Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (236)

Search Parameters:
Keywords = food biofortification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1407 KiB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 179
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 428
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
19 pages, 1654 KiB  
Review
Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil
by Caroline Figueiredo Oliveira, Thaynara Garcez da Silva, Estefani Kariane Oliveira, Fabíola Lucini and Elcio Ferreira Santos
AgriEngineering 2025, 7(7), 214; https://doi.org/10.3390/agriengineering7070214 - 3 Jul 2025
Viewed by 410
Abstract
Iron deficiency is a widespread public health concern, particularly in regions where rice (Oryza sativa) and beans (Phaseolus spp.) are staple foods with naturally low bioavailable iron content. Agronomic biofortification is a practical strategy to increase micronutrient levels in crops [...] Read more.
Iron deficiency is a widespread public health concern, particularly in regions where rice (Oryza sativa) and beans (Phaseolus spp.) are staple foods with naturally low bioavailable iron content. Agronomic biofortification is a practical strategy to increase micronutrient levels in crops through soil, foliar, and seed-based fertilization techniques. This review synthesizes scientific studies published between 2014 and 2024 that evaluated the effectiveness of agronomic iron biofortification methods in rice and beans. The results demonstrate that site-specific interventions, such as the selection of iron sources and application methods, can improve iron concentration in grains and contribute to more nutritious and resilient food systems. However, challenges remain. There is limited information about human iron bioavailability, and the response to fertilization varies depending on soil and environmental conditions. To address these gaps, future research should include bioavailability assessments and field validation. Even so, integrating iron biofortification into standard fertilization practices is a promising approach to improve food quality and combat hidden hunger in vulnerable populations. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

26 pages, 1964 KiB  
Review
Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies
by Hong-Ming Wu, Xiang Li, Jia-Ning Chen, Yi-Juan Yan, Takuro Kobayashi, Yong Hu and Xueying Zhang
Processes 2025, 13(7), 2090; https://doi.org/10.3390/pr13072090 - 1 Jul 2025
Viewed by 450
Abstract
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under [...] Read more.
Anaerobic digestion (AD) for food waste (FW) treatment has faced many challenges, especially ammonia nitrogen, acid, and salinity inhibition at a high organic loading rate (OLR). Therefore, a systematic understanding of the issues arising during the FW AD process is a necessity under a high OLR (over 3 g-VS/L d). Primarily, in terms of ammonia nitrogen inhibition, ammonia ions inhibit methane synthesis enzymes, and free ammonia (FAN) contributes to the imbalance of microbial protons. Regulation strategies include substrate C/N ratio regulation, microbial domestication, and ammonia nitrogen removal. In addition, with regard to acid inhibition, including volatile fatty acid (VFA) and long-chain fatty acid (LCFA) accumulation, the elevated acid concentration can contribute to reactive oxygen species stress, and a solution to this includes the addition of alkaline agents and trace elements or the use of microbial electrochemical and biofortification technology and micro-aeration-based AD technology. Furthermore, in terms of salinity inhibition, high salinity can result in a rapid increase in cell osmotic pressure, which can cause cell rupture, and water washing and bio-electrochemical AD are defined as solutions. Future research directions are proposed, mainly in terms of avoiding the introduction of novel containments into these regulation strategies and applying them in large-scale AD plants under a high OLR. Full article
Show Figures

