Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives
Abstract
:1. Introduction
2. Harnessing the Rhizosphere Microbiome to Enhance Plant Selenium Nutrition
2.1. Selenium Biogeochemical Cycle
2.2. Reduction and Methylation of Selenium
2.3. Oxidation of Selenium
2.4. Biosynthesis of Microbial SeNPs
2.5. Plant Selenium Uptake Mechanisms
Selenobacteria | Function | Reference |
---|---|---|
Agrobacterium sp. T3F4 | Oxidation of Se(0) into Se(IV); isolated from seleniferous soil. | [46] |
Autotrophic bacteria | Oxidation of selenium to selenic acid | [64] |
Bacillus megaterium | Oxidation of Se(0) to Se(IV); isolated from soil. | [15] |
Dyella spp. LX-1 | Oxidation of SeMet, SeCys2, selenourea, and Se(0) to Se(IV); isolated from seleniferous soil. | [47] |
Thiobacillus ferrooxidans | Oxidation of copper selenide. | [16] |
Micrococcus selenicus | Using selenide (Se(−II)) as an electron donor, during aerobic respiration. | [65] |
Rhodanobacter spp. LX-100 | Oxidation of SeMet, SeCys2, selenourea, and Se(0) to Se(IV); isolated from seleniferous soil. | [47] |
Acinetobacter sp. SW30 | Synthesis of gold nanoparticles (AuNPs) and SeNPs. | [66] |
Alcaligenes faecalispine | Reduction of Se(IV) to Se(0); isolated from the gut of the pine sawyer beetle. | [67] |
Bacillus selenitireducens | Reduction of Se(IV) to Se(0) or Se(0) to Se(−II); utilizing Se(IV) or Se(0) as an electron acceptor in anaerobic respiration; isolated from Mono Lake, a soda lake in California. | [68] |
Chitinophaga sp. SE06 | Synthesis of SeNPs; the first report of Se reduction by Chitinophaga. | [55] |
Comamonas testosterone SE26 | Synthesis of SeNPs. | [55] |
Enterobacter cloacae SLD1a-1 | Synthesis of SeNPs. | [40] |
Providencia rettgeri HF16 | Reduction of Se(IV) to Se(0); isolated from coal mine soil. | [41] |
Pseudomonas sp. ZY71 | Synthesis of SeNP promoted by p-coumarate activates the rpoS gene. | [23] |
Streptomyces sp. ES2-5 | Reduction of Se(IV) to Se(0); isolated from a selenium mine soil. | [69] |
3. Rhizosphere Se-Transforming Microbes in Crop Stress Alleviation
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wells, M.; Stolz, J.F. Microbial Selenium Metabolism: A Brief History, Biogeochemistry and Ecophysiology. FEMS Microbiol. Ecol. 2020, 96, fiaa209. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; McDonald, T.J.; Sohn, M.; Anquandah, G.A.K.; Pettine, M.; Zboril, R. Biogeochemistry of Selenium. A Review. Environ. Chem. Lett. 2015, 13, 49–58. [Google Scholar] [CrossRef]
- Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016, 11, 821–841. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zeng, W.; Liu, Y.; Zhao, D.; Zhang, Y.; Jia, X. Screening and Identification of Soil Selenium-Enriched Strains and Application in Auricularia Auricula. Microorganisms 2024, 12, 1136. [Google Scholar] [CrossRef]
- Fernández-Martínez, A.; Charlet, L. Selenium Environmental Cycling and Bioavailability: A Structural Chemist Point of View. Rev. Environ. Sci. Biotechnol. 2009, 8, 81–110. [Google Scholar] [CrossRef]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H.E. Selenium Deficiency Risk Predicted to Increase under Future Climate Change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef]
