.; Svavh, E.; Pérez, M.J.; Zampini, I.C.; Isla, M.I. Aloja and Añapa, two traditional beverages obtained from prosopis alba pods: Nutritional and functional characterization. Food Biosci. 2020, 35, 100546. [Google Scholar] [CrossRef]
- Huang, X.; Wang, N.; Ma, Y.; Liu, X.; Guo, H.; Song, L.; Zhao, Q.; Hai, D.; Cheng, Y.; Bai, G.; et al. Flaxseed polyphenols: Effects of varieties on its composition and antioxidant capacity. Food Chem. X 2024, 23, 101597. [Google Scholar] [CrossRef]
- Jakabová, S.; Árvay, J.; Šnirc, M.; Lakatošová, J.; Ondejčíková, A.; Golian, J. HPLC-DAD method for simultaneous determination of gallic acid, catechins, and methylxanthines and its application in quantitative analysis and origin identification of green tea. Heliyon 2024, 10, e35819. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Anaguano, M.; Molina, M.; Tupuna-Yerovi, D.S.; Ruales, J. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS J. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Temerdashev, A.; Atapattu, S.N.; Pamunuwa, G.K. Determination and identification of polyphenols in wine using mass spectrometry techniques. J. Chromatogr. Open 2024, 6, 100175. [Google Scholar] [CrossRef]
- Orozco-Flores, L.A.; Salas, E.; Rocha-Gutiérrez, B.; Peralta-Pérez, M.D.R.; González-Sánchez, G.; Ballinas-Casarrubias, L. Determination of polyphenolic profile of apple pomace (Malus domestica golden delicious variety) by HPLC–MS. ACS Omega 2023, 9, 196–203. [Google Scholar] [CrossRef]
- Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Savitov, A.; Kalenik, T.; et al. LC-MS/MS screening of phenolic compounds in wild and cultivated grapes Vitis amurensis Rupr. Molecules 2021, 26, 3650. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, P.; Ma, W.; Zeng, X.A.; Fang, Z. Physicochemical properties, antioxidant activities and comprehensive phenolic profiles of tea-macerated Chardonnay wine and model wine. Food Chem. 2024, 436, 137748. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Matwijczuk, A.; Dib, A.; Markut-Miotła, E. Opuntia fruits as food enriching ingredient, the first step towards new functional food products. Molecules 2020, 25, 916. [Google Scholar] [CrossRef]
- Alkhudaydi, H.M.S.; Muriuki, E.N.; Spencer, J.P. Determination of the Polyphenol Composition of Raspberry Leaf Using LC-MS/MS. Molecules 2025, 30, 970. [Google Scholar] [CrossRef]
- Sun, Y.; Geng, Y.; Ma, L. Determination of o-quinones in foods by a derivative strategy combined with UHPLC-MS/MS. Food Chem. 2024, 453, 139638. [Google Scholar] [CrossRef]
- Masek, A.; Latos-Brozio, M.; Kałużna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. Antioxidant properties of green coffee extract. Forests 2020, 11, 557. [Google Scholar] [CrossRef]
- Siejak, P.; Smułek, W.; Nowak-Karnowska, J.; Dembska, A.; Neunert, G.; Polewski, K. Bird cherry (Prunus padus) fruit extracts inhibit lipid peroxidation in PC liposomes: Spectroscopic, HPLC, and GC–MS studies. Appl. Sci. 2022, 12, 7820. [Google Scholar] [CrossRef]
- Rohman, A.; Irnawati Windarsih, A.; Riswanto, F.D.O.; Indrayanto, G.; Fadzillah, N.A.; Riyanto, S.; Bakar, N.K.A. Application of chromatographic and spectroscopic-based methods for analysis of Omega-3 (Ω-3 Fas) and Omega-6 (Ω-6 Fas) fatty acids in marine natural products. Molecules 2023, 28, 5524. [Google Scholar] [CrossRef] [PubMed]
- Matos, Â.P.; Matos, A.C.; Moecke, E.H.S. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Braz. J. Food Technol. 2019, 22, e2018193. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and distribution of omega-3 fatty acids in South Pacific fish and shellfish species. Foods 2020, 9, 233. [Google Scholar] [CrossRef] [PubMed]
- Muhammad Alinafiah, S.; Azlan, A.; Ismail, A.; Mahmud Ab Rashid, N.K. Method development and validation for omega-3 fatty acids (DHA and EPA) in fish using gas chromatography with flame ionization detection (GC-FID). Molecules 2021, 26, 6592. [Google Scholar] [CrossRef]
- Rangasamy, E.; Muthu, V.L.; Dhanabalan, K.; Muniyandi, M. Determination of proximate composition on some edible crabs with special reference to nutritional aspects collected from coastal waters of Rameshwaram, Tamil Nadu. Food Chem. Adv. 2024, 4, 100686. [Google Scholar] [CrossRef]
- Kika, J.; Jakubczyk, K.; Ligenza, A.; Maciejewska-Markiewicz, D.; Szymczykowska, K.; Janda-Milczarek, K. Matcha green tea: Chemical composition, phenolic acids, caffeine and fatty acid profile. Foods 2024, 13, 1167. [Google Scholar] [CrossRef]
- . Van Nieuwenhove, C.P.; Moyano, A.; Castro-Gómez, P.; Fontecha, J.; Sáez, G.; Zárate, G.; Pizarro, P.L. Comparative study of pomegranate and jacaranda seeds as functional components for the conjugated linolenic acid enrichment of yogurt. LWT 2019, 111, 401–407. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Sobiechowska, D.A.; Tańska, M. Edible flowers as a new source of natural antioxidants for oxidative protection of cold-pressed oils rich in omega-3 fatty acids. Food Res. Int. 2020, 134, 109216. [Google Scholar] [CrossRef]
- Nogueira, M.S.; Scolaro, B.; Milne, G.L.; Castro, I.A. Oxidation products from omega-3 and omega-6 fatty acids during a simulated shelf life of edible oils. LWT 2019, 101, 113–122. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Xiang, H.; Sun-Waterhouse, D.; Zhao, Y.; Chen, S.; Li, L.; Wang, Y. UHPLC-Q-Exactive Orbitrap MS/MS-based untargeted lipidomics reveals molecular mechanisms and metabolic pathways of lipid changes during golden pomfret (Trachinotus ovatus) fermentation. Food Chem. 2022, 396, 133676. [Google Scholar] [CrossRef]
- Cui, J.; Cao, J.; Zeng, S.; Ge, J.; Li, P.; Li, C. Comprehensive evaluation of lipidomics profiles in golden threadfin bream (Nemipterus virgatus) and its by-products using UHPLC-Q-exactive Orbitrap-MS. LWT 2022, 165, 11369. [Google Scholar] [CrossRef]
- Irnawati, I.; Windarsih, A.; Fadzillah, N.A.; Azmi, A.A.; Kusbandari, A.; Rohman, A. The use of spectroscopic methods in combination with multivariate data analysis for determination of omega fatty acids: A review. J. Appl. Pharm. Sci. 2024, 14, 045–053. [Google Scholar] [CrossRef]
- Alotaibi, R.F.; AlTilasi, H.H.; Al-Mutairi, A.M.; Alharbi, H.S. Chromatographic and spectroscopic methods for the detection of cocoa butter in cocoa and its derivatives: A review. Heliyon 2024, 10, e31467. [Google Scholar] [CrossRef] [PubMed]
- Chaji, S.; Bajoub, A.; Cravotto, C.; Voss, M.; Tabasso, S.; Hanine, H.; Cravotto, G. Metabolomics in action: Towards producing authentic virgin olive oil rich in bioactive compounds and with distinctive organoleptic features. LWT 2024, 191, 115681. [Google Scholar] [CrossRef]
- Nieto-Ortega, S.; Olabarrieta, I.; Saitua, E.; Arana, G.; Foti, G.; Melado-Herreros, Á. Improvement of oil valorization extracted from fish by-products using a handheld near infrared spectrometer coupled with chemometrics. Foods 2022, 11, 1092. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Song, X.; Wang, Y.; Liu, S.; Ren, F.; Kong, L.; Zhang, H. Enhancing water solubility of phytosterols through Co-amorphization with food-grade coformers. Curr. Res. Food Sci. 2025, 10, 100984. [Google Scholar] [CrossRef]
- Gies, M.; Servent, A.; Borel, P.; Dhuique-Mayer, C. Phytosterol vehicles used in a functional product modify carotenoid/cholesterol bioaccessibility and uptake by Caco-2 cells. J. Funct. Foods 2020, 68, 103920. [Google Scholar] [CrossRef]
- Lin, L.Y.; Chen, C.W.; Chen, H.C.; Chen, T.L.; Yang, K.M. Developing the procedure-enhanced model of ginger-infused sesame oil based on its flavor and functional properties. Food Chem. X 2024, 21, 101227. [Google Scholar] [CrossRef]
- Guo, Q.; Li, T.; Qu, Y.; Wang, X.; Liu, L.; Liu, H.; Wang, Q. Action of phytosterols on thermally induced trans fatty acids in peanut oil. Food Chem. 2021, 344, 128637. [Google Scholar] [CrossRef]
- Oliva, E.; Palmieri, S.; Della Valle, F.; Eugelio, F.; Fanti, F.; Ciccola, A.; Sergi, M.; Del Carlo, M.; Compagnone, D. Versatile and reliable extraction of phytosterols employing sonochemical synthesized molecularly imprinted polymer. J. Chromatogr. Open 2024, 6, 100174. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Yang, R.; Mao, J.; Jiang, J.; Wang, X.; Zhang, W.; Zhang, Q.; Li, P. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS. Food Chem. 2019, 289, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Food Supplements. Available online: https://www.fortunebusinessinsights.com/es/functional-foods-market-102269 (accessed on 30 March 2025).
- Global Market Insights. Available online: https://www.gminsights.com/es/industry-analysis/phytosterols-market (accessed on 29 March 2025).