Graphical abstract

18 pages, 1689 KiB  
Article
Evaluation of Blast Resistance in Zinc-Biofortified Rice
by Anita Nunu, Maina Mwangi, Nchore Bonuke, Wagatua Njoroge, Mwongera Thuranira, Emily Gichuhi, Ruth Musila, Rosemary Murori and Samuel K. Mutiga
Plants 2025, 14(13), 2016; https://doi.org/10.3390/plants14132016 - 1 Jul 2025
Viewed by 1767
Abstract
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid [...] Read more.
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid costly fungicides. This study assessed the relationship between rice blast disease and zinc or anthocyanin content in biofortified rice. Susceptibility to foliar and panicle blast was assessed in a rice panel which differed on grain zinc content and pigmentation. A rice panel (n = 23) was challenged with inoculum of two isolates of Magnaporthe oryzae in a screenhouse-based assay. The zinc content with foliar blast severity was analyzed in the leaves and grain of a subset of non-inoculated rice plants. The effect of foliar zinc supplementation on seedlings was assessed by varying levels of zinc fertilizer solution on four blast susceptible cultivars at 14 days after planting (DAP), followed by inoculation with the blast pathogen at 21 DAP. Foliar blast severity was scored on a 0–9 scale at 7 days after inoculation. The rice panel was scored for anthocyanin content, and the data were correlated with foliar blast severity. The panel was grown in the field, and panicle blast, grain yield and yield-related agronomic traits were measured. Significant differences were observed in foliar blast severity among the rice genotypes, with IRBLK-KA and IR96248-16-2-3-3-B having mean scores greater than 4, as well as BASMATI 370 (a popular aromatic variety), while the rest of the genotypes were resistant. Supplementation with foliar zinc led to a significant decrease in susceptibility. A positive correlation was observed between foliar and panicle blast. The Zn in the leaves was negatively correlated with foliar blast severity, and had a marginally positive correlation with panicle blast. There was no relationship between foliar blast severity and anthocyanin content. Grain yield had a negative correlation with panicle blast, but no correlation was observed between Zn in the grain and grain yield. This study shows that Zn biofortification in the grain may not enhance resistance to foliar and panicle blast. Furthermore, the zinc-biofortified genotypes were not agronomically superior to the contemporary rice varieties. There is a need to apply genomic selection to combine promising alleles into adapted rice genetic backgrounds. Full article
(This article belongs to the Special Issue Rice-Pathogen Interaction and Rice Immunity)
Show Figures

Figure 1

33 pages, 1619 KiB  
Review
Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture
by Korale Kankanamge Dinuka Chamodi, Nguyen Thanh Vu, Jose A. Domingos and Jiun-Yan Loh
Biology 2025, 14(7), 764; https://doi.org/10.3390/biology14070764 - 25 Jun 2025
Viewed by 1050
Abstract
The rapid expansion of the global population has intensified the demand for protein-rich food sources, positioning aquaculture as a crucial sector in the endeavor to alleviate global hunger through the provision of high-quality aquatic protein. Traditional protein sources such as fishmeal have historically [...] Read more.
The rapid expansion of the global population has intensified the demand for protein-rich food sources, positioning aquaculture as a crucial sector in the endeavor to alleviate global hunger through the provision of high-quality aquatic protein. Traditional protein sources such as fishmeal have historically served as the foundation of aquafeeds; however, their elevated costs and limited availability have catalyzed the search for sustainable alternatives. These alternatives encompass plant-based proteins, insect meals, and, more recently, single-cell proteins (SCPs), which are derived from microorganisms including bacteria, yeast, fungi, and microalgae. Nonetheless, SCP remains in its nascent stages and currently accounts for only a minor fraction of aquafeed formulations relative to other established alternatives. The production of SCP utilizes low-cost substrates, such as agricultural and dairy wastes, thereby supporting waste mitigation and principles of the circular economy. This review elucidates the nutritional value of SCPs, their potential for biofortification, and their emerging roles as functional feeds with immunomodulatory and nutrigenomic effects. Additionally, the review underscores the potential of endophytes as a novel SCP source, highlighting their underutilized capacity to foster sustainable innovations in aquafeeds. Full article
Show Figures