- Guo, Q.; Ye, J.; Zeng, J.; Chen, L.; Korpelainen, H.; Li, C. Selenium Species Transforming along Soil–Plant Continuum and Their Beneficial Roles for Horticultural Crops. Hortic. Res. 2023, 10, uhac270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nie, K.; Geng, L.; Wang, Y.; Li, L.; Cheng, H. Selenium’s Role in Plant Secondary Metabolism: Regulation and Mechanistic Insights. Agronomy 2024, 15, 54. [Google Scholar] [CrossRef]
- An, L.; Zhou, C.; Zhao, L.; Wei, A.; Wang, Y.; Cui, H.; Zheng, S. Selenium-Oxidizing Agrobacterium Sp. T3F4 Decreases Arsenic Uptake by Brassica rapa L. under a Native Polluted Soil. J. Environ. Sci. 2024, 138, 506–515. [Google Scholar] [CrossRef]
- Jiang, D.; Yu, F.; Huang, X.; Qin, H.; Zhu, Z. Effects of Microorganisms on Soil Selenium and Its Uptake by Pak Choi in Selenium-Enriched Lateritic Red Soil. Ecotoxicol. Environ. Saf. 2023, 257, 114927. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between Selenium and Sulphur Nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hedwig, S.; Schäffer, A.; Lenz, M.; Martinez, M. Sulfur Amino Acid Status Controls Selenium Methylation in Pseudomonas Tolaasii: Identification of a Novel Metabolite from Promiscuous Enzyme Reactions. Appl. Environ. Microbiol. 2021, 87, e0010421. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Rensing, C.; Zheng, S. Microbial Reduction and Resistance to Selenium: Mechanisms, Applications and Prospects. J. Hazard. Mater. 2022, 421, 126684. [Google Scholar] [CrossRef] [PubMed]
- Eswayah, A.S.; Smith, T.J.; Gardiner, P.H.E. Microbial Transformations of Selenium Species of Relevance to Bioremediation. Appl. Environ. Microbiol. 2016, 82, 4848–4859. [Google Scholar] [CrossRef]
- Sarathchandra, S.; Watkinson, J. Oxidation of Elemental Selenium to Selenite by Bacillus Megaterium. Science 1981, 211, 600–601. [Google Scholar] [CrossRef]
- Torma, A.E.; Habashi, F. Oxidation of Copper (II) Selenide by Thiobacillus Ferrooxidans. Can. J. Microbiol. 1972, 18, 1780–1781. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, F.; Yang, W.; Peng, Q.; Man, N.; Liang, D. Selenate Redistribution during Aging in Different Chinese Soils and the Dominant Influential Factors. Chemosphere 2017, 182, 284–292. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium Distribution in the Chinese Environment and Its Relationship with Human Health: A Review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Sakr, T.M.; Korany, M.; Katti, K.V. Selenium Nanomaterials in Biomedicine—An Overview of New Opportunities in Nanomedicine of Selenium. J. Drug Deliv. Sci. Technol. 2018, 46, 223–233. [Google Scholar] [CrossRef]
- Kang, Y.; Ming, J.; Fu, W.; Long, L.; Wen, X.; Zhang, Q.; Xiang, J.; Zhu, Y.; Yin, H. Selenium Fertilizer Improves Microbial Community Structure and Diversity of Rhizospheric Soil and Selenium Accumulation in Tomato Plants. Commun. Soil Sci. Plant Anal. 2024, 55, 1430–1444. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, R.J. Management and Efficient Agricultural Utilization of Salt-Affected Soil in China. Bull. Chin. Acad. Sci. 2015, 30, 417–425. [Google Scholar] [CrossRef]