- Trovato, E.; Arena, K.; La Tella, R.; Rigano, F.; Vinci, R.L.; Dugo, P.; Mondello, L.; Guarnaccia, P. Hemp seed-based food products as functional foods: A comprehensive characterization of secondary metabolites using liquid and gas chromatography methods. J. Food Compos. Anal. 2023, 117, 105151. [Google Scholar] [CrossRef]
- Obranović, M.; Balbino, S.; Repajić, M.; Robić, K.; Ritoša, E.; Dragović-Uzelac, V. Wild nettle (Urtica dioica L.) root: Composition of phytosterols and pentacyclic triterpenes upon habitat diversity. Food Chem. Adv. 2023, 2, 100262. [Google Scholar] [CrossRef]
- Sun, S.; Wang, S.; Li, S.; Wei, L.; Wang, X.; Wang, Y.; Li, B.; Hu, Y.; Wang, L. New insights on the analysis of phytosterols in pollen and anther wall of tree peony (Paeonia ostii ‘Fengdan’) revealed by GC-MS/MS. Anal. Chim. Acta 2022, 1212, 339891. [Google Scholar] [CrossRef]
- Akhtar, N.; Khadim, A.; Siddiqui, A.J.; Musharraf, S.G. Simultaneous quantification and validation of triterpenoids and phytosterols in plant extracts, foods, and nutraceuticals using HPLC-DAD. J. Food Compos. Anal. 2025, 142, 107418. [Google Scholar] [CrossRef]
- Dienaitė, L.; Baranauskienė, R.; Venskutonis, P.R. Lipophilic extracts isolated from European cranberry bush (Viburnum opulus) and sea buckthorn (Hippophae rhamnoides) berry pomace by supercritical CO2–Promising bioactive ingredients for foods and nutraceuticals. Food Chem. 2021, 348, 129047. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Caprioli, G.; Ricciutelli, M.; Cortese, M.; Alesi, A.; Vittori, S.; Sagratini, G. Development of an innovative phytosterol derivatization method to improve the HPLC-DAD analysis and the ESI-MS detection of plant sterols/stanols. Food Res. Int. 2020, 131, 108998. [Google Scholar] [CrossRef]
- dos Santos Caramês, E.T.; Baqueta, M.R.; Pierna, J.A.F.; Pallone, J.A.L.; Baeten, V. Advanced chemometric discrimination of intact organic and conventional brown rice kernels: Comparing NIR benchtop, hand-held NIR and NIR hyperspectral imaging. J. Food Compos. Anal. 2025, 139, 107120. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid determination of phytosterols by NIRS and chemometric methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [Google Scholar] [CrossRef]
- Sun, P.; Xia, B.; Ni, Z.J.; Wang, Y.; Elam, E.; Thakur, K.; Ma, Y.L.; Wei, Z.J. Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chem. 2021, 360, 130017. [Google Scholar] [CrossRef]
- Amaral, J.B.S.; Grisi, C.V.B.; Vieira, E.A.; Ferreira, P.S.; Rodrigues, C.G.; Diniz, N.C.M.; Pinheiro Fernandes Vieira, P.; Albuquerque dos Santos, N.; Correia Gonçalves, M.; Mattos Braga, A.L.; et al. Light cream cheese spread of goat milk enriched with phytosterols: Physicochemical, rheological, and microbiological characterization. LWT 2022, 157, 113103. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in medicine: A long debate. Front. Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Arora, J.; Chauhan, A.; Basniwal, R.K.; Kumari, A.; Rajput, V.D.; Prazdnova, E.V.; Ghosh, A.; Mukerjee, N.; Mandzhieva, S.S.; et al. Advances in characterization of probiotics and challenges in industrial application. Biotechnol. Genet. Eng. Rev. 2024, 40, 3226–3269. [Google Scholar] [CrossRef]
- Georgieva, M.; Andonova, L.; Peikova, L.; Zlatkov, A. Probiotics–Health benefits, classification, quality assurance and quality control–Review. Pharmacia 2014, 61, 22–31. [Google Scholar]
- Boyte, M.E.; Benkowski, A.; Pane, M.; Shehata, H.R. Probiotic and postbiotic analytical methods: A perspective of available enumeration techniques. Front. Microbiol. 2023, 14, 1304621. [Google Scholar] [CrossRef]
- Papadopoulou, O.S.; Argyri, A.A.; Kounani, V.; Tassou, C.C.; Chorianopoulos, N. Use of Fourier transform infrared spectroscopy for monitoring the shelf life and safety of yogurts supplemented with a Lactobacillus plantarum strain with probiotic potential. Front. Microbiol. 2021, 12, 678356. [Google Scholar] [CrossRef]
- Aguinaga Bósquez, J.P.; Oǧuz, E.; Cebeci, A.; Majadi, M.; Kiskó, G.; Gillay, Z.; Kovacs, Z. Characterization and viability prediction of commercial probiotic supplements under temperature and concentration conditioning factors by NIR spectroscopy. Fermentation 2022, 8, 66. [Google Scholar] [CrossRef]
- Peng, M.; Tabashsum, Z.; Anderson, M.; Truong, A.; Houser, A.K.; Padilla, J.; Akmel, A.; Bhatti, J.; Rahaman, S.O.; Biswas, D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1908–1933. [Google Scholar] [CrossRef]
- Corradini, C.; Lantano, C.; Cavazza, A. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest. Anal. Bioanal. Chem. 2013, 405, 4591–4605. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Riaz, T.; Mahmood, S.; Liaqat, H.; Mushtaq, A.; Khan, S.; Amin, S.; Qi, X. Recent advances in the production, analysis, and application of galacto-oligosaccharides. Food Rev. Int. 2023, 39, 5814–5843. [Google Scholar] [CrossRef]
- Amanah, H.Z.; Tunny, S.S.; Masithoh, R.E.; Choung, M.G.; Kim, K.H.; Kim, M.S.; Baek, I.; Lee, W.; Cho, B.K. Nondestructive prediction of isoflavones and oligosaccharides in intact soybean seed using Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopic techniques. Foods 2022, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lei, T.; Li, G.; Liu, S.; Chu, X.; Hao, D.; Xiao, G.; Khan, A.A.; Ul Haq, T.; Sameeh, M.Y.; et al. Rapid detection of micronutrient components in infant formula milk powder using near-infrared spectroscopy. Front. Nutr. 2023, 10, 1273374. [Google Scholar] [CrossRef] [PubMed]
- Rico-Rodriguez, F.; Strani, L.; Grassi, S.; Lancheros, R.; Serrato, J.C.; Casiraghi, E. Study of Galactooligosaccharides production from dairy waste by FTIR and chemometrics as Process Analytical Technology. Food Bioprod. Process. 2021, 126, 113–120. [Google Scholar] [CrossRef]
- Fakayode, S.O.; Baker, G.A.; Bwambok, D.K.; Bhawawet, N.; Elzey, B.; Siraj, N.; Macchi, S.; Pollard, D.A.; Perez, R.L.; Duncan, A.V.; et al. Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis1. Appl. Spectrosc. Rev. 2020, 55, 647–723. [Google Scholar] [CrossRef]
- Ramasamy, T.; Chellapandian, N.; Dharumadurai, D. Separation, characterization and identification of postbiotics from probiotic microbes. In Postbiotics; Academic Press: New York, NY, USA, 2025; pp. 119–129. [Google Scholar]
- Gervasoni, L.F.; Gervasoni, K.; de Oliveira Silva, K.; Mendes, M.E.F.; Maddela, N.R.; Prasad, R.; Winkelstroter, L.K. Postbiotics in active food packaging: The contribution of cellulose nanocomposites. Sustain. Chem. Pharm. 2023, 36, 101280. [Google Scholar] [CrossRef]
- MetaboAnalyst 6.0. Available online: https://www.metaboanalyst.ca/ (accessed on 25 March 2025).
- Lopez, C.M.; Rocchetti, G.; Fontana, A.; Lucini, L.; Rebecchi, A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res. Int. 2022, 162, 112023. [Google Scholar] [CrossRef]
- Hsu, P.H.; Lin, Y.J.; Hwang, P.A. Fermentation-induced metabolic changes and bioactive metabolites in Laminaria japonica fermented by Bacillus subtilis. LWT 2025, 216, 117357. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.; Yan, Y.; Lu, J.; Sheng, J.; Gui, M.; Ma, X. Comprehensive characterisation of bioactive compounds in Boletus edulis as functional foods to improve muscle atrophy; through whole plant targeted metabolomics, network pharmacology, in vivo and in vitro experiments, molecular docking and molecular dynamics analysis. J. Ethnopharmacol. 2025, 346, 119685. [Google Scholar]
- Kim, S.H.; Singh, D.; Son, S.Y.; Lee, S.; Suh, D.H.; Lee, N.R.; Park, G.-S.; Kang, J.; Lee, C.H. Characterization and temporal dynamics of the intra-and extracellular environments of Lactiplantibacillus plantarum using multi-platform metabolomics. LWT 2023, 175, 114376. [Google Scholar] [CrossRef]
- Bhuva, B.; Gawai, K.M.; Singh, B.P.; Sarkar, P.; Hassan, M.Z.; Kovaleva, E.G.; Hati, S. Production, Characterization and Bio-functional properties of multi-functional peptides from fermented plant-based foods: A Review. Food Biosci. 2025, 64, 105877. [Google Scholar] [CrossRef]
- Chavapradit, C.; Visessanguan, W.; Panjanapongchai, S.; Anal, A.K. Techno-Functional Properties and Potential Applications of Peptides from Agro-Industrial Residues. J. Renew. Mater. 2025, 13, 553–582. [Google Scholar] [CrossRef]
- White, B.L.; Sanders, T.H.; Davis, J.P. Potential ACE-inhibitory activity and nanoLC-MS/MS sequencing of peptides derived from aflatoxin contaminated peanut meal. LWT-Food Sci. Technol. 2014, 56, 537–542. [Google Scholar] [CrossRef]
- Kogiso, K. Assessment of functional components in sika deer and wild boar meats with improvement in processing and flavor and a novel analytical prediction method. Appl. Food Res. 2023, 3, 100343. [Google Scholar] [CrossRef]
- Karki, S.; Prathumpai, W.; Anal, A.K. Microwave-assisted protein extraction from foxtail millet: Optimization, structural characterization, techno-functional properties, and bioactivity of peptides. Int. J. Biol. Macromol. 2025, 293, 139312. [Google Scholar] [CrossRef]
- Kijewska, M.; Zawadzka, M.; Śleziak, M.; Stefanowicz, P. Microwave-assisted solid-phase synthesis of lactosylated peptides for food analytical application. Food Chem. 2024, 433, 137367. [Google Scholar] [CrossRef]
- Guerra-Fajardo, L.D.; Pavón-Pérez, J.; Vallejos-Almirall, A.; Jorquera-Pereira, D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chem. 2022, 397, 133784. [Google Scholar] [CrossRef]
- Della Cerra, F.; Garro, G.; Cozzolino, R.; De Pascale, S.; Esposito, M.; Picariello, G.; Caira, S.; Scaloni, A.; Marino, F.; Addeo, F. Proteolysis and Volatile Compounds in Mediterranean Buffalo Milk Blue Cheese: Quality Determinants and Functional Peptides. J. Agric. Food Res. 2025, 21, 101923. [Google Scholar] [CrossRef]
- Bordiga, M.; Montella, R.; Travaglia, F.; Arlorio, M.; Coïsson, J.D. Characterization of polyphenolic and oligosaccharidic fractions extracted from grape seeds followed by the evaluation of prebiotic activity related to oligosaccharides. Int. J. Food Sci. Technol. 2019, 54, 1283–1291. [Google Scholar] [CrossRef]
- Alyassin, M.; Campbell, G.M.; O’Neill, H.M.; Bedford, M.R. Simultaneous determination of cereal monosaccharides, xylo-and arabinoxylo-oligosaccharides and uronic acids using HPAEC-PAD. Food Chem. 2020, 315, 126221. [Google Scholar] [CrossRef]
- Başaran, U.; Akkbik, M.; Mut, H.; Gülümser, E.; Çopur Doğrusöz, M.; Koçoğlu, S. High-performance liquid chromatography with refractive index detection for the determination of inulin in chicory roots. Anal. Lett. 2018, 51, 83–95. [Google Scholar] [CrossRef]
- Pico, J.; Vidal, N.P.; Widjaja, L.; Falardeau, L.; Albino, L.; Martinez, M.M. Development and assessment of GC/MS and HPAEC/PAD methodologies for the quantification of α-galacto-oligosaccharides (GOS) in dry beans (Phaseolus vulgaris). Food Chem. 2021, 349, 129151. [Google Scholar] [CrossRef] [PubMed]
- Savych, A.; Marchyshyn, S.; Kozyr, H.; Yarema, N. Determination of inulin in the herbal mixtures by GC-MS method. Pharmacia 2021, 68, 181–187. [Google Scholar] [CrossRef]
- Hao, Q.; Nan, T.; Zhou, L.; Kang, L.; Guo, L.; Yu, Y. Rapid simultaneous quantification of fructooligosaccharides in Morinda officianalis by ultra-high performance liquid chromatography. J. Sep. Sci. 2019, 42, 2222–2230. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Lima, M.; Nunes, P.C.; de Lourdes de Araújo Silva, B.; da Silva Padilha, C.V.; do Bonfim, T.H.F.; Stamford, T.L.M.; da Silva Vasconcelos, M.A.; de Souza Aquino, J. Determining 1-kestose, nystose and raffinose oligosaccharides in grape juices and wines using HPLC: Method validation and characterization of products from Northeast Brazil. J. Food Sci. Technol. 2019, 56, 4575–4584. [Google Scholar] [CrossRef]
- Wu, T.; Guo, S.; Liu, K.; Kwok, L.Y.; Wang, J.; Zhang, H. Exploring the postbiotic potential of multi-strain pasteurized fermented milk: A metabolomics study. LWT 2024, 209, 116802. [Google Scholar] [CrossRef]
- Lingua, M.S.; Gies, M.; Descalzo, A.M.; Servent, A.; Páez, R.B.; Baroni, M.V.; Blajman, J.E.; Dhuique-Mayer, C. Impact of storage on the functional characteristics of a fermented cereal product with probiotic potential, containing fruits and phytosterols. Food Chem. 2022, 370, 130993. [Google Scholar] [CrossRef]
- Yao, G.; Wang, X.; Yang, M.; Chen, F.; Ling, Y.; Liu, T.; Xing, S.; Yao, M.; Zhang, F. Co-immobilization of bi-lipases on magnetic nanoparticles as an efficient catalyst for synthesis of functional oil rich in diacylglycerols, phytosterol esters and α-linolenic acid. LWT 2020, 129, 109522. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, L.; Cui, R.; Zhang, C.; Xu, M.; Liu, W.; Xu, L.; Song, L. Effect of screw pressing temperature on apricot (Prunus armeniaca L.) kernels oil quality properties and apricot kernels protein isolate functional properties. LWT 2024, 213, 117002. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Zadeh, A.N.; Tayefe, M.; Zolqadri, R.; Ramezani, A.; Mazloomi, N.; Sarabandi, K. Biological conversion of red garlic (Allium sativum L) protein to bioactive peptides: ACE-DPP-IV inhibitory, and Techno-functional features. Appl. Food Res. 2024, 4, 100551. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/publications/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/en (accessed on 25 March 2025).
