Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = food detoxification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1567 KiB  
Article
Determining the Benzo[a]pyrene Degradation, Tolerance, and Adsorption Mechanisms of Kefir-Derived Bacterium Bacillus mojavensis TC-5
by Zhixian Duo, Haohao Li, Zeyu Wang, Zhiwei Zhang, Zhuonan Yang, Aofei Jin, Minwei Zhang, Rui Zhang and Yanan Qin
Foods 2025, 14(15), 2727; https://doi.org/10.3390/foods14152727 - 4 Aug 2025
Viewed by 109
Abstract
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of [...] Read more.
Microbial detoxification, as an environmentally friendly strategy, has been widely applied for benzo[a]pyrene (BaP) degradation. Within this approach, food-derived microbial strains offer unique advantages in safety, specificity, and sustainability for detoxifying food-borne BaP. In this study, we aimed to explore the potential of such strains in BaP degradation. Bacillus mojavensis TC-5, a strain that degrades BaP, was isolated from kefir grains. Surprisingly, 12 genes encoding dehydrogenases, synthases, and oxygenases, including betB, fabHB, qdoI, cdoA, and bioI, which are related to BaP degradation, were up-regulated by 2.01-fold to 4.52-fold in TC-5. Two potential degradation pathways were deduced. In pathway I, dioxygenase, betaine aldehyde dehydrogenase, and beta-ketoacyl-ACP synthase III FabHB act sequentially on BaP to form 4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6-methyl via the phthalic acid pathway. In the presence of the cytochrome P450 enzyme, BaP progressively mediates ring cleavage via the anthracene pathway, eventually forming 3-methyl-5-propylnonane in pathway II. Notably, TC-5 achieved an impressive BaP removal efficiency of up to 63.94%, with a degradation efficiency of 32.89%. These results suggest that TC-5 has significant potential for application in addressing food-borne BaP contamination. Moreover, our findings expand the application possibilities of Xinjiang fermented milk products and add to the available green strategies for BaP degradation in food systems. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

20 pages, 998 KiB  
Article
Colony Nutrition Enhances Bee Resilience to Fungicides, While the Benefit of Propolis Supplementation Depends on Stress Conditions
by Yara Martins Molina Ferraz, Aline Yukari Kato, Tainá Angelica de Lima Freitas, Cássia Regina de Avelar Gomes, Thais Regina Ramos Alves, Matheus Franco Trivellato, Samir Moura Kadri, Ricardo de Oliveira Orsi, David De Jong, Jaqueline Dalbello Biller and Daniel Nicodemo
Agriculture 2025, 15(15), 1665; https://doi.org/10.3390/agriculture15151665 - 1 Aug 2025
Viewed by 253
Abstract
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. [...] Read more.
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. Colonies were managed under food restriction or nutritional supplementation for 22 weeks. Newly emerged bees from each colony were then caged and fed protein diets consisting of honey-pollen patties contaminated or not with fungicide, and sucrose sugar syrup with or without aqueous green propolis extract. Bees from supplemented colonies showed greater body weight, higher hemolymph protein levels, and higher consumption of protein food after seven days in cages. Fungicide exposure reduced hemolymph protein levels, altered the expression of detoxification and immune-related genes, and significantly decreased bee survival. Interestingly, propolis supplementation alone changed gene expression patterns and slightly reduced longevity compared to bees not exposed to propolis or fungicide. However, under fungicide stress, bees that ingested propolis survived longer, indicating a protective effect. While colony nutritional supplementation clearly promotes honey bee resilience against fungicide exposure, feeding propolis also showed promising effects, though further studies are needed to determine an optimal dietary concentration. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Graphical abstract