- Valencia-Marin, M.F.; Chávez-Avila, S.; Guzmán-Guzmán, P.; Orozco-Mosqueda, M.d.C.; de los Santos-Villalobos, S.; Glick, B.R.; Santoyo, G. Survival Strategies of Bacillus spp. in Saline Soils: Key Factors to Promote Plant Growth and Health. Biotechnol. Adv. 2024, 70, 108303. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Sun, B.; Chen, L.; Zhang, M.; Lu, P.; Wu, M.; Xue, Q.; Guo, Q.; Tang, D.; Lai, H. Harnessing Biosynthesized Selenium Nanoparticles for Recruitment of Beneficial Soil Microbes to Plant Roots. Cell Host Microbe 2024, 32, 2148–2160.e7. [Google Scholar] [CrossRef] [PubMed]
- Bakker, P.; Pieterse, C.M.J.; de Jonge, R.; Berendsen, R.L. The Soil-Borne Legacy. Cell 2018, 172, 1178–1180. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef]
- Feng, H.; Fu, R.; Luo, J.; Hou, X.; Gao, K.; Su, L.; Xu, Y.; Miao, Y.; Liu, Y.; Xu, Z.; et al. Listening to Plant’s Esperanto via Root Exudates: Reprogramming the Functional Expression of Plant Growth-promoting Rhizobacteria. New Phytol. 2023, 239, 2307–2319. [Google Scholar] [CrossRef]
- Oram, L.L.; Strawn, D.G.; Marcus, M.A.; Fakra, S.C.; Möller, G. Macro- and Microscale Investigation of Selenium Speciation in Blackfoot River, Idaho Sediments. Environ. Sci. Technol. 2008, 42, 6830–6836. [Google Scholar] [CrossRef]
- Lidman, F.; Mörth, C.-M.; Björkvald, L.; Laudon, H. Selenium Dynamics in Boreal Streams: The Role of Wetlands and Changing Groundwater Tables. Environ. Sci. Technol. 2011, 45, 2677–2683. [Google Scholar] [CrossRef]
- Cartes, P.; Gianfreda, L.; Mora, M.L. Uptake of Selenium and Its Antioxidant Activity in Ryegrass When Applied as Selenate and Selenite Forms. Plant Soil 2005, 276, 359–367. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Altansuvd, J. Speciation and Bioavailability of Selenium and Antimony in Non-Flooded and Wetland Soils: A Review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Lens, P.N.L. Ecology and Biotechnology of Selenium-Respiring Bacteria. Microbiol. Mol. Biol. Rev. 2015, 79, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, J.J.; Merroun, M.L.; Tugarova, A.V.; Lampis, S.; Kamnev, A.A.; Gardiner, P.H.E. Developments in the Study and Applications of Bacterial Transformations of Selenium Species. Crit. Rev. Biotechnol. 2020, 40, 1250–1264. [Google Scholar] [CrossRef]
- Miralles-Robledillo, J.M.; Torregrosa-Crespo, J.; Martínez-Espinosa, R.M.; Pire, C. DMSO Reductase Family: Phylogenetics and Applications of Extremophiles. Int. J. Mol. Sci. 2019, 20, 3349. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; AlKhedhairy, A.A.; Ahamed, M.; Musarrat, J. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay. PLoS ONE 2013, 8, e57404. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon-Smits, E.A.H. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. J. Environ. Qual. 2017, 46, 10–19. [Google Scholar] [CrossRef]
- Karna, R.R.; Kumara, S.T.; McCracken, V.J.; Fowler, T.J.; Lin, Z.Q. Enhancement on Selenium Volatilization for Phytoremediation: Role of Plant and Soil Microbe Interaction. Front. Plant Sci. 2024, 15, 1504528. [Google Scholar] [CrossRef] [PubMed]
- Vriens, B.; Behra, R.; Voegelin, A.; Zupanic, A.; Winkel, L.H.E. Selenium Uptake and Methylation by the Microalga Chlamydomonas Reinhardtii. Environ. Sci. Technol. 2016, 50, 711–720. [Google Scholar] [CrossRef]
- Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020, 8, 506. [Google Scholar] [CrossRef]
- Pei, G.; Li, Y.; Li, H. Impacts of Selenium Supplementation on Soil Mercury Speciation, Soil Properties and Mercury-Resistant Microorganisms and Resistant Genes. Agronomy 2024, 14, 1928. [Google Scholar] [CrossRef]
- Yee, N.; Ma, J.; Dalia, A.; Boonfueng, T.; Kobayashi, D.Y. Se(VI) Reduction and the Precipitation of Se(0) by the Facultative Bacterium Enterobacter cloacae SLD1a-1 Are Regulated by FNR. Appl. Environ. Microbiol. 2007, 73, 1914–1920. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Tang, C.; Jia, H.; Wu, L. Speeding up Selenite Bioremediation Using the Highly Selenite-Tolerant Strain Providencia Rettgeri HF16-A Novel Mechanism of Selenite Reduction Based on Proteomic Analysis. J. Hazard. Mater. 2020, 406, 124690. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, Q.; Gao, S.; Zhang, S.; Ma, Y.; Zhao, G.; Guo, Y. Highly Stable Selenium Nanoparticles: Assembly and Stabilization via Flagellin FliC and Porin OmpF in Rahnella Aquatilis HX2. J. Hazard. Mater. 2021, 414, 125545. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Zhang, Y.; Xu, Z.; Luo, M.; Wang, G. NAD(P)H-Dependent Thioredoxin-Disulfide Reductase TrxR Is Essential for Tellurite and Selenite Reduction and Resistance in Bacillus sp. Y3. FEMS Microbiol. Ecol. 2020, 96, fiaa126. [Google Scholar] [CrossRef]
- Qu, L.; Xu, J.; Dai, Z.; Elyamine, A.M.; Huang, W.; Han, D.; Dang, B.; Xu, Z.; Jia, W. Selenium in Soil-Plant System: Transport, Detoxification and Bioremediation. J. Hazard. Mater. 2023, 452, 131272. [Google Scholar] [CrossRef] [PubMed]
- Losi, M.E.; Frankenberger, W.T. Microbial Oxidation and Solubilization of Precipitated Elemental Selenium in Soil. J. Environ. Qual. 1998, 27, 836–843. [Google Scholar] [CrossRef]
- Zhu, D.; Niu, Y.; Fan, K.; Zhang, F.; Wang, Y.; Wang, G.; Zheng, S. Selenium-Oxidizing Agrobacterium sp. T3F4 Steadily Colonizes in Soil Promoting Selenium Uptake by Pak Choi (Brassica campestris). Sci. Total Environ. 2021, 791, 148294. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Lan, Y.; An, L.; Wang, G.; Li, M.; Zheng, S. Microbial Oxidation of Organic and Elemental Selenium to Selenite. Sci. Total Environ. 2022, 833, 155203. [Google Scholar] [CrossRef]
- Selmani, A.; Ulm, L.; Kasemets, K.; Kurvet, I.; Erceg, I.; Barbir, R.; Pem, B.; Santini, P.; Marion, I.D.; Vinković, T.; et al. Stability and Toxicity of Differently Coated Selenium Nanoparticles under Model Environmental Exposure Settings. Chemosphere 2020, 250, 126265. [Google Scholar] [CrossRef]
- Fischer, S.; Krause, T.; Lederer, F.; Merroun, M.L.; Shevchenko, A.; Hübner, R.; Firkala, T.; Stumpf, T.; Jordan, N.; Jain, R. Bacillus safensis JG-B5T Affects the Fate of Selenium by Extracellular Production of Colloidally Less Stable Selenium Nanoparticles. J. Hazard. Mater. 2020, 384, 121146. [Google Scholar] [CrossRef]
- Xue, S.J.; Zhang, X.T.; Li, X.C.; Zhao, F.Y.; Shu, X.; Jiang, W.W.; Zhang, J.Y. Multi-Pathways-Mediated Mechanisms of Selenite Reduction and Elemental Selenium Nanoparticles Biogenesis in the Yeast-like Fungus Aureobasidium Melanogenum I15. J. Hazard. Mater. 2024, 470, 134204. [Google Scholar] [CrossRef]