Graphical abstract

24 pages, 664 KiB  
Review
Technologies in Agronomic Biofortification with Zinc in Brazil: A Review
by Ana Beatriz Pires Silva, Lidiane Fátima Santos Borges, Fabíola Lucini, Gutierres Nelson Silva and Elcio Ferreira Santos
Plants 2025, 14(12), 1828; https://doi.org/10.3390/plants14121828 - 14 Jun 2025
Cited by 1 | Viewed by 617
Abstract
Zinc deficiency is a major contributor to hidden hunger, affecting billions of people worldwide, particularly in vulnerable populations. Agronomic biofortification with zinc is a promising strategy to increase both crop productivity and the nutritional quality of food, especially in countries like Brazil, where [...] Read more.
Zinc deficiency is a major contributor to hidden hunger, affecting billions of people worldwide, particularly in vulnerable populations. Agronomic biofortification with zinc is a promising strategy to increase both crop productivity and the nutritional quality of food, especially in countries like Brazil, where tropical soils are often deficient in this micronutrient. This review analyzes the main technologies applied in the zinc biofortification of edible crops in Brazil, including fertilizer types, application methods, doses, and the use of innovative approaches such as nano-fertilizers and biofertilizers. The results show that the foliar application of zinc sulfate at doses of 600 g ha−1 increased zinc concentration in grains by 25–40% without reducing crop yields. Additionally, the use of zinc nanoparticles increased wheat grain zinc content by up to 30% and biomass production, while biofertilizer application with diazotrophic bacteria raised zinc concentration in maize grains by 12.7–18.2%. These technologies demonstrate potential for enhancing zinc use efficiency and improving the nutritional quality of crops. Standardizing biofortification practices is essential to maximize their impact on food and nutritional security, contributing to the prevention of zinc deficiency in human populations. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

18 pages, 1684 KiB  
Article
Harnessing Light Wavelengths to Enrich Health-Promoting Molecules in Tomato Fruits
by Bruno Hay Mele, Ermenegilda Vitale, Violeta Velikova, Tsonko Tsonev, Carolina Fontanarosa, Michele Spinelli, Angela Amoresano and Carmen Arena
Int. J. Mol. Sci. 2025, 26(12), 5712; https://doi.org/10.3390/ijms26125712 - 14 Jun 2025
Viewed by 548
Abstract
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide [...] Read more.
The tomato (Solanum lycopersicum L.) is one of the most consumed crops worldwide and a source of antioxidants. Given the role the latter play against oxidative stress and free radical-related diseases, enhancing tomato bioactive compound production would be appealing for a wide range of applications in the fields of nutrition, pharmacy, and biotechnology. This study explores a sustainable and innovative approach: the modulation of specific light spectra to boost the production of bioactive compounds in tomatoes (cultivar ‘Microtom’). We investigated how three light regimes—white fluorescent (FL), full-spectrum (FS), and red-blue (RB)—influence the accumulation of polyphenols and other key nutraceuticals during plant growth. Our findings reveal that full-spectrum (FS) light significantly enhances the levels of polyphenols, flavonoids, tannins, ascorbic acid, and lycopene in tomato fruits, compared to those grown under RB or FL light. Interestingly, fruits from RB light-grown plants showed the highest carotenoid concentrations and antioxidant capacity. These results suggest that light quality actively modulates the expression of key enzymes in the phenylpropanoid and flavonoid biosynthetic pathways, shaping each fruit’s unique metabolic fingerprint. Cluster analysis confirmed that RB, FL, and FS conditions lead to distinct polyphenolic profiles, each with notable health-promoting potential. Our results highlight a promising avenue: tailoring light environments to enhance the functional value of crops, bridging agriculture, nutrition, and biomedicine in a sustainable way. Full article
Show Figures