- Vasile, C.; Sivertsvik, M. (Eds.) Food Packaging: Materials and Technologies; MDPI: Basel, Switzerland, 2019. [Google Scholar]
- Agarwal, A.; Shaida, B.; Rastogi, M.; Singh, N.B. Food packaging materials with special reference to biopolymers-properties and applications. Chem. Afr. 2023, 6, 117–144. [Google Scholar] [CrossRef]
- Alamri, M.S.; Qasem, A.A.; Mohamed, A.A.; Hussain, S.; Ibraheem, M.A.; Shamlan, G.; Alqah, H.A.; Qasha, A.S. Food packaging’s materials: A food safety perspective. Saudi J. Biol. Sci. 2021, 28, 4490–4499. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Stadnik, J.; Stasiak, D.M.; Wójciak, K.; Lorenzo, J.M. Strategies to improve the nutritional value of meat products: Incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int. J. Food Sci. Technol. 2021, 56, 6142–6156. [Google Scholar] [CrossRef]
- González-López, M.E.; Calva-Estrada, S.D.J.; Gradilla-Hernández, M.S.; Barajas-Álvarez, P. Current trends in biopolymers for food packaging: A review. Front. Sustain. Food Syst. 2023, 7, 1225371. [Google Scholar] [CrossRef]
- Dixit, V.; Joseph Kamal, S.W.; Bajrang Chole, P.; Dayal, D.; Chaubey, K.K.; Pal, A.K.; Xavier, J.; Manjunath, B.T.; Bachheti, R.K. Functional foods: Exploring the health benefits of bioactive compounds from plant and animal sources. J. Food Qual. 2023, 2023, 5546753. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Hakim, L.; Gaikwad, K.K. Active packaging materials. Curr. Food Sci. Technol. Rep. 2023, 1, 123–132. [Google Scholar] [CrossRef]
- Lee, D.S.; Wang, H.J.; Jaisan, C.; An, D.S. Active food packaging to control carbon dioxide. Packag. Technol. Sci. 2022, 35, 213–227. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Auger, S.; Vidic, J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci. Technol. 2021, 116, 655–668. [Google Scholar] [CrossRef]
- Kumar, L.; Deshmukh, R.K.; Hakim, L.; Gaikwad, K.K. Halloysite nanotube as a functional material for active food packaging application: A review. Food Bioprocess Technol. 2024, 17, 33–46. [Google Scholar] [CrossRef]
- Jain, P.; Kumar, L.; Singh, S.; Gaikwad, K.K. Catechu (Senegalia catechu) based oxygen scavenger for active food packaging: A sustainable alternative. Sustain. Chem. Pharm. 2024, 37, 101350. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Lee, Y.S. Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. J. Food Meas. Charact. 2016, 10, 533–538. [Google Scholar] [CrossRef]
- Alves, J.; Gaspar, P.D.; Lima, T.M.; Silva, P.D. What is the role of active packaging in the future of food sustainability? A systematic review. J. Sci. Food Agric. 2023, 103, 1004–1020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, H.; Rhim, J.W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2022, 367, 130671. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.; Baican, M. Progresses in food packaging, food quality, and safety—Controlled-release antioxidant and/or antimicrobial packaging. Molecules 2021, 26, 1263. [Google Scholar] [CrossRef] [PubMed]
- Kuai, L.; Liu, F.; Chiou, B.S.; Avena-Bustillos, R.J.; McHugh, T.H.; Zhong, F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll. 2021, 120, 106992. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Petka-Poniatowska, K. Antimicrobial compounds in food packaging. Int. J. Mol. Sci. 2023, 24, 2457. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Gaikwad, K.K. Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Convers. Biorefinery 2024, 14, 4419–4440. [Google Scholar] [CrossRef]
- Lajqi, V. A review on active food packing as innovation strategies for the future. Int. J. Bus. Technol. 2021, 9, 1–8. [Google Scholar]
- Zaitoon, A.; Luo, X.; Lim, L.T. Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 541–579. [Google Scholar] [CrossRef]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Nilsen-Nygaard, J.; Pettersen, M.K.; Freire, C.S. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Lamsaf, H.; Sebastian, C.V.; Cerqueira, M.A.; Pastrana, L.; Teixeira, J.A. Active packaging systems based on metal and metal oxide nanoparticles. In Nanotechnology-Enhanced Food Packaging; Wiley Online Library: Hoboken, NJ, USA, 2022; pp. 143–181. [Google Scholar]
- Joshi, N.C.; Negi, P.B.; Gururani, P. A review on metal/metal oxide nanoparticles in food processing and packaging. Food Sci. Biotechnol. 2024, 33, 1307–1322. [Google Scholar] [CrossRef]
- Ganesh, A.; Rajan, R.; Simon, S.M.; Thankachan, S. An overview on metal oxide incorporated bionanocomposites and their potential applications. Nano-Struct. Nano-Objects 2024, 38, 101126. [Google Scholar] [CrossRef]
- Terzioğlu, P. Metal/Metal Oxide Nanomaterials in Biodegradable Food Packaging. In Functional Nanomaterials and Nanocomposites for Biodegradable Food Packaging; Springer Nature: Singapore, 2025; pp. 75–107. [Google Scholar]
- Stuparu-Cretu, M.; Braniste, G.; Necula, G.A.; Stanciu, S.; Stoica, D.; Stoica, M. Metal oxide nanoparticles in food packaging and their influence on human health. Foods 2023, 12, 1882. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.; Deng, Y. Latest advances in active materials for food packaging and their application. Foods 2023, 12, 4055. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Azevedo, A.G.; Barros, C.; Miranda, S.; Machado, A.V.; Castro, O.; Silva, B.; Saraiva, M.; Sanches Silva, A.; Pastrana, L.; Sousa Carneiro, O.; et al. Active flexible films for food packaging: A review. Polymers 2022, 14, 2442. [Google Scholar] [CrossRef]
- Westlake, J.R.; Tran, M.W.; Jiang, Y.; Zhang, X.; Burrows, A.D.; Xie, M. Biodegradable active packaging with controlled release: Principles, progress, and prospects. ACS Food Sci. Technol. 2022, 2, 1166–1183. [Google Scholar] [CrossRef]
- Azeredo, H.M.; Correa, D.S. Smart choices: Mechanisms of intelligent food packaging. Curr. Res. Food Sci. 2021, 4, 932–936. [Google Scholar] [CrossRef]
- Luo, X.; Zaitoon, A.; Lim, L.T. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2489–2519. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Ezati, P.; Rhim, J.W. Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Sci. Technol. 2021, 1, 124–138. [Google Scholar] [CrossRef]
- Almasi, H.; Forghani, S.; Moradi, M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag. Shelf Life 2022, 32, 100839. [Google Scholar] [CrossRef]
- Pirsa, S.; Sani, I.K.; Mirtalebi, S.S. Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag. Shelf Life 2022, 31, 100789. [Google Scholar] [CrossRef]
- Echegaray, N.; Guzel, N.; Kumar, M.; Guzel, M.; Hassoun, A.; Lorenzo, J.M. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chem. 2023, 404, 134453. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Xu, H.; McClements, D.J.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in smart packaging concepts for food: An extensive review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef]
- Jamwal, V.; Mittal, A. Recent progresses in nanocomposite films for food-packaging applications: Synthesis strategies, technological advancements, potential risks and challenges. Food Rev. Int. 2024, 40, 3634–3665. [Google Scholar] [CrossRef]
- Kushwaha, S.P.; Hasan, S.M.; Ved, A.; Kumar, P.; Singh, K.; Shukla, K.S.; Kumar, A.; Shoaib, A. Nanotechnology in the Fabrication of Improved, Active and Smart Packaging Materials. In Nanotechnology in Food Packaging; Springer Nature: Cham, Switzerland, 2025; pp. 89–114. [Google Scholar]
- Food Contact Materials. Legislation. Available online: https://food.ec.europa.eu/food-safety/chemical-safety/food-contact-materials/legislation_en (accessed on 25 March 2025).