- Yan, Z.; Qian, J.; Gu, Y.; Su, Y.; Ai, X.; Wu, S. Green Biosynthesis of Biocompatible CdSe Quantum Dots in Living Escherichia coli Cells. Mater. Res. Express 2014, 1, 15401. [Google Scholar] [CrossRef]
- Qi, S.; Yang, S.; Yue, L.; Wang, J.; Liang, X.; Xin, B. Extracellular Biosynthesis of Cu2-XSe Nanocrystallites with Photocatalytic Activity. Mater. Res. Bull. 2019, 111, 126–132. [Google Scholar] [CrossRef]
- Jacob, J.M.; Sharma, S.; Balakrishnan, R.M. Exploring the Fungal Protein Cadre in the Biosynthesis of PbSe Quantum Dots. J. Hazard. Mater. 2017, 324, 54–61. [Google Scholar] [CrossRef]
- Wang, C.; Yue, L.; Cheng, B.; Chen, F.; Zhao, X.; Wang, Z.; Xing, B. Mechanisms of Growth-Promotion and Se-Enrichment in Brassica chinensis L. by Selenium Nanomaterials: Beneficial Rhizosphere Microorganisms, Nutrient Availability, and Photosynthesis. Environ. Sci. Nano 2022, 9, 302–312. [Google Scholar] [CrossRef]
- Huang, C.; Wang, H.; Shi, X.; Wang, Y.; Li, P.; Yin, H.; Shao, Y. Two New Selenite Reducing Bacterial Isolates from Paddy Soil and the Potential Se Biofortification of Paddy Rice. Ecotoxicology 2021, 30, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cheng, W.; Liu, X.; You, H.; Wu, G.; Ding, K.; Tu, X.; Yang, L.; Wang, Y.; Li, Y.; et al. Selenate Reduction and Selenium Enrichment of Tea by the Endophytic Herbaspirillum sp. Strain WT00C. Curr. Microbiol. 2020, 77, 588–601. [Google Scholar] [CrossRef]
- Ghazi, A.A.; El-Nahrawy, S.; El-Ramady, H.; Ling, W. Biosynthesis of Nano-Selenium and Its Impact on Germination of Wheat under Salt Stress for Sustainable Production. Sustainability 2022, 14, 1784. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, Z.; Sun, Z.; Li, C. Harnessing Native Bacillus spp. for Sustainable Wheat Production. Appl. Environ. Microbiol. 2023, 89, e0124722. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.C.; Fordyce, F.M.; Rayman, M.P. Symposium on “Geographical and Geological Influences on Nutrition”: Factors Controlling the Distribution of Selenium in the Environment and Their Impact on Health and Nutrition. Proc. Nutr. Soc. 2010, 69, 119–132. [Google Scholar] [CrossRef]
- Qing, X.; Zhao, X.; Hu, C.; Wang, P.; Zhang, Y.; Zhang, X.; Wang, P.; Shi, H.; Jia, F.; Qu, C. Selenium Alleviates Chromium Toxicity by Preventing Oxidative Stress in Cabbage (Brassica campestris L. ssp. Pekinensis) Leaves. Ecotoxicol. Environ. Saf. 2015, 114, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular Pathways and Physiological Roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhao, L.; Li, J.; Zhang, C.; Lyu, L.; Man, Y.B.; Wu, F. Influence of Exogenous Selenomethionine and Selenocystine on Uptake and Accumulation of Se in Winter Wheat (Triticum aestivum L. cv. Xinong 979). Environ. Sci. Pollut. Res. Int. 2023, 30, 23887–23897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, C.; Wang, X.; Shi, G.; Lei, Z.; Tang, Y.; Zhang, H.; Wuriyanghan, H.; Zhao, X. Selenium-Induced Rhizosphere Microorganisms Endow Salt-Sensitive Soybeans with Salt Tolerance. Environ. Res. 2023, 236, 116827. [Google Scholar] [CrossRef]