12 pages, 716 KiB  
Review
Exposure–Response Relationship of Toxic Metal(loid)s in Mammals: Their Bioinorganic Chemistry in Blood Is an Intrinsic Component of the Selectivity Filters That Mediate Organ Availability
by Manon Fanny Degorge and Jürgen Gailer
Toxics 2025, 13(8), 636; https://doi.org/10.3390/toxics13080636 - 29 Jul 2025
Viewed by 264
Abstract
The gastrointestinal tract mediates the absorption of nutrients from the diet, which is increasingly contaminated with toxic metal(loid) species (TMs) and thus threatens food safety. Evidence in support of the influx of TMs into the bloodstream of the general and vulnerable populations (babies, [...] Read more.
The gastrointestinal tract mediates the absorption of nutrients from the diet, which is increasingly contaminated with toxic metal(loid) species (TMs) and thus threatens food safety. Evidence in support of the influx of TMs into the bloodstream of the general and vulnerable populations (babies, children, pregnant women, and industrial workers) has been obtained by accurately quantifying their blood concentrations. The interpretation of these TM blood concentrations, however, is problematic, as we cannot distinguish between those that are tolerable from those that may cause the onset of environmental diseases. Since TMs that have invaded the bloodstream may perturb biochemical processes therein that will eventually cause organ damage it is crucial to better understand their bioinorganic chemistry as these processes collectively determine their organ availability. Thus, bioinorganic processes of TMs in the bloodstream represent selectivity filters which protect organs from their influx and ultimately determine the corresponding exposure-response relationships. The need to better understand selectivity filters prompted us to mechanistically disentangle them into the major bioinorganic chemistry processes. It is argued that the detoxification of TMs in the bloodstream and the biomolecular mechanisms, which mediate their uptake into target organs, represent critical knowledge gaps to revise regulatory frameworks to reduce the disease burden. Full article
Show Figures

Figure 1

22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 403
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

16 pages, 1309 KiB  
Review
Microbial Peptidases: Key Players in Reducing Gluten Immunogenicity Through Peptide Degradation
by Africa Sanchiz, M. Isabel San-Martín, N. Navasa, Honorina Martínez-Blanco, Miguel Ángel Ferrero, Leandro Benito Rodríguez-Aparicio and Alejandro Chamizo-Ampudia
Appl. Sci. 2025, 15(14), 8111; https://doi.org/10.3390/app15148111 - 21 Jul 2025
Viewed by 275
Abstract
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential [...] Read more.
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential therapeutic and industrial applications. This review explores the role of microbial peptidases in gluten degradation, highlighting key enzyme families, their mechanisms of action, and their effectiveness in reducing gluten immunogenicity. Additionally, we discuss advances in enzymatic therapy, food processing applications, and the challenges associated with optimizing microbial enzymes for safe and efficient gluten detoxification. Understanding the potential of microbial peptidases in mitigating gluten-related disorders paves the way for novel dietary and therapeutic strategies. Full article
Show Figures

Figure 1

16 pages, 1778 KiB  
Article
Synergistic Effects of Amitraz and Dinotefuran on Honey Bee Health: Impacts on Survival, Gene Expression, and Hypopharyngeal Gland Morphology
by Mojtaba Esmaeily, Tekalign Begna, Hyeonjeong Jang, Sunho Kwon and Chuleui Jung
Int. J. Mol. Sci. 2025, 26(14), 6850; https://doi.org/10.3390/ijms26146850 - 17 Jul 2025
Viewed by 278
Abstract
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such [...] Read more.
Honey bees (Apis mellifera) are major pollinators, playing a critical role in global food production, biodiversity, and ecosystem stability. However, their populations are increasingly threatened by multiple interacting stressors, including pesticide exposure. Among these, agricultural insecticides and anti-Varroa acaricides such as dinotefuran and amitraz can persist in hive matrices, resulting in chronic and combined exposure. This study investigates the low lethal (LC10 and LC30) effects of these compounds, individually and in combination, on honey bee survival, immune function, oxidative stress responses, detoxification pathways, and hypopharyngeal gland morphology. Both pesticides negatively affected honey bee health at low lethal concentrations, with dinotefuran showing higher toxicity. Exposure led to the reduced survival, suppression of vitellogenin expression, and dysregulation of genes related to antioxidant defense, immunity, and detoxification. Additionally, high concentrations of dinotefuran and its combination with amitraz impaired hypopharyngeal gland morphology. Notably, co-exposure resulted in synergistic toxic effects, exacerbating physiological damage beyond individual treatments. These findings emphasize the potential risks of combined exposure to agricultural and beekeeping pesticides. A more comprehensive risk assessment and stricter regulations are urgently needed. Full article
Show Figures

Figure 1

13 pages, 933 KiB  
Article
Accumulation Patterns and Health Risk Assessment of Trace Elements in Intermuscular Bone-Free Crucian Carp
by Shizhan Tang, Na Li, Zhipeng Sun, Ting Yan, Tingting Zhang, Huan Xu, Zhongxiang Chen, Dongli Qin and Youyi Kuang
Toxics 2025, 13(7), 595; https://doi.org/10.3390/toxics13070595 - 16 Jul 2025
Viewed by 347
Abstract
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling [...] Read more.
This study investigated the accumulation characteristics and associated health risks of 11 trace elements (Al, Rb, Cr, Ni, Mo, Sr, Pb, Ba, Ag, As, and Ga) in four crucian carp varieties: gene-edited intermuscular bone-free crucian carp (Carassius auratus, WUCI) and its sibling wild-type (Carassius auratus, WT), Fangzheng silver crucian carp (Carassius gibelio var Fangzheng, FZYJ), and Songpu silver crucian carp (Carassius gibelio var Songpu, SPYJ). Results showed that Al and Rb were the most abundant elements across all groups. WUCI exhibited distinct accumulation patterns, including significantly higher hepatic Mo concentrations (0.265 ± 0.032 mg/kg) and muscle/liver Rb levels (muscle: 8.74 ± 1.21 mg/kg; liver: 12.56 ± 2.05 mg/kg) compared to other varieties (p < 0.05), which supports the hypothesis of genotype-specific differences in heavy metal accumulation. Correlation analysis revealed that WUCI exhibited similar elemental interactions with WT and SPYJ (e.g., Al-Ni positive correlation, |rs| ≥ 0.8), while SPYJ displayed distinct patterns with fifteen negative correlations compared to three to five in others varieties, suggesting a potential alteration in elemental homeostasis. Pollution index (Pi) assessments indicated mild contamination for Pb in SPYJ liver (Pi = 0.265) and Cr/As in WUCI muscle (Pi = 0.247/0.218). Despite these values, all hazard indices remained below the established safety thresholds (THQ < 0.1, HI < 0.25, TCR < 10−6), reinforcing the overall safety of the tested fish. Notably, muscle As levels (0.86 ± 0.15 mg/kg) exceeded hepatic concentrations (0.52 ± 0.09 mg/kg), potentially due to differential detoxification mechanisms. These findings demonstrate the food safety of all tested varieties, while highlighting genotype-specific metabolic adaptations, providing critical data for evaluating gene edited aquatic products. Full article
(This article belongs to the Special Issue Effects of Toxic Contaminants on Fish Behaviours)
Show Figures

Graphical abstract

38 pages, 1314 KiB  
Review
Current Approaches to Aflatoxin B1 Control in Food and Feed Safety: Detection, Inhibition, and Mitigation
by Katarzyna Kępka-Borkowska, Katarzyna Chałaśkiewicz, Magdalena Ogłuszka, Mateusz Borkowski, Adam Lepczyński, Chandra Shekhar Pareek, Rafał Radosław Starzyński, Elżbieta Lichwiarska, Sharmin Sultana, Garima Kalra, Nihal Purohit, Barbara Gralak, Ewa Poławska and Mariusz Pierzchała
Int. J. Mol. Sci. 2025, 26(13), 6534; https://doi.org/10.3390/ijms26136534 - 7 Jul 2025
Viewed by 790
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose a significant global health concern due to their frequent presence in crops, food, and feed—especially under climate change conditions. This review addresses the growing threat of aflatoxins by analyzing recent advances in detection and mitigation. A comprehensive literature review was conducted, focusing on bioremediation, physical and chemical detoxification, and fungal growth inhibition strategies. The occurrence of aflatoxins in water systems was also examined, along with current detection techniques, removal processes, and regulatory frameworks. Emerging technologies such as molecular diagnostics, immunoassays, biosensors, and chromatographic methods are discussed for their potential to improve monitoring and control. Key findings highlight the increasing efficacy of integrative approaches combining biological and technological solutions and the potential of AI-based tools and portable devices for on-site detection. Intelligent packaging and transgenic crops are also explored for their role in minimizing contamination at the source. Overall, this review emphasizes the importance of continued interdisciplinary research and the development of sustainable, adaptive strategies to mitigate aflatoxin risks, thereby supporting food safety and public health in the face of environmental challenges. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

19 pages, 3549 KiB  
Article
Oxidative Stress, Phytochemical Screening, and Antioxidant Activity on Microalgae (Arthrospira platensis) After Exposure to Glyphosate and Microplastics
by Dércia Santos, Edna Cabecinha, Jesús Gago, Sandra Mariza Monteiro and Ana Luzio
J. Xenobiot. 2025, 15(4), 106; https://doi.org/10.3390/jox15040106 - 3 Jul 2025
Viewed by 546
Abstract
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the [...] Read more.
The knowledge about the potential toxic effects of microplastics (MPs) combined with herbicides at lower trophic levels is still largely unknown. The present study aimed to evaluate the potential toxic effects of polyethylene terephthalate (PET) and polyamide (PA), isolated or combined with the pesticide glyphosate (GLY), on the microalgae Arthrospira platensis. For this, microalgae were exposed to control, GLY (3 μg/L), PET (0.5 and 1 mg/L), PA (0.5 and 1 mg/L), and the respective mixtures of each MP with GLY, for 12 days. The photosynthetic pigment content, phytochemicals, antioxidants, and enzymatic activity were determined. Cell growth was significantly enhanced on day 4 in the GLY+PA1 group (~80%), compared to the control. At day 12, biomass was significantly higher in the GLY (~25%) and GLY+PET0.5 (~26%) groups relative to the control. Significant effects on the enzymatic and detoxification mechanisms were observed, including increased SOD (PET0.5, p = 0.011) and CarE (GLY, PA and GLY+PA, p < 0.01), and decreased GST in combined exposures, which support stress-induced enzymatic activation and adaptive biochemical responses. Significant effects on phytochemicals and antioxidant activity were also observed, with PET0.5 significantly reducing total carotenoids (~65%), and flavonoids (p < 0.001) and ortho-diphenols (p < 0.05) being decreased in all exposure groups, in comparison to the control group. The decrease in flavonoids and ortho-diphenols, important antioxidant molecules, suggests the depletion of these key compounds under stress. DPPH scavenging activity, a measure of antioxidant potential, was inhibited in the GLY+PA groups, indicating compromised antioxidant defense. Results confirmed that combined stressors elicit distinct and sometimes deleterious responses not predicted by single exposures. Our findings highlight that the combined exposure to glyphosate and MPs significantly disrupts antioxidant defenses and enzymatic activity in A. platensis, indicating potential risks to primary producers in aquatic ecosystems and underscoring the ecological implications of co-contaminant stressors. In fact, the results indicate that MPs can modify herbicide toxicity, posing enhanced risks to microalgal physiology and potentially affecting primary productivity and nutrient cycling in aquatic ecosystems. In turn, negative effects of MPs on microalgae can have serious consequences for food webs, food security, and ecological health. Full article
Show Figures

Figure 1

16 pages, 2720 KiB  
Article
Iron-Modified Biochar Derived from Poultry Manure for Efficient Removal of Methyl Orange Dye from Aqueous Solution
by Zafer Alasmary and Mutair A. Akanji
Sustainability 2025, 17(13), 6008; https://doi.org/10.3390/su17136008 - 30 Jun 2025
Viewed by 308
Abstract
Waste and chemicals generated from industry have been a major source of pollution and a prominent threat to human health via the food chain; hence, an efficient and durable material that can be used to detoxify polluted soil and water bodies is necessary [...] Read more.
Waste and chemicals generated from industry have been a major source of pollution and a prominent threat to human health via the food chain; hence, an efficient and durable material that can be used to detoxify polluted soil and water bodies is necessary to attain ecosystem equity and security. This study hypothesized that biochar (BC) made from poultry manure (PM) through pyrolysis and fortification with iron (Fe–BC) can be used to remove methyl orange dye from aqueous solution. Furthermore, this study evaluated the effect of solution pH on the sorption of methyl orange through batch sorption studies. The similarity in the modeled data and experimental data was measured by the standard error of estimate, whereas sorption isotherms were examined using nonlinear forms of different sorption equations. With the use of Langmuir models, a maximum sorption capacity of 136.25 mg·g−1 and 98.23 mg·g−1 was recorded for Fe–BC and BC, respectively. Fe–BC possessed a higher adsorption ability in comparison to BC. The pseudo-second-order best described the sorption kinetics of both adsorbents at R2 = 0.9973 and 0.9999, indicating a strong interaction between MO and Fe–BC. Furthermore, the efficiency with which MO was removed by the absorbent was highest at lower pH (pH = 4). It is therefore concluded that Fe–BC can be used as an effective and environmentally friendly material for detoxification of wastewater; however, further research on the application and usage of biochar modified techniques for enhancing adsorption efficacy on a large scale should be encouraged. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

27 pages, 2201 KiB  
Review
Toxicity, Mitigation, and Chemical Analysis of Aflatoxins and Other Toxic Metabolites Produced by Aspergillus: A Comprehensive Review
by Habtamu Fekadu Gemede
Toxins 2025, 17(7), 331; https://doi.org/10.3390/toxins17070331 - 30 Jun 2025
Viewed by 1508
Abstract
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic [...] Read more.
Aflatoxins, toxic secondary metabolites produced primarily by Aspergillus flavus and Aspergillus parasiticus, pose significant risks to food safety, public health, and global trade. These mycotoxins contaminate staple crops such as maize and peanuts, particularly in warm and humid regions, leading to economic losses and severe health effects, including hepatocellular carcinoma, immune suppression, and growth impairment. In addition to aflatoxins, Aspergillus species produce other toxic metabolites such as ochratoxin A, sterigmatocystin, and cyclopiazonic acid, which are associated with nephrotoxic, carcinogenic, and neurotoxic effects, respectively. This review provides a comprehensive analysis of aflatoxin toxicity, mitigation strategies, and chemical detection methods. The toxicity of aflatoxins is discussed in relation to their biochemical mechanisms, carcinogenicity, and synergistic effects with other mycotoxins. Various mitigation approaches, including pre-harvest biocontrol, post-harvest storage management, and novel detoxification methods such as enzymatic degradation and nanotechnology-based interventions, are evaluated. Furthermore, advances in aflatoxin detection, including chromatographic, immunoassay, and biosensor-based methods, are explored to improve regulatory compliance and food safety monitoring. This review underscores the need for integrated management strategies and global collaboration to reduce aflatoxin contamination and its associated health and economic burdens. Future research directions should focus on genetic engineering for resistant crop varieties, climate adaptation strategies, and improved risk assessment models. Full article
Show Figures

Figure 1

15 pages, 1499 KiB  
Article
Effects of Diet on Mercury Bioaccumulation in Farmed Gilthead Seabream (Sparus aurata)
by Antonio Bellante, Maria Bonsignore, Giulia Maricchiolo, Martina Meola, Simone Mirto, Grazia Marina Quero, Enza Maria Quinci, Vincenzo Tancredi and Mario Sprovieri
Appl. Sci. 2025, 15(13), 7151; https://doi.org/10.3390/app15137151 - 25 Jun 2025
Viewed by 341
Abstract
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing [...] Read more.
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing metal accumulation in tissues. This study evaluates, for the first time, the effect of nutraceutical substances on bioaccumulation mechanisms of mercury (Hg) in tissues and organs of farmed gilthead seabream (Sparus aurata) by mesocosm experimentation. The kinetics of bioaccumulation in muscle, gills, gut, liver and kidney and the detoxification efficiency were also assessed. Fish were fed with three different diets: a commercial diet used as control (CD); a diet enriched with short chain fatty acids (SCFA) and extract of Castanea sativa (D1); a diet enriched with yeast Saccharomyces cerevisiae and extract of Schinopsis balansae (D2). All groups were exposed to sub-lethal concentrations of mercury. After 20 days of exposure, mercury levels in different organs and tissues clearly revealed the effectiveness of yeast and plant extracts in limiting the metal bioaccumulation in fish fed with D2 through mercury absorption and then elimination by feces. In contrast, the D1 seems to not reduce the Hg bioaccumulation in fish tissues. This can be attributed to the high affinity of SCFA for mercury, leading to the formation of organometallic compounds absorbed by the fish tissues. This mechanism potentially counteracts the efficiency of tannins contained in the extract plant on mercury removal. This study clearly demonstrates that the use of diets enriched with yeast and/or plant extracts rich in tannins are a useful bioremediation strategy to reduce trace metals bioaccumulation in farmed fish, thus preserving their health status from intoxication, their commercial values, and consequently the health of consumers. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

13 pages, 501 KiB  
Systematic Review
Bioactive Properties of Hazelnut-Derived Products in Colorectal Cancer Prevention: A Systematic Review of Preclinical and Epidemiological Studies
by Giuseppe Mazzola, Mariangela Rondanelli, Federico Buga, Patrizia Riso and Simone Perna
Foods 2025, 14(13), 2154; https://doi.org/10.3390/foods14132154 - 20 Jun 2025
Viewed by 553
Abstract
Background: Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide, with increasing attention being paid to modifiable dietary factors in its prevention. Hazelnut (Corylus avellana L.) represent a nutrient-dense food rich in unsaturated fats, polyphenols, fiber, and phytosterols, [...] Read more.
Background: Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide, with increasing attention being paid to modifiable dietary factors in its prevention. Hazelnut (Corylus avellana L.) represent a nutrient-dense food rich in unsaturated fats, polyphenols, fiber, and phytosterols, with potential anticarcinogenic properties. This systematic review aimed to evaluate the role of hazelnut consumption in the prevention and modulation of CRC risk, with specific focus on experimental, mechanistic, and preclinical evidence. Methods: Following PRISMA guidelines, a systematic search was conducted in PubMed, Google Scholar, and the Cochrane Library for articles published from 2015 onward. Eligible studies included original in vitro and in vivo models, as well as observational studies, evaluating hazelnut or hazelnut-derived products in relation to CRC-related biological, metabolic, or clinical outcomes. Data extraction focused on bioactive composition, experimental models, molecular pathways, and fecal/metabolic markers of carcinogenesis. Results: A total of 11 studies were included after screening 24 records: 8 in vitro investigations, 2 in vivo animal experiments, and 1 epidemiological study. In vitro studies showed that hazelnut derivatives—including fermented hazelnuts and oil-based extracts—exert antiproliferative effects via BAX/BCL-2 modulation, increased caspase-3 activity, and oxidative stress reduction. In vivo studies confirmed improved lipid metabolism, modulation of bile acid composition (notably reduced lithocholic/deoxycholic acid ratio), and enhanced antioxidant defenses. FIBEROX®, a hazelnut skin extract enriched in dietary fiber, demonstrated promising effects on gut microbiota and bile acid detoxification. Conclusions: Hazelnut and their bioactive compounds may aid CRC prevention through multiple molecular and metabolic pathways. Further human studies are needed to confirm these effects and support dietary recommendations. Full article
Show Figures

Figure 1

21 pages, 4500 KiB  
Article
Vvmrp1, Vvmt1, and Vvmt2 Co-Expression Improves Cadmium Tolerance and Reduces Cadmium Accumulation in Rice
by Hongjuan Han, Yu Wang, Cen Qian, Quanhong Yao and Qiaoquan Liu
Agronomy 2025, 15(6), 1493; https://doi.org/10.3390/agronomy15061493 - 19 Jun 2025
Viewed by 351
Abstract
Cadmium (Cd) contamination in agricultural soils severely threatens rice production and food safety. To address this issue, this study developed transgenic rice lines co-expressing three Vitis vinifera genes: the ABCC transporter Vvmrp1 and metallothioneins Vvmt1 and Vvmt2. AlphaFold computational modeling confirmed the [...] Read more.
Cadmium (Cd) contamination in agricultural soils severely threatens rice production and food safety. To address this issue, this study developed transgenic rice lines co-expressing three Vitis vinifera genes: the ABCC transporter Vvmrp1 and metallothioneins Vvmt1 and Vvmt2. AlphaFold computational modeling confirmed the conserved ABCC-type transporter domain in VvMRP1. Under hydroponic conditions, transgenic rice showed remarkable Cd tolerance, surviving 30 mM Cd (lethal to wildtype, WT) without growth penalties, and exhibited 62.5% survival at 1 mM Cd vs. complete wild-type mortality. Field-relevant Cd exposure (1 mM) reduced Cd accumulation to 35.8% in roots, 83% in stems, and 76.8% in grains compared to WT. Mechanistic analyses revealed that Vvmrp1 mediates cellular Cd efflux while Vvmt1 and 2 chelate free Cd ions, synergistically inhibiting Cd translocation. Transgenic plants also maintained better Fe, P, and Mg homeostasis under Cd stress. This study pioneers the co-expression of a transporter with metallothioneins in rice, demonstrating their complementary roles in Cd detoxification without pleiotropic effects from endogenous gene modification. The findings provide an effective genetic strategy for cultivating low-Cd rice in contaminated soils, offering significant implications for food safety and sustainable agriculture. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 1236 KiB  
Review
Molecular Mechanisms of Cadmium Stress Resistance in Vegetable Crops
by Mengxia Zhang and Chunjuan Dong
Int. J. Mol. Sci. 2025, 26(12), 5812; https://doi.org/10.3390/ijms26125812 - 17 Jun 2025
Viewed by 508
Abstract
Cadmium (Cd) stress poses significant threats to vegetable crops, impacting their growth, physiological processes, and safety as part of the human food chain. This review systematically summarizes the latest advances in the molecular mechanisms of vegetable crops’ resistance to Cd stress. First, physiological [...] Read more.
Cadmium (Cd) stress poses significant threats to vegetable crops, impacting their growth, physiological processes, and safety as part of the human food chain. This review systematically summarizes the latest advances in the molecular mechanisms of vegetable crops’ resistance to Cd stress. First, physiological and biochemical responses are outlined, including growth inhibition, impaired photosynthesis, oxidative stress, disrupted nutrient absorption, altered phytohormone levels, and gene expression changes. Next, key molecular mechanisms are discussed, focusing on the roles of transporter-related genes (e.g., NRAMP, HIPP, ABCG), transcription factors (e.g., HsfA1a, WRKY, ERF), enzyme-related genes (e.g., E3 ubiquitin ligase, P-type ATPase), microRNAs (e.g., miR398), and potential functional genes in Cd uptake, translocation, and detoxification. Additionally, the regulatory roles of phytohormones and their analogues (e.g., brassinosteroids, gibberellin, salicylic acid) in mitigating Cd toxicity are analyzed, highlighting their involvement in antioxidant defense, gene regulation, and stress signaling pathways. Finally, future research directions are proposed, emphasizing species-specific defense mechanisms, root hair-specific Cd exclusion mechanisms, and interdisciplinary approaches integrating AI and microbiome manipulation. This review provides a comprehensive reference for enhancing Cd stress resistance in vegetable crops and promoting safe crop production. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

Back to TopTop