- Mkhari, T.; Adeyemi, J.O.; Fawole, O.A. Recent Advances in the Fabrication of Intelligent Packaging for Food Preservation: A Review. Processes 2025, 13, 539. [Google Scholar] [CrossRef]
- Palazzo, M.; Vollero, A.; Siano, A. Intelligent packaging in the transition from linear to circular economy: Driving research in practice. J. Clean. Prod. 2023, 388, 135984. [Google Scholar] [CrossRef]
- Alias, A.R.; Wan, M.K.; Sarbon, N.M. Emerging materials and technologies of multi-layer film for food packaging application: A review. Food Control 2022, 136, 108875. [Google Scholar] [CrossRef]
- Dziadowiec, D.; Matykiewicz, D.; Szostak, M.; Andrzejewski, J. Overview of the cast polyolefin film extrusion technology for multi-layer packaging applications. Materials 2023, 16, 1071. [Google Scholar] [CrossRef]
- Viacava, G.E.; Ansorena, M.R.; Marcovich, N.E. Multilayered films for food packaging. In Nanostructured Materials for Food Packaging Applications; Elsevier: New York, NY, USA, 2024; pp. 447–475. [Google Scholar]
- Huang, H.D.; Ren, P.G.; Zhong, G.J.; Olah, A.; Li, Z.M.; Baer, E.; Zhu, L. Promising strategies and new opportunities for high barrier polymer packaging films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Rovera, C.; Ghaani, M.; Farris, S. Nano-inspired oxygen barrier coatings for food packaging applications: An overview. Trends Food Sci. Technol. 2020, 97, 210–220. [Google Scholar] [CrossRef]
- Zabihzadeh Khajavi, M.; Ebrahimi, A.; Yousefi, M.; Ahmadi, S.; Farhoodi, M.; Mirza Alizadeh, A.; Taslikh, M. Strategies for producing improved oxygen barrier materials appropriate for the food packaging sector. Food Eng. Rev. 2020, 12, 346–363. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T.; Kim, D.; Ju, B.K. Layer-by-layer assembled nano-composite multilayer gas barrier film manufactured with stretchable substrate. Appl. Sci. 2021, 11, 5794. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Zhu, Y.; Zheng, C. Recent advances in the construction and properties of carbon-based nanofillers/polymer composites with segregated network structures. Mater. Today Commun. 2023, 36, 106773. [Google Scholar] [CrossRef]
- Mandal, S.; Roy, D.; Mukhopadhyay, K.; Dwivedi, M.; Joshi, M. Mechanistic insight into the role of the aspect ratio of nanofillers in the gas barrier properties of polymer nanocomposite thin films. RSC Appl. Interfaces 2024, 1, 977–991. [Google Scholar] [CrossRef]
- Ashfaq, J.; Channa, I.A.; Memon, A.G.; Chandio, I.A.; Chandio, A.D.; Shar, M.A.; Alsalhi, M.S.; Devanesan, S. Enhancement of thermal and gas barrier properties of graphene-based nanocomposite films. ACS Omega 2023, 8, 41054–41063. [Google Scholar] [CrossRef]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative food packaging, food quality and safety, and consumer perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- Tyagi, P.; Salem, K.S.; Hubbe, M.A.; Pal, L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products—A review. Trends Food Sci. Technol. 2021, 115, 461–485. [Google Scholar] [CrossRef]
- Sari, A.N.A.; Warsiki, E.; Kartika, I.A. Innovation of oxygen indicator for packaging leak detector: A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 749, p. 012009. [Google Scholar]
- Heo, W.; Lim, S. A Review on Gas Indicators and Sensors for Smart Food Packaging. Foods 2024, 13, 3047. [Google Scholar] [CrossRef]
- Ibrahim, S.; Fahmy, H.; Salah, S. Application of interactive and intelligent packaging for fresh fish shelf-life monitoring. Front. Nutr. 2021, 8, 677884. [Google Scholar] [CrossRef]
- Li, S.; Hu, X.; Zhang, S.; Zhao, J.; Wang, R.; Wang, L.; Wang, X.; Yuan, Y.; Yue, T.; Cai, R.; et al. A versatile bilayer smart packaging based on konjac glucomannan/alginate for maintaining and monitoring seafood freshness. Carbohydr. Polym. 2024, 340, 122244. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Devgan, K.; Kumar, A.; Kaur, P.; Mahajan, P. Active and passive modified atmosphere packaging: Recent advances. In Nonthermal Food Engineering Operations; Wiley: Hoboken, NJ, USA, 2024; pp. 225–259. [Google Scholar] [CrossRef]
- Xu, C.C.; Lu, M.Y.; Li, R.; Liu, D.K.; Guo, C.X. Super-atmospheric oxygen modified atmosphere package of whole and fresh-cut fruits and vegetables. Food Bioprocess Technol. 2024, 17, 2499–2518. [Google Scholar] [CrossRef]
- Czerwiński, K.; Rydzkowski, T.; Wróblewska-Krepsztul, J.; Thakur, V.K. Towards impact of modified atmosphere packaging (MAP) on shelf-life of polymer-film-packed food products: Challenges and sustainable developments. Coatings 2021, 11, 1504. [Google Scholar] [CrossRef]
- Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous modified atmosphere packaging to extend shelf life of fresh foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 51–65. [Google Scholar] [CrossRef]
- Kim, D.; Thanakkasaranee, S.; Lee, K.; Sadeghi, K.; Seo, J. Smart packaging with temperature-dependent gas permeability maintains the quality of cherry tomatoes. Food Biosci. 2021, 41, 100997. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Fang, Z.; Wang, Z.C.; Nan, Y.; Shi, H.; Zhang, H.; Song, W.; Gu, H. Modified atmosphere packaging and plant extracts synergistically enhance the preservation of meat: A review. Food Control 2024, 164, 110622. [Google Scholar] [CrossRef]
- Paulsen, E.; Barrios, S.; Bogdanoff, N.; Leandro, G.C.; Valencia, G.A. Recent progress in modified atmosphere packaging and biopolymeric films and coatings for fresh strawberry shelf-life extension. Packag. Technol. Sci. 2024, 37, 619–640. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environ. Chem. Lett. 2021, 19, 1715–1735. [Google Scholar] [CrossRef]
- Gabrić, D.; Kurek, M.; Ščetar, M.; Brnčić, M.; Galić, K. Effect of non-thermal food processing techniques on selected packaging materials. Polymers 2022, 14, 5069. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Anderson, N.M.; Benyathiar, P.; Mishra, D.K. Aseptic processing and packaging. In Food Safety Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 661–692. [Google Scholar]
- Bhunia, K.; Tang, J.; Sablani, S.S. Microwave-based sustainable in-container thermal pasteurization and sterilization technologies for foods. Sustain. Food Technol. 2024, 2, 926–944. [Google Scholar] [CrossRef]
- Stoica, M.; Bichescu, C.I.; Crețu, C.M.; Dragomir, M.; Ivan, A.S.; Podaru, G.M.; Stoica, D.; Stuparu-Crețu, M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024, 13, 3027. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Panda, J.; Mishra, A.K.; Nath, P.C.; Nayak, P.K.; Mahapatra, U.; Sharma, M.; Chopra, H.; Mohanta, Y.K.; Sridhar, K. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int. J. Biol. Macromol. 2024, 279, 135583. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, A.P.; de Albuquerque, T.L. Innovations in food packaging: From bio-based materials to smart packaging systems. Processes 2024, 12, 2085. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef]
- Maurizzi, E.; Bigi, F.; Quartieri, A.; De Leo, R.; Volpelli, L.A.; Pulvirenti, A. The green era of food packaging: General considerations and new trends. Polymers 2022, 14, 4257. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Shahzad, A.; Ul-Islam, M.; Ullah, M.W.; Yang, G. Biobased materials for active food packaging: A review. Food Hydrocoll. 2022, 125, 107419. [Google Scholar] [CrossRef]
- Peerzada, J.G.; Ojha, N.; Jaabir, M.M.; Lakshmi, B.; Hannah, S.; Chidambaram, R.; Sinclair, B.J.; Krishna, K.; Muthuramalingam, P.; Mossa, A.T. Advancements in eco-friendly food packaging through nanocomposites: A review. Polym. Bull. 2024, 81, 5753–5792. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Advances in functional biopolymer-based nanocomposites for active food packaging applications. Polymers 2021, 13, 4198. [Google Scholar] [CrossRef]
- Ibrahim, I.D.; Hamam, Y.; Sadiku, E.R.; Ndambuki, J.M.; Kupolati, W.K.; Jamiru, T.; Eze, A.A.; Snyman, J. Need for sustainable packaging: An overview. Polymers 2022, 14, 4430. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Matuana, L.M. Trends in sustainable biobased packaging materials: A mini review. Mater. Today Sustain. 2021, 15, 100084. [Google Scholar] [CrossRef]
- Ng, W.L.; Chua, C.K.; Shen, Y.F. Print me an organ! Why we are not there yet. Prog. Polym. Sci. 2019, 97, 101145. [Google Scholar] [CrossRef]
- Archer, E.; Torretti, M.; Madbouly, S. Biodegradable polycaprolactone (PCL) based polymer and composites. Phys. Sci. Rev. 2023, 8, 4391–4414. [Google Scholar] [CrossRef]
- Peñas, M.I.; Pérez-Camargo, R.A.; Hernández, R.; Müller, A.J. A review on current strategies for the modulation of thermomechanical, barrier, and biodegradation properties of poly (butylene succinate) (PBS) and its random copolymers. Polymers 2022, 14, 1025. [Google Scholar] [CrossRef]
- Kim, J.; Yun, H.; Won, S.; Lee, D.; Baek, S.; Heo, G.; Park, S.; Jin, H.-J.; Kwak, H.W. Comparative degradation behavior of polybutylene succinate (PBS), used PBS, and PBS/Polyhydroxyalkanoates (PHA) blend fibers in compost and marine–sediment interfaces. Sustain. Mater. Technol. 2024, 41, e01065. [Google Scholar] [CrossRef]
- Muranaka, Y.; Koike, T.; Osuga, T.; Maki, T. Degradation behavior of polybutylene succinate with fillers. Polymer Degradation and Stability 2025, 111266. [Google Scholar] [CrossRef]
- Chrysafi, I.; Ainali, N.M.; Xanthopoulou, E.; Zamboulis, A.; Bikiaris, D.N. Thermal degradation mechanism and decomposition kinetic studies of poly (ethylene succinate)/hemp fiber composites. J. Compos. Sci. 2023, 7, 216. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Dahab, I.; Ragab, E.M.; Abdelsalam, O.A.; Mustafa, A. Bio-and oxo-degradable plastics: Insights on facts and challenges. Polym. Adv. Technol. 2021, 32, 1981–1996. [Google Scholar] [CrossRef]
- Heimowska, A. Environmental Degradation of Oxo-Biodegradable Polyethylene Bags. Water 2023, 15, 4059. [Google Scholar] [CrossRef]
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod. 2021, 294, 126218. [Google Scholar] [CrossRef]
- Sinha, S. An overview of biopolymer-derived packaging material. Polym. Renew. Resour. 2024, 15, 193–209. [Google Scholar] [CrossRef]
- Salgado, P.R.; Di Giorgio, L.; Musso, Y.S.; Mauri, A.N. Recent developments in smart food packaging focused on biobased and biodegradable polymers. Front. Sustain. Food Syst. 2021, 5, 630393. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Okolie, O.; Kumar, A.; Edwards, C.; Lawton, L.A.; Oke, A.; McDonald, S.; Takur, V.K.; Njuguna, J. Bio-based sustainable polymers and materials: From processing to biodegradation. J. Compos. Sci. 2023, 7, 213. [Google Scholar] [CrossRef]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7, 100028. [Google Scholar] [CrossRef]