- Lipman, J.G.; Waksman, S.A. The Oxidation of Selenium by a New Group of Autotrophic Microorganisms. Science 1923, 57, 60. [Google Scholar] [CrossRef] [PubMed]
- Levine, V.E. The Reducing Properties of Microorganisms Withspecial Reference to Selenium Compounds. J. Bacteriol. 1925, 10, 217–263. [Google Scholar] [CrossRef]
- Wadhwani, S.A.; Shedbalkar, U.U.; Singh, R.; Chopade, B.A. Biosynthesis of Gold and Selenium Nanoparticles by Purified Protein from Acinetobacter sp. SW 30. Enzyme Microb. Technol. 2018, 111, 81–86. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, X.; Zhou, Q.; Fan, T.; Wang, T.; Chen, X.; Li, M.; Ma, Y.; Ni, J.; Hou, J.; et al. Selenite Reduction and the Biogenesis of Selenium Nanoparticles by Alcaligenes Faecalis Se03 Isolated from the Gut of Monochamus Alternatus (Coleoptera: Cerambycidae). Int. J. Mol. Sci. 2018, 19, 2799. [Google Scholar] [CrossRef]
- Herbel, M.J.; Blum, J.S.; Oremland, R.S.; Borglin, S.E. Reduction of Elemental Selenium to Selenide: Experiments with Anoxic Sediments and Bacteria That Respire Se-Oxyanions. Geomicrobiol. J. 2003, 20, 587–602. [Google Scholar] [CrossRef]
- Tan, Y.; Yao, R.; Wang, R.; Wang, D.; Wang, G.; Zheng, S. Reduction of Selenite to Se(0) Nanoparticles by Filamentous Bacterium Streptomyces sp. ES2-5 Isolated from a Selenium Mining Soil. Microb. Cell Fact. 2016, 15, 157. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Z.; Chen, L.; Xun, W.; Shu, X.; Chen, Y.; Sun, X.; Wang, Z.; Ren, Y.; Shen, Q.; et al. Root Colonization by Beneficial Rhizobacteria. FEMS Microbiol. Rev. 2024, 48, fuad066. [Google Scholar] [CrossRef]
- Shu, L.J.; Kahlon, P.S.; Ranf, S. The Power of Patterns: New Insights into Pattern-Triggered Immunity. New Phytol. 2023, 240, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Fu, R.; Hou, X.; Lv, Y.; Zhang, N.; Liu, Y.; Xu, Z.; Miao, Y.; Krell, T.; Shen, Q.; et al. Chemotaxis of Beneficial Rhizobacteria to Root Exudates: The First Step towards Root—Microbe Rhizosphere Interactions. Int. J. Mol. Sci. 2021, 22, 6655. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhang, N.; Fu, R.; Liu, Y.; Krell, T.; Du, W.; Shao, J.; Shen, Q.; Zhang, R. Recognition of Dominant Attractants by Key Chemoreceptors Mediates Recruitment of Plant Growth-promoting Rhizobacteria. Environ. Microbiol. 2019, 21, 402–415. [Google Scholar] [CrossRef]
- Feng, H.; Lv, Y.; Krell, T.; Fu, R.; Liu, Y.; Xu, Z.; Du, W.; Shen, Q.; Zhang, N.; Zhang, R. Signal Binding at Both Modules of Its DCache Domain Enables the McpA Chemoreceptor of Bacillus Velezensis to Sense Different Ligands. Proc. Natl. Acad. Sci. USA 2022, 119, e2201747119. [Google Scholar] [CrossRef]
- Liu, Y.; Shu, X.; Chen, L.; Zhang, H.; Feng, H.; Sun, X.; Xiong, Q.; Li, G.; Xun, W.; Xu, Z.; et al. Plant Commensal Type VII Secretion System Causes Iron Leakage from Roots to Promote Colonization. Nat. Microbiol. 2023, 8, 1434–1449. [Google Scholar] [CrossRef]