Figure 1

13 pages, 743 KiB  
Review
Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives
by Ruixin Fu, Mengyuan Zhu, Yanrong Zhang, Junmin Li and Haichao Feng
Microorganisms 2025, 13(6), 1234; https://doi.org/10.3390/microorganisms13061234 - 28 May 2025
Viewed by 559
Abstract
The rhizosphere microbiome plays a critical role in promoting crop health and productivity. Selenium (Se), a beneficial trace element for plants, not only enhances resistance to both abiotic and biotic stresses but also modulates soil microbial communities. Se biofortification of crops grown in [...] Read more.
The rhizosphere microbiome plays a critical role in promoting crop health and productivity. Selenium (Se), a beneficial trace element for plants, not only enhances resistance to both abiotic and biotic stresses but also modulates soil microbial communities. Se biofortification of crops grown in seleniferous soils using selenobacteria represents an eco-friendly and sustainable biotechnological approach. Crops primarily absorb selenium from the soil in its oxidized forms, selenate and selenite, and subsequently convert it into organic Se compounds. However, the role of Se-oxidizing bacteria in soil Se transformation, bioavailability, and plant uptake remains poorly understood. In this review, systematic collection and analysis of research on selenobacteria, including both Se-oxidizing and Se-reducing bacteria, are therefore essential to elucidate their functions in enhancing crop growth and health. These insights can (i) deepen our mechanistic understanding of microbially mediated Se cycling and stress resilience and (ii) offer a novel framework for nanomicrobiome engineering aimed at promoting sustainable food production. Full article
Show Figures

Figure 1

51 pages, 758 KiB  
Review
Advances in Sweet Corn (Zea mays L. saccharata) Research from 2010 to 2025: Genetics, Agronomy, and Sustainable Production
by Hajer Sidahmed, Attila Vad and Janos Nagy
Agronomy 2025, 15(5), 1260; https://doi.org/10.3390/agronomy15051260 - 21 May 2025
Viewed by 2242
Abstract
Sweet corn (Zea mays L. saccharata) has emerged as a valuable crop not only for its economic potential but also for its role in sustainable food systems due to its high consumer demand and adaptability. As global agricultural systems face increasing [...] Read more.
Sweet corn (Zea mays L. saccharata) has emerged as a valuable crop not only for its economic potential but also for its role in sustainable food systems due to its high consumer demand and adaptability. As global agricultural systems face increasing pressure from climate change, resource scarcity, and nutritional challenges, a strategic synthesis of research is essential to guide future innovation. This review aims to critically assess and synthesize major advancements in sweet corn (Zea mays L. saccharata) research from 2010 to 2025, with the objectives of identifying key genetic improvements, evaluating agronomic innovations, and examining sustainable production strategies that collectively enhance crop performance and resilience. The analysis is structured around three core pillars: genetic improvement, agronomic optimization, and sustainable agriculture, each contributing uniquely to the enhancement of sweet corn productivity and environmental adaptability. In the genetics domain, recent breakthroughs such as CRISPR-Cas9 genome editing and marker-assisted selection have accelerated the development of climate-resilient hybrids with enhanced sweetness, pest resistance, and nutrient content. The growing emphasis on biofortification aims to improve the nutritional quality of sweet corn, aligning with global food security goals. Additionally, studies on genotype–environment interaction have provided deeper insights into varietal adaptability under varying climatic and soil conditions, guiding breeders toward more location-specific hybrid development. From an agronomic perspective, innovations in precision irrigation and refined planting configurations have significantly enhanced water use efficiency, especially in arid and semi-arid regions. Research on plant density, nutrient management, and crop rotation has further contributed to yield stability and system resilience. These agronomic practices, when tailored to specific genotypes and environments, ensure sustainable intensification without compromising resource conservation. On the sustainability front, strategies such as reduced-input systems, organic nutrient integration, and climate-resilient hybrids have gained momentum. The adoption of integrated pest management and conservation tillage further promotes sustainable cultivation, reducing the environmental footprint of sweet corn production. By integrating insights from these three dimensions, this review provides a comprehensive roadmap for the future of sweet corn research, merging genetic innovation, agronomic efficiency, and ecological responsibility to achieve resilient and sustainable production systems. Full article
(This article belongs to the Special Issue Genetics and Breeding of Field Crops in the 21st Century)
Show Figures