- Ganie, S.A.; Ali, A.; Mir, T.A.; Li, Q. Physical and chemical modification of biopolymers and biocomposites. In Advanced Green Materials; Woodhead Publishing: Cornwall, UK, 2021; pp. 359–377. [Google Scholar]
- Fredi, G.; Dorigato, A. Compatibilization of biopolymer blends: A review. Adv. Ind. Eng. Polym. Res. 2024, 7, 373–404. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, X. Principle of biopolymer plasticization. In Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications; Elsevier: New York, NY, USA, 2020; pp. 1–19. [Google Scholar]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef]
- Mathew, S.S.; Jaiswal, A.K.; Jaiswal, S. A comprehensive review on hydrophobic modification of biopolymer composites for food packaging applications. Food Packag. Shelf Life 2025, 48, 101464. [Google Scholar] [CrossRef]
- Dutta, D.; Sit, N. A comprehensive review on types and properties of biopolymers as sustainable bio-based alternatives for packaging. Food Biomacromolecules 2024, 1, 58–87. [Google Scholar] [CrossRef]
- Kumar, R.; Lalnundiki, V.; Shelare, S.D.; Abhishek, G.J.; Sharma, S.; Sharma, D.; Kumar, A.; Abbas, M. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions. Environ. Res. 2024, 244, 117707. [Google Scholar] [CrossRef] [PubMed]
- Mülhaupt, R. Green polymer chemistry and bio-based plastics: Dreams and reality. Macromol. Chem. Phys. 2013, 214, 159–174. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Akpoghelie, P.O.; Joshua, O.A.; Isoje, E.F.; Igbuku, U.A.; Essaghah, A.E.A. Comparative analysis of the environmental impact of biopolymer-based and conventional plastic packaging in food engineering applications. Al-Mustaqbal J. Sustain. Eng. Sci. 2024, 2, 4. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Jan-Georg, R.; Langer, R.; Giovanni, T. Bioplastics for a circular economy. Nat. Reviews. Mater. 2022, 7, 117–137. [Google Scholar]
- Kogje, M.; Satdive, A.; Mestry, S.; Mhaske, S.T. Biopolymers: A comprehensive review of sustainability, environmental impact, and lifecycle analysis. Iran. Polym. J. 2025, 1–44. [Google Scholar] [CrossRef]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Monje Martínez, B.; Alonso, R.; Agostinis, L.; et al. Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Alias, N.H.; Abdullah, N.; Othman, N.H.; Marpani, F.; Zainol, M.M.; Shayuti, M.S.M. Sustainability challenges and future perspectives of biopolymer. In Biopolymers: Recent Updates, Challenges and Opportunities; Springer International Publishing: Cham, Switzerland, 2022; pp. 373–389. [Google Scholar]
- Poletto, M. (Ed.) Composites from Renewable and Sustainable Materials; BoD–Books on Demand: Norderstedt, Germany, 2016. [Google Scholar]
- Wellenreuther, C.; Wolf, A.; Zander, N. Cost competitiveness of sustainable bioplastic feedstocks—A Monte Carlo analysis for polylactic acid. Clean. Eng. Technol. 2022, 6, 100411. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A review on food spoilage mechanisms, food borne diseases and commercial aspects of food preservation and processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Su, Q.; Zhao, X.; Zhang, X.; Wang, Y.; Zeng, Z.; Cui, H.; Wang, C. Nano functional food: Opportunities, development, and future perspectives. Int. J. Mol. Sci. 2022, 24, 234. [Google Scholar] [CrossRef]
- Panou, A.; Karabagias, I.K. Composition, Properties, and Beneficial Effects of Functional Beverages on Human Health. Beverages 2025, 11, 40. [Google Scholar] [CrossRef]
- Deschênes, L. Packaging Functional Foods: From Basic Requirements to Nano Perspectives. In Functional Food Ingredients and Nutraceuticals; Shi, J., Ed.; CRC Press: Boulder, CO, USA, 2015. [Google Scholar]
- Chhikara, S.; Kumar, D. Edible coating and edible film as food packaging material: A review. J. Packag. Technol. Res. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Francis, D.V.; Dahiya, D.; Gokhale, T.; Nigam, P.S. Sustainable packaging materials for fermented probiotic dairy or non-dairy food and beverage products: Challenges and innovations. AIMS Microbiol. 2024, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Do, Y.V.; Le, Q.N.T.; Nghia, N.H.; Vu, N.D.; Tran, N.T.Y.; Bay, N.T.; Tran, T.T.; Bach, L.G.; Dao, T.P. Assessment of the changes in product characteristics, total ascorbic acid, total flavonoid content, total polyphenol content and antioxidant activity of dried soursop fruit tea (Annona muricata L.) during product storage. Food Sci. Nutr. 2024, 12, 2679–2691. [Google Scholar] [CrossRef]
- Li, J.; Xu, B.; Yu, H.; Ma, Q.; Zhao, D.; Dou, X.; Liu, L. Impact of packaging film colour on phytosterol photooxidation in safflower seed oil. LWT 2015, 224, 117818. [Google Scholar] [CrossRef]
- Hasanshahi, M.; ZamaniBahramabadi, E.; Nazoori, F. Preservation of fresh pistachio fruit by some packaging types in cold storage. J. Food Meas. Charact. 2023, 17, 6566–6576. [Google Scholar] [CrossRef]
- Rizzo, V.; Dattilo, S.; Barbagallo, S.; Puglisi, C.; Muratore, G. Packaging effects on highly nutritional value beverage obtained by a mix of typical sicilian fruits in accelerated storage. Food Packag. Shelf Life 2023, 38, 101138. [Google Scholar] [CrossRef]
- Yan, H.; Li, W.; Chen, H.; Liao, Q.; Xia, M.; Wu, D.; Liu, C.; Chen, J.; Zou, L.; Peng, L.; et al. Effects of storage temperature, packaging material and wash treatment on quality and shelf life of Tartary buckwheat microgreens. Foods 2022, 11, 3630. [Google Scholar] [CrossRef]
- Dantas, F.B.H.; Alvim, I.D.; Miguel, A.M.R.D.O.; Alves, R.M.V.; Marangoni Júnior, L. Influence of different packaging materials on the stability of Omega-3-Enriched milk powder during storage. J. Packag. Technol. Res. 2022, 6, 225–233. [Google Scholar] [CrossRef]
- Yenipazar, H.; Şahin-Yeşilçubuk, N. Effect of packaging and encapsulation on the oxidative and sensory stability of omega-3 supplements. Food Sci. Nutr. 2023, 11, 1426–1440. [Google Scholar] [CrossRef]
- Ebrahimi Monfared, K.; Gharachorloo, M.; Jafarpour, A.; Varvani, J. Effect of storage and packaging conditions on physicochemical and bioactivity of matcha-enriched muesli containing probiotic bacteria. J. Food Process. Preserv. 2022, 46, e16878. [Google Scholar] [CrossRef]
- Nazoori, F.; ZamaniBahramabadi, E.; Hosseinipoor, B.; Mirdehghan, S.H. Shelf life of fresh in-hull pistachio in perforated polyethylene packaging. J. Food Meas. Charact. 2021, 15, 5528–5536. [Google Scholar] [CrossRef]
- Thakur, A.; Thakur, N.S.; Gautam, S. Effect of packaging on phenols, flavonoids and antioxidant characteristics of mechanical cabinet dried wild pomegranate (Punica granatum L.) arils. J. Appl. Nat. Sci. 2021, 13, 101. [Google Scholar] [CrossRef]
- Kurek, M.A.; Wyrwisz, J.; Karp, S.; Wierzbicka, A. Effect of modified atmosphere packaging on the quality of wheat bread fortified with soy flour and oat fibre. J. Food Meas. Charact. 2019, 13, 1864–1872. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Linus Opara, U. Functional properties of pomegranate fruit parts: Influence of packaging systems and storage time. J. Food Meas. Charact. 2017, 11, 2233–2246. [Google Scholar] [CrossRef]
- Smith, E.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Storage stability of egg sticks fortified with omega-3 fatty acids. J. Sci. Food Agric. 2018, 98, 3452–3461. [Google Scholar] [CrossRef]
- Kumar, A.; Hussain, S.A.; Raju, P.N.; Singh, A.K.; Singh, R.R.B. Packaging material type affects the quality characteristics of Aloe-probiotic lassi during storage. Food Biosci. 2017, 19, 34–41. [Google Scholar] [CrossRef]
- Nunes, M.A.; Costa, A.S.; Barreira, J.C.; Vinha, A.F.; Alves, R.C.; Rocha, A.; Oliveira, M.B.P. How functional foods endure throughout the shelf storage? Effects of packing materials and formulation on the quality parameters and bioactivity of smoothies. LWT 2016, 65, 70–78. [Google Scholar] [CrossRef]
- Zorić, Z.; Pedisić, S.; Kovačević, D.B.; Ježek, D.; Dragović-Uzelac, V. Impact of packaging material and storage conditions on polyphenol stability, colour and sensory characteristics of freeze-dried sour cherry (prunus cerasus var. Marasca). J. Food Sci. Technol. 2016, 53, 1247–1258. [Google Scholar] [CrossRef]
- Liu, K.; Dong, H.; Peng, J.; Liao, W.; Yang, X.; He, Q. Design of equilibrium modified atmosphere packaging for postharvest cabbages preservation based on introducing available active sites into film materials as gas transport channels. Food Res. Int. 2024, 177, 113900. [Google Scholar] [CrossRef]
- Faradonbeh, M.Z.; Barzegar, H.; Hojjati, M.; Behbahani, B.A.; Taki, M. Active packaging coating based on Ocimum basilicum seed mucilage and Hypericum perforatum extract: Preparation, characterization, application and modeling the preservation of ostrich meat. Appl. Food Res. 2024, 4, 100524. [Google Scholar] [CrossRef]
- He, M.; Pan, J.; Hong, M.; Shen, Y.; Zhang, H.; Jiang, Y.; Gong, L. Fabrication of antimicrobial packaging based on polyaminopropyl biguanide incorporated pectin/polyvinyl alcohol films for fruit preservation. Food Chem. 2024, 457, 140106. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.T.; Qian, J.; Yin, C. Equilibrium modified atmosphere packaging on postharvest quality and antioxidant activity of strawberry. Int. J. Food Sci. Technol. 2022, 57, 7125–7134. [Google Scholar] [CrossRef]
- Sun, T.; Yi, W.; Wang, Y.; Cheng, P.; Dong, T.; Yun, X. Application of poly (L-lactic acid)-based films for equilibrium modified atmosphere packaging of “Kyoho” grapes and its favorable protection for anthocyanins. Food Chem. 2024, 452, 139573. [Google Scholar] [CrossRef]
- El Mouzahim, M.; Eddarai, E.M.; Eladaoui, S.; Guenbour, A.; Bellaouchou, A.; Zarrouk, A.; Boussen, R. Food packaging composite film based on chitosan, natural kaolinite clay, and Ficus. carica leaves extract for fresh-cut apple slices preservation. Int. J. Biol. Macromol. 2023, 233, 123430. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, M.; Wang, Y.; Zhao, P.; Wang, K.; Wang, Y.; Wang, X.; Wang, J. Evaluation of film packaging containing mesoporous nanosilica and oregano essential oil for postharvest preservation of mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2023, 198, 112263. [Google Scholar] [CrossRef]
- Wu, Q.; Li, C.; Zhang, D.; Tian, Q.; Tao, X.; Luo, Z.; Fu, X.; Zhang, Y. Nitrogen modified atmosphere packaging maintains the bioactive compounds and antioxidant capacity of postharvest fresh edible peanuts. Postharvest Biol. Technol. 2022, 190, 111957. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Sellamuthu, P.S.; Emmanuel, R.S. Use of modified atmosphere packaging combined with essential oils for prolonging post-harvest shelf life of mango (cv. Banganapalli and cv. Totapuri). LWT 2021, 148, 111662. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.; Sallam, K.I.; Malak, N.M. Improvement of the microbial quality, antioxidant activity, phenolic and flavonoid contents, and shelf life of smoked herring (Clupea harengus) during frozen storage by using chitosan edible coating. Food Control 2021, 130, 108317. [Google Scholar] [CrossRef]
- Bińkowska, W.; Szpicer, A.; Stelmasiak, A.; Wojtasik-Kalinowska, I.; Półtorak, A. Microencapsulation of Polyphenols and Their Application in Food Technology. Appl. Sci. 2024, 14, 11954. [Google Scholar] [CrossRef]
- Pavani, M.; Singha, P.; Dash, D.R.; Asaithambi, N.; Singh, S.K. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J. Food Process Eng. 2022, 45, e14041. [Google Scholar] [CrossRef]
- Vijayaram, S.; Sinha, R.; Faggio, C.; Ringø, E.; Chou, C.C. Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges. AIMS Microbiol. 2024, 10, 986. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gaete, C.; Avendaño-Godoy, J.; Escobar-Avello, D.; Campos-Requena, V.H.; Rogel-Castillo, C.; Estevinho, L.M.; Martorell, M.; Sharifi-Rad, J.; Calina, D. Revolutionizing fruit juice: Exploring encapsulation techniques for bioactive compounds and their impact on nutrition, flavour and shelf life. Food Prod. Process. Nutr. 2024, 6, 8. [Google Scholar] [CrossRef]
- Homroy, S.; Chopra, R.; Singh, P.K.; Dhiman, A.; Chand, M.; Talwar, B. Role of encapsulation on the bioavailability of omega-3 fatty acids. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13272. [Google Scholar] [CrossRef]
- Bazzaz, S.; Abbasi, A.; Ghotbabad, A.G.; Pourjafar, H.; Hosseini, H. Novel encapsulation approaches in the functional food industry: With a focus on probiotic cells and bioactive compounds. Probiotics Antimicrob. Proteins 2024, 17, 1132–1170. [Google Scholar] [CrossRef]
- Tolve, R.; Cela, N.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Galgano, F. Microencapsulation as a tool for the formulation of functional foods: The phytosterols’ case study. Foods 2020, 9, 470. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of biopolymers for drugs and probiotics delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef]
- Sultana, M.; Chan, E.S.; Pushpamalar, J.; Choo, W.S. Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci. Technol. 2022, 123, 69–86. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Quintanar-Guerrero, D.; Liceaga, A.M.; Zambrano-Zaragoza, M.L. Encapsulation of bioactive peptides: A strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Adv. 2022, 12, 6449–6458. [Google Scholar] [CrossRef]
- Najafian, L. A review of bioactive peptides as functional food ingredients: Mechanisms of action and their applications in active packaging and food quality improvement. Food Funct. 2023, 14, 5835–5857. [Google Scholar] [CrossRef]
- Ceylan, H.G.; Atasoy, A.F. New bioactive edible packing systems: Synbiotic edible films/coatings as carries of probiotics and prebiotics. Food Bioprocess Technol. 2023, 16, 1413–1428. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; Kumar, N.; Pratibha; Broach, A.T. Active edible packaging: A sustainable way to deliver functional bioactive compounds and nutraceuticals. In Sustainable Packaging; Springer: Berlin, Germany, 2021; pp. 225–264. [Google Scholar]
- Kirtil, E.; Aydogdu, A.; Svitova, T.; Radke, C.J. Assessment of the performance of several novel approaches to improve physical properties of guar gum based biopolymer films. Food Packag. Shelf Life 2021, 29, 100687. [Google Scholar] [CrossRef]
- Jeevahan, J.J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Joseph, G.B.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Ma, M.; Gu, M.; Zhang, S.; Yuan, Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int. J. Biol. Macromol. 2024, 259, 129267. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Active packaging films and edible coatings based on polyphenol-rich propolis extract: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2106–2145. [Google Scholar] [CrossRef]
- Messinese, E.; Pitirollo, O.; Grimaldi, M.; Milanese, D.; Sciancalepore, C.; Cavazza, A. By-products as sustainable source of bioactive compounds for potential application in the field of food and new materials for packaging development. Food Bioprocess Technol. 2024, 17, 606–627. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible packaging from fruit processing waste: A comprehensive review. Food Rev. Int. 2023, 39, 2075–2106. [Google Scholar] [CrossRef]
- Pedreiro, S.; Figueirinha, A.; Silva, A.S.; Ramos, F. Bioactive edible films and coatings based in gums and starch: Phenolic enrichment and foods application. Coatings 2021, 11, 1393. [Google Scholar] [CrossRef]
- Hasl, K. Karakterizacija Filmova od Alginata i Kitozana s Prirodnim Antioksidansima iz Ekstrakta Ružmarina za Pakiranje Hrane. Ph.D. Thesis, Laboratory for Food Packaging, Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia, 2022. [Google Scholar]
- Yerramathi, B.B.; Muniraj, B.A.; Kola, M.; Konidala, K.K.; Arthala, P.K.; Sharma, T.S.K. Alginate biopolymeric structures: Versatile carriers for bioactive compounds in functional foods and nutraceutical formulations: A review. Int. J. Biol. Macromol. 2023, 253, 127067. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Ding, W.; Remón, J.; Xin, M.; Sun, T.; Wang, T.; Yu, L.; Wang, J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int. J. Biol. Macromol. 2023, 249, 125922. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic compounds in active packaging and edible films/coatings: Natural bioactive molecules and novel packaging ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Palanisamy, C.P.; Srinivasan, G.P.; Panagal, M.; Kumar, S.S.D.; Mironescu, M. A comprehensive review on starch-based sustainable edible films loaded with bioactive components for food packaging. Int. J. Biol. Macromol. 2024, 274, 133332. [Google Scholar] [CrossRef]
- Vlčko, T.; Golian, J.; Fikselová, M.; Rybnikár, S. Current overview in the field of application of edible coatings/films (meat products examples). J. Microbiol. Biotechnol. Food Sci. 2022, 12, e9281. [Google Scholar] [CrossRef]
- Zhu, F. Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. Food Chem. 2021, 359, 129871. [Google Scholar] [CrossRef]
- Dai, J.; Sameen, D.E.; Zeng, Y.; Li, S.; Qin, W.; Liu, Y. An overview of tea polyphenols as bioactive agents for food packaging applications. LWT 2022, 167, 113845. [Google Scholar] [CrossRef]
- Pandey, S.; Sharma, K.; Gundabala, V. Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Biosci. 2022, 48, 101730. [Google Scholar] [CrossRef]
- Liu, Y.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W. Antimicrobial peptides and their application in food packaging. Trends Food Sci. Technol. 2021, 112, 471–483. [Google Scholar] [CrossRef]
- Devi, L.S.; Das, B.; Dutta, D.; Kumar, S. Essential oils as functional agents in biopolymer-based sustainable food packaging system: A review. Sustain. Chem. Pharm. 2024, 39, 101563. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J.; Yang, W.; Wan, J.B. Biopolymer food packaging films incorporated with essential oils. J. Agric. Food Chem. 2023, 71, 1325–1347. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Rhim, J.W.; Cao, J.; Jiang, W. Tea polyphenols (TP): A promising natural additive for the manufacture of multifunctional active food packaging films. Crit. Rev. Food Sci. Nutr. 2022, 63, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J.W. Curcumin and its uses in active and smart food packaging applications-a comprehensive review. Food Chem. 2022, 375, 131885. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, S.; Jafarzadeh, S.; Qazanfarzadeh, Z.; Wijekoon, J.O.; Nafchi, A.M. Sustainable strategies for using natural extracts in smart food packaging. Int. J. Biol. Macromol. 2024, 267, 131537. [Google Scholar] [CrossRef] [PubMed]
- Bayram, B.; Ozkan, G.; Kostka, T.; Capanoglu, E.; Esatbeyoglu, T. Valorization and application of fruit and vegetable wastes and by-products for food packaging materials. Molecules 2021, 26, 4031. [Google Scholar] [CrossRef]
- Chandran, G.U.; Kumar, A.A.; Menon, S.K.; Sambhudevan, S.; Shankar, B. The potential role of flavonoids in cellulose-based biopolymeric food packaging materials for UV radiation protection. Cellulose 2024, 31, 4733–4773. [Google Scholar] [CrossRef]
- Juikar, S.K.; Warkar, S.G. Biopolymers for packaging applications: An overview. Packag. Technol. Sci. 2023, 36, 229–251. [Google Scholar] [CrossRef]
- La Fuente Arias, C.I.; Kubo, M.T.K.N.; Tadini, C.C.; Augusto, P.E.D. Bio-based multilayer films: A review of the principal methods of production and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 2260–2276. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Zhu, W.; McClements, D.J.; Liu, X.; Liu, F. A review of multilayer and composite films and coatings for active biodegradable packaging. npj Sci. Food 2022, 6, 18–34. [Google Scholar] [CrossRef]
- Macnamara, J.F., Jr.; Rubino, M.; Daum, M.; Kathuria, A.; Auras, R. Biodegradable and transparent water and oxygen barrier multilayer film. ACS Appl. Polym. Mater. 2024, 6, 10865–10874. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Li, B.; Zhu, J.; Li, X. Size effect of carnauba wax nanoparticles on water vapor and oxygen barrier properties of starch-based film. Carbohydr. Polym. 2022, 296, 119935. [Google Scholar] [CrossRef]
- Edo, G.I.; Mafe, A.N.; Ali, A.; Akpoghelie, P.O.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; Zainulabdeen, K.; Owheruo, J.O.; Essaghah, A.E.A.; et al. Advancing sustainable food packaging: The role of green nanomaterials in enhancing barrier properties. Food Eng. Rev. 2025, 1–35. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Tarahi, M.; Almasi, H.; Chawla, R.; Ali, A.M.M. Insights into recent innovations in barrier resistance of edible films for food packaging applications. Int. J. Biol. Macromol. 2024, 271, 132354. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, T.; Wang, S.; Han, D.; Huang, S.; Xiao, M.; Meng, Y. Recent progress of biodegradable polymer package materials: Nanotechnology improving both oxygen and water vapor barrier performance. Nanomaterials 2024, 14, 338. [Google Scholar] [CrossRef]
Food Category | Food Product | Bioactive Compound/Microorganism | Type of Bioactive Compound/Microorganism | Reference |
---|---|---|---|---|
Beverages and smoothies | Lemonade | Olive leaf extract | Polyphenols | [85] |
Milk-based fruit beverage | Commercially available preparation microencapsulated free microcrystalline phytosterol esters from tall oil in a powder form | Phytosterols | [86] | |