- Rolfe, S.A.; Griffiths, J.; Ton, J. Crying out for Help with Root Exudates: Adaptive Mechanisms by Which Stressed Plants Assemble Health-Promoting Soil Microbiomes. Curr. Opin. Microbiol. 2019, 49, 73–82. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Shi, J.; Khashi u Rahman, M.; Liu, H.; Wei, Z.; Wu, F.; Dini-Andreote, F. Volatile-Mediated Interspecific Plant Interaction Promotes Root Colonization by Beneficial Bacteria via Induced Shifts in Root Exudation. Microbiome 2024, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Andrade, C.N.; Dinesen, C.; Wibowo, M.; Bach, N.A.; Hesselberg-Thomsen, V.; Jarmusch, S.A.; Strube, M.L.; Kovács, Á.T. Surfactin Facilitates Establishment of Bacillus Subtilis in Synthetic Communities. ISME J. 2025, 19, wraf013. [Google Scholar] [CrossRef]
- Tavanti, T.R.; de Melo, A.A.R.; Moreira, L.D.K.; Sanchez, D.E.J.; Silva, R. dos S.; Silva, R.M. da; Reis, A.R. dos Micronutrient Fertilization Enhances ROS Scavenging System for Alleviation of Abiotic Stresses in Plants. Plant Physiol. Biochem. 2021, 160, 386–396. [Google Scholar] [CrossRef]
- Nie, M.; Wu, C.; Tang, Y.; Shi, G.; Wang, X.; Hu, C.; Cao, J.; Zhao, X. Selenium and Bacillus Proteolyticus SES Synergistically Enhanced Ryegrass to Remediate Cu–Cd–Cr Contaminated Soil. Environ. Pollut. 2023, 323, 121272. [Google Scholar] [CrossRef]
- Liu, K.; Cai, M.; Hu, C.; Sun, X.; Cheng, Q.; Jia, W.; Yang, T.; Nie, M.; Zhao, X. Selenium (Se) Reduces Sclerotinia Stem Rot Disease Incidence of Oilseed Rape by Increasing Plant Se Concentration and Shifting Soil Microbial Community and Functional Profiles. Environ. Pollut. 2019, 254, 113051. [Google Scholar] [CrossRef] [PubMed]
- Benabdellah, K.; Abbas, Y.; Abourouh, M.; Aroca, R.; Azcón, R. Influence of Two Bacterial Isolates from Degraded and Non-Degraded Soils and Arbuscular Mycorrhizae Fungi Isolated from Semi-Arid Zone on the Growth of Trifolium Repens under Drought Conditions: Mechanisms Related to Bacterial Effectiveness. Eur. J. Soil Biol. 2011, 47, 303–309. [Google Scholar] [CrossRef]
- Liu, Y.; Xun, W.; Chen, L.; Xu, Z.; Zhang, N.; Feng, H.; Zhang, Q.; Zhang, R. Rhizosphere Microbes Enhance Plant Salt Tolerance: Toward Crop Production in Saline Soil. Comput. Struct. Biotechnol. J. 2022, 20, 6543–6551. [Google Scholar] [CrossRef] [PubMed]
- Marulanda, A.; Barea, J.-M.; Azcón, R. Stimulation of Plant Growth and Drought Tolerance by Native Microorganisms (AM Fungi and Bacteria) from Dry Environments: Mechanisms Related to Bacterial Effectiveness. J. Plant Growth Regul. 2009, 28, 115–124. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, R.; Zhu, M.; Zhang, Y.; Li, J.; Feng, H. Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives. Microorganisms 2025, 13, 1234. https://doi.org/10.3390/microorganisms13061234
Fu R, Zhu M, Zhang Y, Li J, Feng H. Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives. Microorganisms. 2025; 13(6):1234. https://doi.org/10.3390/microorganisms13061234
Chicago/Turabian StyleFu, Ruixin, Mengyuan Zhu, Yanrong Zhang, Junmin Li, and Haichao Feng. 2025. "Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives" Microorganisms 13, no. 6: 1234. https://doi.org/10.3390/microorganisms13061234
APA StyleFu, R., Zhu, M., Zhang, Y., Li, J., & Feng, H. (2025). Harnessing the Rhizosphere Microbiome for Selenium Biofortification in Plants: Mechanisms, Applications and Future Perspectives. Microorganisms, 13(6), 1234. https://doi.org/10.3390/microorganisms13061234