Figure 1

19 pages, 935 KiB  
Article
Enhancing the Growth, Bioactive Compounds, and Antioxidant Activity of Kangkong (Ipomoea aquatica Forssk.) Microgreens Using Dielectric Barrier Discharge Plasma
by Prapasiri Ongrak, Nopporn Poolyarat, Suebsak Suksaengpanomrung, Bhornchai Harakotr, Yaowapha Jirakiattikul and Panumart Rithichai
Resources 2025, 14(5), 72; https://doi.org/10.3390/resources14050072 - 28 Apr 2025
Viewed by 1329
Abstract
Enhancing the nutraceutical value of health-promoting foods is a strategy to mitigate non-communicable diseases (NCDs), which pose a global health threat. This study aimed to improve the growth, bioactive compound content, and antioxidant activity of kangkong (Ipomoea aquatica Forssk.) microgreens through the [...] Read more.
Enhancing the nutraceutical value of health-promoting foods is a strategy to mitigate non-communicable diseases (NCDs), which pose a global health threat. This study aimed to improve the growth, bioactive compound content, and antioxidant activity of kangkong (Ipomoea aquatica Forssk.) microgreens through the application of dielectric barrier discharge (DBD) plasma at different treatment durations. Seeds from two cultivars, Pugun 19 (PG) and Banhann (BH), were treated with DBD plasma for 5 to 20 min, compared to untreated seeds as the control. DBD plasma treatments had no significant effect on the dry weight of BH, whereas a 10 min treatment resulted in the highest dry weight in PG. Principal component analysis exhibited that treating PG seeds with 5 min of DBD plasma increased coumaric acid, total flavonoids, and DPPH and FRAP activities. Meanwhile, exposing BH seeds to 10 min DBD plasma treatment enhanced carotenoids content, as well as ABTS and antiglycation activities. Based on these results, the optimal time for DBD plasma treatment to improve the quality of kangkong microgreens was 5 min for PG and 10 min for BH. These findings indicate that DBD plasma treatment offers potential applications in sustainable agriculture and food biofortification. Full article
Show Figures

Graphical abstract

20 pages, 612 KiB  
Review
Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation
by Carlos Eduardo de Faria Cardoso, Sofia Terra Silva, Maria Eduarda Flores Trindade, Monique de Barros E. Campos, Adriano Gomes Cruz, Francine Albernaz T. Fonseca Lobo and Anderson Junger Teodoro
Foods 2025, 14(9), 1497; https://doi.org/10.3390/foods14091497 - 25 Apr 2025
Viewed by 720
Abstract
There is a growing interest in promoting health and improving quality of life, which has led consumers to prefer foods that offer not only basic nutrition but also additional health benefits. In this space, yogurt has gained increasing attention due to its potential [...] Read more.
There is a growing interest in promoting health and improving quality of life, which has led consumers to prefer foods that offer not only basic nutrition but also additional health benefits. In this space, yogurt has gained increasing attention due to its potential to deliver bioactive compounds and improve overall consumer well-being. As a fermented dairy product consumed globally, yogurt serves as an effective dietary base for nutritional enhancement through the incorporation of a wide range of primary agricultural products, including fruits, vegetables, cereals, and their respective by-products, including peels, seeds, and pomace. This review provides an overview of recent advances in yogurt biofortification using primary agricultural matrices and agro-industrial by-products within the framework of sustainable food systems and the circular economy. Significant increases in antioxidant activity and final phytochemical content are observed after the addition of ingredients to yogurt. Enrichment with dietary fiber from fruit peels or pomace also improved syneresis control and viscosity of the products. The microbiological viability of probiotic strains was maintained or increased in most formulations, and sensory acceptance remained favorable with enriched yogurts. These findings highlight the potential of agricultural matrices to enhance yogurt functionality, promoting sustainability and reducing food waste. Full article
(This article belongs to the Special Issue Recent Advances in Functional Components in Plant-Based Foods)
Show Figures