Fruit-based smoothie beverage | Microencapsulated chia seed oil | Omega-3 fatty acids | [87] | |
Coconut water kefir beverage | Lactic, acetic, pyruvic acid and 18 amino acids | Postbiotics | [88] | |
Fermented functional beverages | Lactobacillus casei PB8, Lactobacillus paracasei PB9, Lactobacillus rhamnosus PB10, GOS, organic acids, and d-lactate | Probiotics + prebiotics + postbiotics | [89] | |
Parmentiera aculeata juice | Lactobacillus paracasei subsp. paracasei ATCC 25302, Lactobacillus plantarum subsp. plantarum ATCC 14917, short-chain fatty acids such as succinic, formic, acetic, propionic, and lactic acids | Probiotics + postbiotics | [90] | |
Chocolate | White chocolate | Matcha green tea and moringa leaf powder | Polyphenols | [91] |
Dark Chocolate | Commercially available preparation containing phytosterol esters | Phytosterols | [92] | |
Milk chocolate | Fish oil and microencapsulated Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG | Omega-3 fatty acids + probiotics | [93] | |
Dark Chocolate | Inulin | Prebiotics | [94] | |
Cinnamon- and orange-flavored chocolate | Lactobacillus acidophilus La-14 and Lactobacillus rhamnosus GG, corn, and honey | Synbiotics | [95] | |
Milk chocolate | Bifidobacterium animalis + inulin | Synbiotics | [96] | |
Dairy products | Sour cream | Lactobacillus paracasei, Lactobacillus helveticus, and Bifidobacterium lactis | Probiotics | [97] |
Butter | Lactobacillus casei strains | Probiotics | [98] | |
Butter and buttermilk | Lactococcus lactis subsp. cremoris, Leuconostoc, Lactococcus lactis subsp. lactis, and Lactococcus lactis subsp. lactis biovar diacetylactis | Probiotics | [99] | |
Yogurt | Limosilactobacillus reuteri DSM 17938 | Probiotics | [100] | |
Ricotta cheese | Fermented ultrafiltration protein-rich retentate obtained from ricotta cheese exhausted whey | Bioactive peptides | [101] | |
Dulce de leche (milk jam) | Lacticaseibacillus rhamnosus GG and inulin | Synbiotics | [102] | |
Milk | Fish oil-loaded micro- and nanoparticles | Omega-3 fatty acids | [103] | |
Dairy dessert | Lemongrass powder | Polyphenols | [104] | |
Ice cream | Saccharomyces boulardii CNCM I-745 and inulin | Synbiotics | [105] | |
Ice cream | Eggplant peel extract | Polyphenols | [106] | |
Milk | Commercially available preparation containing phytosterol esters | Phytosterols | [107] | |
Bars | Cereal bar | Bifidobacterium animalis subsp. lactis BB-12 and inulin | Synbiotics | [108] |
Granola bar | Microencapsulated fish oil | Omega-3 fatty acids | [109] | |
Cereal bar | Shiitake (Lentinula edodes mushroom) | Polyphenols | [110] | |
Granola bar | Commercially available preparation containing phytosterol esters | Phytosterols | [111] | |
Crackers, biscuits, and cookies | Cookies | Matcha green tea | Polyphenols | [112] |
Cookies | Soy protein hydrolysates | Bioactive peptides | [113] | |
Wheat crackers | Microalgae (Arthrospira platensis F&M-C256, Chlorella vulgaris Allma, Tetraselmis suecica F&M-M33, and Phaeodactylum tricornutum F&M-M40) | Polyphenols | [114] | |
Biscuits | Commercially available preparation containing phytosterol alcohol and esters | Phytosterols | [115] | |
Low-calorie cookies | Fish oil | Omega-3 fatty acids | [116] | |
Cookies | Lacticaseibacillus rhamnosus SL42 | Probiotics | [117] | |
Pasta and noodles | Rice noodles | Matcha green tea | Polyphenols | [118] |
Tagliatelle fresh pasta | Reishi (Ganoderma lucidum mushroom) | Polyphenols | [119] | |
Pasta | Amaranth protein hydrolysate | Bioactive peptides | [120] | |
Spaghetti dried pasta | Bacillus coagulans GBI-30 | Probiotics | [121] | |
Tagliatelle dried pasta | Chia seed oil | Omega-3 fatty acids | [122] | |
Bakery products | Bread | Microalga (Chlorella vulgaris) | Polyphenols | [123] |
Bread | Flaxseed oil | Omega-3 fatty acids | [124] | |
Pizza | Cauliflower by-products | Phytosterols | [125] | |
Bread | Reishi (Ganoderma lucidum mushroom) | Polyphenols | [126] | |
Bread | Lion’s Mane (Hericium erinaceus (Bull.) Pers.) | Polyphenols | [127] | |
Rice muffin | GOS | Prebiotics | [128] | |
Breakfast cereals | Cornflakes | Saccharomyces cerevisiae var. Boulardii | Probiotics | [129] |
High-fiber breakfast cereal | Carrot by-products | Polyphenols | [130] | |
Meat-based products | Beef burgers | Grape skin flour | Polyphenols | [131] |
Chicken nuggets | Dragon fruit (Hylocereus undatus) peel | Polyphenols | [132] | |
Fresh chorizo | Melon and pumpkin seed oils | Omega-3 PUFAs | [133] | |
Frankfurters | Canola/soy/flaxseed oil | Omega-3 PUFAs | [134] | |
Chinese fermented sausages | Lactobacillus plantarum CGMCC 161310 | Probiotics | [135] | |
Raw chicken sausages and semi-finished chicken products | Lacticaseibacillus paracasei DTA 83 and Saccharomyces cerevisiae var. boulardii 17 + the corresponding inanimate microorganisms | Probiotics + postbiotics | [136] | |
Goat meat emulsion | Cricket-protein (Acheta domesticus) hydrolysates | Biopeptides | [137] |
Technique | Bioactive Compound/Microorganism | Type of Food Matrix | Reference |
---|---|---|---|
Probiotics and prebiotics | |||
GC-FID | Oligosaccharidic fractions | Grape seeds | [245] |
HPAEC-PAD | Xylo- and arabinoxylo-oligosaccharides | Wheat bran | [246] |
NIR and MIR | Total oligosaccharides | Soybean seed | [226] |
HPLC-RID | Inulin | Chicory roots | [247] |
GC-MS and HPAEC-PAD | GOS | Dry beans | [248] |
GC-MS | Inulin | Herbal mixtures for prevention and treatment of diabetes mellitus type 2 | [249] |
UHPLC-ELSD | Inulin, FOS | Morinda officianalis | [250] |
NIR | GOS, FOS | Formula milk powder | [227] |
MIR | GOS | Cheese whey | [228] |
HPLC-RIF | FOS | Wine and grape juices | [251] |
Polyphenols | |||
MIR | Kaempferol, rutin, and benzoic acid | Moringa powder | [141] |
MIR | Total polyphenol content | Red and white wines | [142] |
MIR | Total polyphenol content | Fruits | [143] |
NIR | Catechin, catechin gallate, gallocatechin, gallocatechin gallate, epigallocatechin gallate, epigallocatechin, epicatechin gallate, and epicatechin | Pu-erh ripened tea | [144] |
NIR | Total polyphenol content | Vine tea | [145] |
MIR and NIR | Total phenolic content | Green and black tea | [146] |
MIR and NIR | Gallic acid, catechin, myricetin 3-O-glucoside, quercetin 3-Oglucoside, quercetin 3-O-(6″-O-manolyl) glucoside, kaempferol 3-O-glucoside, myricetin, kaempferol 3-O-(6″-O-manolyl) glucoside and kaempferol | Bean flours | [147] |
Square-wave voltammetry | Quercetin | Green tea, red wine, and apple/lemon juice | [149] |
Chronoamperometry | Gallic acid, catechin | Agro-industrial waste | [139] |
Square-wave voltammetry | Chlorogenic acid (total phenolic content) | Green coffee and green coffee beans | [150] |
Amperometry | Catechol | Fruit wines | [151] |
Cyclic voltammetry | Catechol | Red wine and tea samples | [154] |
Differential pulse voltammetry | Gallic acid | Green tea and fruit juice | [155] |
Cyclic voltammetry | Total phenolic content | Peaches and apple juice | [156] |
Differential pulse voltammetry | Caffeic, sinapic, and p-coumaric acids | Rapeseed oil, Kalanchoe crenata, apple puree, homogenized apple, and apple juice | [157] |
Cyclic voltammetry | Resveratrol | Grape seed extract | [158] |
Cyclic voltammetry | Trans-resveratrol | Red wines and grape skins | [159] |
Differential pulse voltammetry | Resveratrol | Red wine | [160] |
Differential pulse voltammetry | Morin | Strawberry, avocado, mulberry leaves | [161] |
Differential pulse voltammetry | Quercetin | Honey, tea, honeysuckle | [165] |
Hydrodynamic amperometry | Total polyphenol content | Wine and blueberry syrup | [168] |
HPLC-PDA | Gallic acid, chlorogenic acid, p-hydroxybenzoic acid, 2,5-dihydroxy benzoic acid, 3,4-dihydroxybenzoic acid, caffeic acid, cynarin, p-coumaric acid, ferulic acid, rutin, sinapic acid, benzoic acid, quercetin, kaempferol, naringenin | Tomato fruit | [170] |
HPLC-PDA | Vicenin II, vitexin, apigenin-hexoside-ramnoside, quercetin, cinnamic acid | Aloja and añapa beverages | [171] |
HPLC-PDA | Vitexin, quercitrin, quercetin, apigenin, kaempfero1, (+)-dihydroquercetin, gallic acid, vanillic acid, ferulic acid, sinapic acid, and 4-hydroxybenzoic acid | Flaxseed | [172] |
HPLC-PDA | Gallic acid, (+)-Catechin, (-)-Catechin-3-gallate, (-)-Epicatechin, (-)-Epicatechin-3-gallate, (-)-Epigallocatechin-3-gallate, (-)-Gallocatechin, (-)-Gallocatechin-3-gallate | Green tea | [173] |
UHPLC-PDA | Gallic acid, mangiferin, epicatechin rutin, quercetin | Ecuadorian mango peel | [174] |
HPLC-MS | Gallic acid, chlorogenic acid, procyanidin B2, epicatechin, caffeic acid, hyperin, isoquercetin, avicularin, quercitrin, cymaroside, phloridzin, quercetin | Apple Pomace | [176] |
LC-MS/MS | 22 phenolic acids and 42 flavonoid compounds | Grapes | [177] |
HPLC-MS/MS | 55 phenolic compounds | Tea-macerated wines | [178] |
LC-MS-MS | 14 phenolic compounds | Prickly pear | [179] |
LC-MS/MS | 37 polyphenol compounds | Raspberry leaf | [180] |
UHPLC-MS/MS | o-quinones | Coffee, grains, and vegetables | [181] |
GC-MS | Chlorogenic, ferulic and caffeic acids | Green coffee beans | [182] |
GC-MS | Cyanidin, chlorogenic acid, quercetin, quercetin glycoside | Bird cherry fruit | [183] |
Omega-3 PUFAs | |||
GC-FID | EPA and DHA | Freshwater fish (Bighead carp) | [185] |
GC-FID | EPA and DHA | Fish and shellfish | [186] |
GC-FID | DHA and EPA | Fish (raw and cooked) | [187] |
GC-FID | DHA and EPA | Crabs | [188] |
GC-FID | ALA | Matcha tea | [189] |
GC-FID | ALA | Pomegranate and jacaranda seeds Bio-fortified yogurts | [190] |
GC-MS | ALA | Flax and chia seed oils bio-fortified with edible flowers | [191] |
GC-MS | ALA, SDA, EPA, and DHA | Flaxseed, echium, fish, and algae oils | [192] |
UHPLC-MS | DPA, DHA, EPA, ALA | Golden pomfret | [193] |
UHPLC-MS | DHA, EPA | Golden threadfin bream | [194] |
FTIR and Raman spectroscopy | Omega-3 PUFAs | Virgin olive oil | [197] |
Postbiotics | |||
LC-MS | Metabolites of fermentation by Lacticaseibacillus paracasei, Bifidobacterium animalis subsp., Lactiplantibacillus plantarum lactis (amino acids and fatty acid metabolites). | Fermented milk | [252] |
UHPLC-HRMS | Amino acids, peptides, fatty acyl groups, glycerolipids, and derivatives. | Bread | [233] |
LC-HDMS | Metabolites of fermentation by Bacillus subtilis | Laminaria japónica (brown seaweed) | [234] |
UHPLC-QTOF-MS/MS | Sesamin | Boletus edulis mushroom | [235] |
Phytosterols | |||
UHPLC-PAD and FLD detector | β-sitosterol | Fermented corn-based yogurt (with melon), made with semi-skimmed milk powder and whey protein isolate | [253] |
GC-MS | β-Sitosterol, Ergosterol¸ Campesterol, Campestanol, Stigmasterol | Pizzas with cauliflower stem and leaf flour | [125] |
HPLC-PAD | β-sitosterol, Stigmasterol, Campesterol, Campestanol | Ricotta cheese | [212] |
HPLC-PAD | β-Sitosterol | Soybean oil, peanut oil, and rapeseed oil | [254] |
GC-MS | β-sitosterol, Stigmasterol, Campesterol, Campestanol, Δ-5-avenasterol | Flours and Oil (hemp seeds) | [207] |
GC-MS | β-sitosterol, Stigmasterol, Campesterol | Apricot kernel oil | [255] |
LC-MS/MS | Stigmasterol and β-sitosterol. | Camellia oil and other edible oils | [204] |
Bioactive peptides | |||
Spectrophotometry | Imidazole peptides | Deer and wild boar loin meats | [239] |
nanoLC-ESI-MS/MS and MALDI-TOF-MS | β-casein peptides | Mediterranean buffalo milk blue cheese | [244] |
HPLC-UV | Free amino acid content | Red garlic protein and hydrolysates | [256] |
Title | Year | Reference |
---|---|---|
Review of bio-based biodegradable polymers: smart solutions for sustainable food packaging | 2024 | [329] |
Sustainable and bio-based food packaging: a review on past and current design innovations | 2023 | [12] |
Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: a review | 2024 | [330] |
Innovations in food packaging: from bio-based materials to smart packaging systems | 2024 | [331] |
Food packaging materials with special reference to biopolymers-properties and applications | 2023 | [259] |
Biopolymer-based sustainable food packaging materials: challenges, solutions, and applications | 2023 | [332] |
Biodegradable biopolymers for active packaging: demand, development and directions | 2023 | [14] |
The green era of food packaging: general considerations and new trends | 2022 | [333] |
Biobased materials for active food packaging: a review | 2022 | [334] |
Current trends in biopolymers for food packaging: a review | 2023 | [262] |
Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies | 2021 | [326] |
Advancements in eco-friendly food packaging through nanocomposites: a review | 2023 | [335] |
Novel biopolymer-based sustainable composites for food packaging applications: A narrative review | 2022 | [336] |
Advances in functional biopolymer-based nanocomposites for active food packaging applications | 2021 | [337] |
Bioactive Compound/Microorganism | Type of Bioactive Compound/Microorganism | Food Product | Packaging Materials Formulation | Main Findings | Reference |
---|---|---|---|---|---|
Various polyphenols, including flavonoids | Polyphenol | Dried soursop fruit tea (Annona muricata L.) | Santd-ip pouches: Paper, paper-combined PE, and aluminum-combined PE | Better performance was achieved with aluminum-combined PE | [376] |
Β-sitosterol, campesterol, stigmasterol, and brassicasterol | Phytosterol | Safflower Seed Oil | Flexible packaging: Colored PET films: transparent, green, blue, yellow, and red | Phytosterol photoinhibition increases with UV absorption by color, with the lowest absorption by the transparent film | [377] |
Flavonoids and phenolic acids | Polyphenol | Fresh pistachio fruit | Flexible packaging: Ordinary PE, antimicrobial PE, ordinary PP, and antimicrobial PP | Better performance with antimicrobial PE | [378] |
Anthocyanin, flavonoids, and phenolic acids | Polyphenol | Orange, pomegranate, and prickly pear mix juice | Stand-up pouches: Transparent packaging: PET/OPA/PE, metalized packaging: PET/ALU/PET/PE, and totally recyclable packaging: OPP/OPP/PP | The totally recycled packaging is suitable for preserving the bioactives in the fruit beverage. Anthocyanins quantity remains comparable to that of the control (glass). | [379] |
Flavonoids and phenolic acids | Polyphenol | Tartary buckwheat microgreens | Flexible packaging: LDPE, PE, and HDPE | LDPE resulted in the best option | [380] |
EPA and DHA | Omega-3 fatty acids | Omega-3-enriched milk powder | Flexible packaging: PETmet (metalized PE)/LDPE, BOPP/PP, metal can, and composite can. | PETmet/LDPE, metal cans, and composite can are packaging systems able to preserve omega-3 fatty acid stability for 12 months, but not the BOPP/PP system, possibly due to its insufficient barrier to water vapor and oxygen | [381] |
EPA and DHA | Omega-3 fatty acids | Omega-3-rich products: syrup, capsule, and chewable forms. | Amber glass bottle, plastic, individual plastic + aluminum, aluminum pouch, individual blaster | Individual packaging (plastic + aluminum) showed the best protection against oxidation. | [382] |
Lactobacillus plantarum or Lactobacillus reuteri and/or their combination | Probiotic | Matcha-enriched muesli containing probiotic bacteria | Flexible packaging: Two-layered package: PP/PET | Oxygen presence affects the functional food quality; the best results were found in anaerobic storage conditions | [383] |
Carotenoid, anthocyanin, flavonoids | Polyphenol | Fresh in-hull pistachio | Flexible packaging: PE bags with four perforation levels (0, 0.5, 1, and 1.5%) | 0 and 0.5% were more effective | [384] |
Flavonoids and phenolic acids | Polyphenol | Dried wild pomegranate (Punica granatum L.) arils | Bags and pouches: Gunny bags, aluminum laminated pouches, and aluminum laminated pouches with a vacuum | Aluminum laminated pouches with a vacuum | [385] |
PUFA | Omega-3 fatty acids | Wheat bread fortified with soy flour and oat fiber | Flexible packaging: Transparent polypropylene bags and cover PET/CPP/AF laminate with MAP with 0, 25, 50, 75, and 100% carbon dioxide | There is an optimal MAP carbon dioxide concentration for each kind of fatty acids. | [386] |
Rutin and punicic acid | Polyphenol and Omega-5 fatty acids | Pomegranate fruit (peel and seed oil) | Carton open box and polyliner bag with pMAP and shrink-wrapped film (double-layered co-extruded polyolefin film). | Shrink-wrap packaging is more effective to at maintaining the total phenolics and flavonoids than pMAP. | [387] |
ω-3 PUFAs | Omega-3 fatty acids | Egg sticks fortified with omega-3 fatty acids | Vacuum packaging: nylon/PE vacuum pouch, non-vacuum packaging: polystyrene trays with household kitchen plastic wrap (Glad® Clingwrap) | Vacuum packaging performance is better than non-vacuum packaging systems | [388] |
Aloe-probiotic lassi | Probiotic | Aloe vera-supplemented probiotic lassi | Bottles and pouches: Glass, EVOH co-polymer, PET, and LDPE | Oxygen barriers influence probiotic stability; high barrier properties are desired. Glass and EVOH result in the best packaging materials. | [389] |
Polyphenols and flavonoids | Polyphenol | Smoothies: fruit, vegetables, yogurt, milk, or honey | Rigid packaging: PET, HDPE, TetraPrismaR, TetraPackR | No one packaging solution was sufficiently effective. | [390] |
Anthocyanins, flavonol-glycosides, and hydroxycinnamic acids | Polyphenol | Freeze-dried sour cherry (Prunus cerasus var. Marasca) | Flexible packaging: PET/PPmet/PE and PET/Al/PE | Both packaging types are suitable | [391] |
Food Product | Packaging Solution | Reference |
---|---|---|
Cabbages | EMAP based in PES modified with inclusion of -SO3H groups | [392] |
Ostrich meat | OBSM + HPE-based edible coating | [393] |
Fresh citrus fruit | Pectin/PVA/polyaminopropyl biguanide antimicrobial composite film | [394] |
Fresh strawberry | EMAP based on microporous PET/PE films | [395] |
Kyoho grapes | EMAP based on poly (L-lactic acid) films | [396] |
Fresh-cut apple slices | Chitosan/KC/FLE composite film | [397] |
Mushrooms (Agaricus bisporus) | Antimicrobial tapioca starch films, containing mesoporous nanosilica and oregano essential oil. | [398] |
Fresh edible peanuts | Nitrogen MAP | [399] |
Mango (cv. Banganapalli and cv. Totapuri) | MAP made of BOPP and EO vapors (thyme, clove, and cinnamon) | [400] |
Smoked herring (Clupea harengus) | Chitosan edible coating | [401] |
Bioactive Compound | Carrier Material | References |
---|---|---|
Polyphenols | Polysaccharides, proteins, and lipids | [402,405] |
Omega-3 PUFAs | Chitosan, chia mucilage, sunflower lecithin, maltodextrin, whey protein, maltodextrin, arabic gum, soy lecithin, modified starch, skimmed milk powder, maltodextrin, gum acacia, soy protein | [406,407] |
Phytosterols | Whey protein, soil oil, lecithin, arabic gum, maltodextrin, chitosan, hydrogenated vegetable fat, gelatin, pectin | [403,408] |
Probiotics | Alginate, chitosan, pectin, starch, arabic gum, xanthan gum, gelatine fat, glyceride derivatives, cellulose | [404,407,409] |
Probiotics and omega-3-rich oils | Carrageenan, pectin, whey protein, mucilage, starch, arabinoxylan oligosaccharides, arabic gum and others | [410] |
Bioactive peptides | Maltodextrin, phosphatidylcholine, chitosan, sodium alginate, arabic gum, lecithin, and others | [411,412] |
Bioactive Compound/Microorganism | Polymeric Matrix | References |
---|---|---|
Synbiotic, probiotic, prebiotic, and postbiotic | Whey protein, gelatin, methylcellulose, maize starch, cellulose, egg yolk protein, duck feet gelatin, cashew gum, dextrin, chitosan, sodium casinate, and others. | [16,17,18,19,413,417] |
Tea polyphenols | Starch | [418] |
Polyphenols (polyphenol-rich propolis extract) | Gum Arabic, chitosan, gelatin, cassava starch | [419] |
Polyphenols and other bioactive compounds from agro-industrial by-products | Not specify | [420] |
Polyphenols and other bioactive compounds from fruit processing waste | Different kinds of starches and pectin | [421] |
Polyphenols | Gums and starch | [422] |
Polyphenols | Polysaccharide | [423] |
vitamin C, vitamin D3, curcumin, β-carotene, resveratrol, folic acid, gliadins, caffeic acid, betanin, limonoids, quercetin, several polyphenols and essential oils, etc., | Alginate | [424] |
Anthocyanins, phenolic acids, flavonols, carotenoids, and lipids, | Polysaccharide-based biopolymers | [425] |
Polyphenols | Chitosan, cornstarch, tapioca starch, pectin, gelatin | [426] |
Polyphenols, phytosterol, and omega 3- PUFAs | Starch | [427] |
Bioactive peptides | Chitosan, gelatin, furcellaran | [412,428] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grafia, A.L.; Gonzalez, N.; Pacheco, C.; Razuc, M.F.; Acebal, C.C.; López, O.V. Eco-Friendly Packaging for Functional Food. Processes 2025, 13, 2027. https://doi.org/10.3390/pr13072027
Grafia AL, Gonzalez N, Pacheco C, Razuc MF, Acebal CC, López OV. Eco-Friendly Packaging for Functional Food. Processes. 2025; 13(7):2027. https://doi.org/10.3390/pr13072027
Chicago/Turabian StyleGrafia, Ana Luisa, Natalia Gonzalez, Consuelo Pacheco, Mariela Fernanda Razuc, Carolina Cecilia Acebal, and Olivia Valeria López. 2025. "Eco-Friendly Packaging for Functional Food" Processes 13, no. 7: 2027. https://doi.org/10.3390/pr13072027
APA StyleGrafia, A. L., Gonzalez, N., Pacheco, C., Razuc, M. F., Acebal, C. C., & López, O. V. (2025). Eco-Friendly Packaging for Functional Food. Processes, 13(7), 2027. https://doi.org/10.3390/pr13072027