Figure 1

12 pages, 204 KiB  
Article
Foliar Selenium Biofortification in Temperate Fruit Crops: Impact on Selenium Accumulation and Nutritional Quality of Fruits and Juices
by Ján Mezey, Ivana Mezeyová, Adrián Selnekovič and Daniel Bajčan
Beverages 2025, 11(2), 53; https://doi.org/10.3390/beverages11020053 - 18 Apr 2025
Viewed by 525
Abstract
As an essential mineral element, selenium (Se) must be consumed by organisms through food and beverages. A method used to raise the amount of Se in food made from plants is biofortification, which is the process that increases the bioactivity and content of [...] Read more.
As an essential mineral element, selenium (Se) must be consumed by organisms through food and beverages. A method used to raise the amount of Se in food made from plants is biofortification, which is the process that increases the bioactivity and content of Se in the edible parts of plants. Foliar fertilization is the most feasible method of introducing selenium into the food chain. The objective of this work was to determine the effect of foliar biofortification with Selenium on various quality attributes of fruit species suitable for fruit-based beverage production, with the main goal of verifying the incorporation of Se into plant tissues. During the growing season in 2023, sodium selenate was applied in an equivalent of 150 g/ha Se in professional raspberry, blueberry, redcurrant, honeysuckle and apple plantings, from which fruit-based juice was later produced and analyzed. There was significant increase (p ≤ 0.05) in the Se content in the fruit’s juice, which was the main goal. Furthermore, after the application of Se under the mentioned conditions, there was a significant (p ≤ 0.05) increase in nutritionally valuable parameters, such as antioxidant activity, ferulic acid and resveratrol, but also the content of glucose, fructose, malic acid, total acids, Mn, Ba, Ca, Li, myricetin and chlorogenic acid content. On the other hand, a decrease in some valuable indicators, but also heavy metals (Al, Cu, Cr), were noticed in some fruit juices. Full article
Show Figures

Graphical abstract

19 pages, 1603 KiB  
Article
Availability, Affordability, Awareness, Preferences and Nutritional Impact of Biofortified Crops in Nigeria
by Petya Atanasova, Samrat Singh, Adedotun Adebayo, Folashade Adekunle and Abimbola Adesanmi
Nutrients 2025, 17(6), 1036; https://doi.org/10.3390/nu17061036 - 15 Mar 2025
Viewed by 948
Abstract
Background: Nigeria has one of the highest prevalences of micronutrient deficiencies (MNDs) globally. Biofortification is a sustainable and cost-effective intervention to reduce MNDs. We investigated the current availability, affordability, individual perceptions and preferences regarding biofortified crops in three states in Nigeria (Enugu, Ogun [...] Read more.
Background: Nigeria has one of the highest prevalences of micronutrient deficiencies (MNDs) globally. Biofortification is a sustainable and cost-effective intervention to reduce MNDs. We investigated the current availability, affordability, individual perceptions and preferences regarding biofortified crops in three states in Nigeria (Enugu, Ogun and Kaduna). We investigated potential dietary quality improvements by modifying standardized school meals with biofortified crops. Methods: We conducted a field market survey, key informant interviews and a simulation study. The availability and prices of biofortified crops from 36 preselected markets were systematically recorded. Consumers and sellers were interviewed regarding their awareness of and preferences for biofortified crops. The inclusion of biofortified foods in weekly school meals was simulated to evaluate dietary quality improvements and costs. Three key informant interviews were conducted to understand the scalability of biofortified crops. Qualitative and quantitative techniques were employed in the data analysis. Results: Overall, 39% (total of n = 730) of the recorded crops were identified as biofortified. Biofortified cassava, sweet potatoes and millet were more expensive compared to non-biofortified equivalents. Moreover, 30% (total of n = 730) of the consumers could visually differentiate between the crops, 14% were aware that they were biofortified and 10% preferred biofortified options. The inclusion of biofortified foods in traditional school meals led to higher levels of vitamin A, zinc and iron. The key informant interviews highlighted that scaling biofortification is challenging, requiring individual behavioral change, significant investments in educational campaigns and improvements in supply and demand. Conclusions: The current state of biofortification has limited reach due to limited availability, affordability and consumer preferences. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop